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NUMERICAL SOLUTION OF BOUNDARY VALUE PROBLEMS FOR
RETARDED DIFFERENTIAL EQUATIONS WITH A PARAMETER

Tadeusz Jankowski

One step methods combined with an iterative method are applied to find a
numerical solution of boundary value problems for retarded ordinary differential
equations with a parameter. This paper deals with the convergence of such
methods. Some estimates of errors are given too.

1. Introduction. We consider the system of retarded ordinary differential equations

(1) y’(t) = f(t7 y(t)) y(al (t))1 e ’y(a"(t)): ’\)’ teJ= [av b]: a<b,

where f : J x RI("+1) x R? — RY and «; : J — R are continuous and ai(ty<t, ted, i=
1,2,.--,r. Here A € RP is a parameter. We assume that the solution of (1) is given on J,,
so : ’

(2) y@t)=9(@%), teJ,=][aa, a= igg{a,-(t), i=1,2,---,r} ¥eCYJ,,RY.

Here C'(J,, R?) denotes the space of all functions of the class C! defined on J, with a
range in R7. We are interested in the solution of (1-2) that satisfies the nonlinear boundary
condition

(3) | g(A,y(b)) = ©p, O, is zero element in RP,

where g : R? x R? — RP. By a solution of (1-3) we mean a function ¢ € C(J, R?) and a
parameter A € RP such that (1-3) to be satisfied. Problem (1-3) may also be named as an
eigenvalue problem for retarded differential equations or as a problem of terminal control.
Sometimes g may be linear with respect to its variables or may depend on A or y(b) only.

The question of existence and uniqueness of solutions of problems with parameters is
alredy investigated (see, for example, [3, 8, 9, 10]). Due to this fact it will be assumed that
our problem has the exact solution (¢, A). A numerical approximation of this solution is a
task of this paper.

Notice that ¢ is a function of A. It is known that if f has continuous first order partial
derivatives with respect to the last r 4+ 2 variables, then

Y(53) = ool )
is the solution of the problem
(Y'(50) = fo(t, (), p(@a(2),- -+, p(ar(t)), Y (£ A)+
+ D filt,e(8) (e (t)), -, o(an(t)), DY (e (t); A)+

+ fA(t’ So(t)) ‘P(al(t))a Ty ‘P(ar(t))’ ’\)s te J7
{ Y(a; X)) = 0gxp.

A

(4)
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Here f; denotes the partial derivative of f with respect to the (: 4 2)th variable for ¢ =
0,1,---,r, while f) denotes the partial derivative of f with respect to the last variable.
Indeed, (¢, A) is the solution of (1-3) if A is a fixed point of @, where

®(A) = g(A, (b)) = O,.
The value of A may be obtained by the Newton method, so
An+1 = An — [(I)’(,\n)]—l ®(\,), n=0,1,---,

where

®'(A) = g1(A, ¢(b)) + g2(A, p(B))Y (b5 A).

Here g; and g, are partial derivatives of g with respect to the first and second variable,
respectively.

Our task is to determine the numerical solution (yx, An;) of (1 —3) from the discretiza-
tion of the above method. The values of y, will be defined on the set of points 3, which
for arbitrary integer N are expressed by t; = a +ih, : =0,1,---, N with h = (b — a)/N.
Let

h

ei(n) = 91@'_”‘;)_2_‘_’. — ci(n)

ciln)=F (ﬂfﬁ_f}l"_a) , where E denotes the integer part,

fort =1,2,---,r, n=0,1,---, N. It is easy to observe that a;i(tss) = th,c..(n))+he,~(n),. 1=
1,2,---,r, n=0,1,.-., N. Now, we may define the numerical solution (ys, An;) of (1 — 3)
by the following formulas

yn(t; M) = U(t) ift € J,,
(5) yh(thﬂ + Ch; AhJ) = yh(thn; ’\hj) + hF(thn, yh(thn; /\hj), yh(th,cl(n) + hel(n); Ahj),
oo ayh(th,c,(n) + her(n); /\),j), /\hj, h, e) fore € [0, 1], n= 0, 1,--. ’N -1,

( Yh(t; Ahj) = qup ift € Ja,
Yi(tan + eh; Anj) = [I + AL (0, €)]Ya(thn; Anj)

6 LA
© < +hYy AL Gy e)Yalth,ein) + hei(n); Anj)
=1
\ + kAL (\e), e€[0,1], n=0,1,---,N —1,
and

Aho = Ao € RP,
(M

: : -1
Ahj+1 = Abj — (th + B2, Ya(b; ,\,.j)) 9(Ans> yn(b; Anj)),
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defined for j = 0,1,---. Here I is the unit matrix of order q and

A}, G,e) =Fi(thn, yn(thn; ns ) Yn (Ehoey(n) + her(n); Anj),
yir yh(th,c,(n) + her(n); /\hj), /\hj, h, e),
A} (A, €) =Fa(thn, Yn(thni Ans)s Yn(Eh,ey (n) + Re1(n); Anj),
yoo e ,yh(th,c,(n) + her(n); Anj), Anj, h,e€),
where F; denotes the partial derivative of F with respect to the (¢ + 2)th variable for

¢ =0,1,---,r and F) is the partial derivative of F with respect to the (r + 3)th variable.
Moreover,

B, = gi(Mnj, un(bi Mny)), i=1,2,

where g; denotes the partial derivative of g with respect to the ith variable. It will be
assumed that F(---,0) = ©4, FA(-+-,0) = O4xp, Fi(-++,0) = Ogxg, t=0,1,---,r. Notice
that taking

F(tayoayla"'ayraA)h)e) = cf(t,yanh'")yr’A)a

we obtain the Euler procedure.
If e = 1, then (6) yields

n—1 n—1
Ya(thn; Anj) = Z [ H (I + hA{'n_H__’(O, 1))] Bi., n=0,1,---,N,

=0 Ls=i+1l
with
Bj;=h [Z ALk, 1)Ya(tn e + her(a); Mng) + Ady(2, 1)] ;
k=1
and 3570 = Ogxp, [I;--- =1 if:>s. It is also useful for the case when f does

not depend on a4, ¢ =1,2,---,r; then F; =0, i =1,2,---,r and F, Fy, F)\ do not depend
on the variables from 3rd to (r+2)th and the last one.
Assume for a moment that p = ¢, and

9(u,v) = Mu + Nv - K, K € RP,

where M and N are given square matrices of order p. Let the matrix M+ N be nonsingular.
For this case, we can take M + N instead of B, + BJ, Y (b; Anj) and we do not need the
elements of Y}, for finding an approximate solution of (1-3). The convergence of the new
method (yr, Ar;) will be guaranteed if among other things one assumes that

(9 T+ 8y 1+ Bean(@G - o) - <1 @=Y a0

=0

Here Qo, @1, -, Qr, Qx are Lipschitz constants of F' with respect to the variables from the
second to the last, respectively. Such methods were considered in [4, 5] both for linear and
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nonlinear boundary condition (3). The above mentioned condition is not so different from
the corresponding results of [1, 7, 11] for problems without retardations and parameters.

The condition similar to () can be omitted for convergence of (4-7). In this paper will
be formulated such sufficient conditions for convergence of our method (4-7). The estimates
of errors will be given too.

2. Definitions, assumptions and lemmas. We introduce the following
Definition 1. We say that method (5-7) is convergent to the solution (¢, ) of problem
(1-3) if

Jim sup |lya (8 Anj) — @ () =0,
[—oo teJ
j—oo
tim [[Aa; = M| = 0.
j—oo
Definition 2. We say that method (5-7) is consistent with problem (1-3) on (i, A) if there

exists a function € : Jy x H x [0,1] = Ry = [0,00), Jx = [a,b— k], H = [0,h*], h* >0
such that

(@) IAF(t, (1), p(@1(t)), - -+, p(ar(t)), A, by €) + o(t) — @(t + eh)|| < e(t, b, e),
N-1
(41) lim ga &(tni,h) =0, where &t,h)= P e(t, h,e).

Remark 1. Knowing that ¢ is a solution of (1-2), condition (i) may be written by

t+eh

"hF(t’ o(t), p(aa(t)),- - w(ar(t)), A h, e) —/t f(ryo(7), pla1(7)) -, w(ar(7)), Adr||
< ¢(t, h,e).

Notice that condition (ii) will be satisfied if for example e(t,h,e)=h*, v>1,t€ Jyand
e € [0,1].

Assumption H. Assume that

1° the function F : J x RI("+1) x RP x H x [0,1] — RY is continuous and has first order
partial derivatives F;, F) with respect to the (i+2)th variable fori =0, - - - ,r, where F de-
notes the partial derivative of F with respect to the (r+3)th variable; ¥ € CY(Jq, RY), a; €
C(J’ [6'7b])$ ai(t) < t and F( : 10) = GQ’ F/\( o 70) = quP’ 'F'i(“' ’0) = 00"9 for
1=0,1,---,r7,

2g: RP xR — RP is continuous and has first order partial derivatives g, and g,
with respect to the first and second variable, respectively

30 there exist constants Q;, Q*, L4i, L}, M;, M?* fori=0,1,---,r, s=0,1,---,r such
that fort € J, h € H, e € [0,1), yi,%i € R%, 1 =0,1,---,7r, u, i € RP, the conditions

IIF,‘(t,yo,yl,---,yr,,u,h,e)|| <Qi, 1=0,1,---,m7,
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”Fk(t’ Yo, Y1, Yrs 4, hv 6)“ .<.. Q)\a

and

r
IFs(t,yo,y15 -+, yry 1y By €) = Fy(t, G0, B1s e+ Gy B By €)ll € S Luillys — gill + L2\ — &),
t=0
s=0,1,---,r,

r
“F)\(t,y07y1a'"1yra/‘)h’e) - F)‘(t,go,yl,---,y‘r,ﬁ,h,e)ll < ZMillyi - !7:” + M,\”F' - ﬁ”

1=0
hold,
4° there exist constants Ky, Kiz, i = 1,2 such that for z,Z € RP, y,§y € R? we have
lgi(z,y) — (2, 9ll < Kalle — 2|l + Kiolly — gll, i=1,2.

Put
V(t) = |lv(®)], te, Un = sup V(t).

[a,t;.,.]

Then we can formulate the lemma.

Lemma 1. Assume that by,by,b2 >0, a: Ji x H x [0,1] - R4 and
(8) V(thn +eh) < (1 + hbo)V(thn) + hbyUn + hby + a(thn, hye), n=0,1,--- N —1.

Then we have

N-1
(9) supV(t) < (T) Z a(tni, h) + Bby + BV(a)) ezp(b1b(b — a)),
teJ =
where _
b=ecp(bo(b—a)),  G(t,h) = sup alt,he),
e€(o,1]
b—1 .
B 5o if by # 0,

b—a ifbo=0.

Proof. Indeed, for e = 1, we get
V(th,n+1) < (1 + hbo)V(thn) + hblUn + hb2 + a(thn, h, 1)’ n= Oa 1, e aN -1

It yields the inequality

n—1 -1
(10) V(tan) < 3 _(1+hbo)" ™"~ [hbyUs + hbz + althi, b, 1)] + (1 + hbo)"V(a), 3 =0,
=0 0
n=01,---,N.
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Moreover, (8) leads to

sup  V(t) < (1 + hbo)V (thn) + hb1Un + hby + &(thn, k), n=0,1,---,N — 1.

[thn :th,n-{-l]

Combining this with (10) we arrive at the inequality

sup V(t) < hb iu + hbo)" " U; + iu + hbo)* " [@(tni, h) + hbg)+

[thn,th,nt1] i=0 i=0
+ (1 + hbo)**'V(a)
n _ N-1 _ _
<hbbY Ui +b ) a(tni,h) + Bb + 8V (a), n=0,1,---,N —1.
=0 =0

Now, it is easy to prove (by induction with respect to n) that

U, = max (Un_l, sup V(t))

[th,n—l ,thn]

satisfies the following inequality

n—1 N-1
(11) Un <hbd> Ui +5)  a(tni,h) + Bby +b5V(a), n=0,1,---,N.
=0 =0

Denote the right-hand side of this inequality by 8,. Indeed,
Bnt1 — Bn = hb1bU, < hb1bB,,
or .
Brn+1 £ (1 + Abib)Br, n=0,1,--- N —1.
Hence we have

N-1
Bn < (14 hbyd)" EZ&(thi,h)+Bb2+5V(a) , n=0,1,---,N.

=0

Combining this with (11) we get the inequality (9). This completes the proof.
Let
0< 2p41 < D[A22 + Bz, +C], A,B,C,D>0, n=0,1,---.

Lemma 2([6]). Assume that there exists a constant d such that

DB <d<l1,
D

_2 —
4p°AC <1, where p= i-DB
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1-4d"
1-4d’

zpn <d"p+ DC n=20,1,---.

3. Convergence of (5-7). Put

Q=ZQ:', La=% Laia 3=0’1,"'ara
=1 1=0
N r . _l r ‘ N l r N
L-;L,, M._2;M,, L _M+2§L,,
c=exp(Qo(db—a)), c1 = exp(Qc(db- a)),
c—1
if 0,
B O if Qo #

b—a if Qo =0,

1 _ 1 }
K = E(Ku +caKipBQy) Kiz = zc1cKiz, 1 =1,2,

2
N-1
on = Z &(thi, h),
1=0
M’\
A; = c1Be(b—a)Q [L* + &1 LBQ,] + TB’

| B;(h) = c?c1(b — a)(2c1 LBQx + L*)é,

| C1(h) = (c¥(b — a)Lc2 6y + 1)céa,
Az = K11 + c1GA; + 1 BQaKay,

By(h) = c1GB1(h) + (K12 + c1cK21 + c1 BQaK22)6n,
C2(h) = c1 [GC1(h) + cK2263) .

Now we are in a position to establish the main theorem.

\

|

|

Theorem 1. If Assumption H is satisfied, and
19 there exists the unique solution (g, \) of (1-3),
2° method (5-7) is consistent with problem (1-3) on (g, )),
3° the matrices B, + B}, Yx(b; Anj), j = 0,1,--- are nonsingular and there exists a
constant D > 0 such that
1B, + BiYa(b: Au;)TH S D, 5 =0,1,--,
then, for sufficiently small h, there exists a constant d such that

DBy(hy<d <1,
D

| (3ox) 4p%(h)A2C,(R) < 1, p(h) = A= DBy (h)’

DC:(h)Az2p(h) +d <1
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hold for h < h and method (5-7) is convergent to the solution (¢, A) of (1-3) provided that

DC,y(x)

IAho — Alf < uo(h) = sup_ T h < h.
o<z<h 1~
Furthermore, the estimates
(12) I An; = Al < uj(h),
N-1
(13) sup [lya (t; Mj) = el < e1BQauj(h) +ere Y &(tni, h),
t€ =0

(14) sup HYa(t Ansi)(Anj — X) = ya(ts Anj) + (Ol < e1 [Aru5(R) + Ba(h)uj(h) + Ca(h)]

hold for h < h and j = 0,1,---, with

. 1-d .
uJ(h) = dJuO(h) + DCZ(h)_l——d’ )= 0, 11 cc

Proof. Put

vi(t) = yn(t; An) — o(8), Vi, = llviCtaa)ll, Wi, = sup |lvi(®)I,

a,thn
Z=xi—A,  Z} =zl

Chn(e) = hF(thn, p(tan),p(a1(thn))s - s @(ar(trn), A, hy€) + @(tan) — @(thn + €h),
A, (ie) = /: Fi(thn, @(thn) + 701 (thn ), @(th,cy () + Be1(n)) + T3 (Eh cy(n) + her(n)),
oy @(th,c,(n) + her(n)) + rvi(th’cr(n) + her(n)), A + TZ‘,’;, h,e)dr,
me()\, e) = /01 Fa(thn, @(thn) + 701 (thn)s ©(th cr(n) + he1(n)) + TUL(th ey (n) + her(n)),
v (e, (n) + her(n)) + T0L(tnc.(n) + her(n)), A + 72, b, e)dr,
B}, = /o 1 gi(A + 721, 0(b) + TV (b))dr, i=1,2.
By the definition of y, and the mean value theorem, we obtain

(15) vi(thn + eh) = yn(tan; Anj) + AF(thn, Ya(thn; Anj)s Ya(Eh cy(n) + Re1(n); Anj),
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v Yn(thoe (n) + her(n); Arj), Anj, By €) — @(thn) + Chn(e)—
- hF(thn’ ‘P(thn)’ So(th,u(n) + hel(n))’ Tt So(th,cr(n) + he"(n))v A, hye)

= [1+hA],0,6)] v](tan) + B Y A (i, )0 (th,e(m) + hei(m))+
i=1

+ Ay, (N €)zl + Chnle), n=0,1,---,N=1, j=0,1,---.
It is easy to see that

[v3(thn + eb)l| < (1+ hQ0)Vi, + QWL + hQAZ] + e(thn, hy€)
fore € [0,1], n=0,1,---,N-1, j =0,1,---. Now using Lemma 1 we arrive the inequality

N-1
(16) WI{N Sclczg(thi,h)+C1BQ,\Z,{, .7 =0)1)°
) 1=0
Put
Ti(t) = Ya(t Anj)zl —oi(t), T, =ITitsa)l, X3, = sup |Ti).

[a,t;.,,]

The definition of Y3 and (15) yield
(17)  Ti(tnn +eh) = [I +hAl (0, e)] Yi(thns Anj)zi — vi (thn + eh)

+ {h Y AL Gy ) Yalth,ei(n) + hei(n)s Ang) + RALL(N, e)} 2
=1
= [+ 14}.(0,)] Ti(thn) +  [4]0(0,¢) — A},(0,€)] vi(tan)+

r . . - ~J .
+h Z A} (3, e)T] (th,ci(n) + hei(n)) + h [Afm()\, e) —A,. (A, e)] 2+
i=1

+hY [41.G,e) — AL, 0)] vi(th,ei(m + hei(n)) = Chnle)
=1

fore € [0,1}, n=0,1,---,N -1, j=0,1,---.
By Assumption H, we get

. iy 1 . T . .
l4ha(s,€) = Afu(s )l < 5 (L.,ov,fn + 3 LallodCh cagm + hes(m)l + Lﬁz,{)

i=1

S LWi, +5L3Z], s=0,1,---,r,

o =J 1 . r . .
IA%a (A ) —Apn (X e)ll < > (MOVth + Y Mil|v}(th,ein) + hei(n))ll + M'\Z;J.)

i=1
1
2
fore € [0,1], n=0,1,---,N, j =0,1,---.

< MW, + -M*Z]
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Combining this with (17), we have

. . . h N\ 2 .
”Tl{(thn + Ch)” S (1 + hQO)TI‘:n + hQXlJln + _M’\ (Z.I]l) + P){n(e)’ n= 0’ 1, o aN - 1’

2
J=0,1,---
for e € [0, 1] with
. N2
Pl.(e)=h [L (W,‘:n) +L Z,{W,{n] + €(thn, h,e€).
Now, using (16) and Lemma 1, we have the relation
. \ 2 .
(18) Xiy<a [Al (z,{) + By(h)Zi + Cl(h)] . §=0,1---.
In view of Assumption H(2° and 4°) and (16), we have
. : 1 . . _ . _ A=z
(19) 1B} — Bl < 5 (KaZi+ KaViy) < RaZi+ Ko Y atai,h), i=1,2,
s
! j -_— 0’ 1’ LRI

Now we need some relation on z]. By the definition of As; and Assumption H(2°,4°)
we arrive at the inequality

. 1-1
A7 = A= Q1] 90 un(Bi2n5)) - A
q=1¢ .
= (@] { @0 =) = 905 15 000) + 90, 0(B))}
-1 . . o : . ]
= [Qi] [(th = Biw)zi + B Ti(b) + (B3, — B;h)vi(b)] » 3=0,1,---
for _ _ .
h = Bin + B3 Ya(b; Anj).
Combining this with (16, 18, 19) and using condition 3° of Theorem 1, we have

. -\ 2 .
2 <D (2)" + Bawz + aw)] =01,

Now the estimates (12-14) follow directly from Lemma 2 and (16, 18).

Remark 2. If Net
> &tni,h) =0(h*), v >0 as h— 0,
t=0
then . '
IAn; = All = d’[lAo — Al + O(R),
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sup lya(#; Aas) ~ (1)l = e1 BQA|ho — Al +0(A*)
t

as h — 0 and 7 — oo.
Now we try to formulate some conditions by which 3° of Theorem 1 holds. We have
the following lemma.

Lemma 3. Assume that Assumption H and conditions 1° — 2° of Theorem 1 are satisfied,
and

1° there exists a function v : J,, x H x [0,1] —» Ry such that
“[I + hFo(t, ‘P(t)’ So(al(t))a T So(a"(t))a ’\’ h’ e)]Y(t; ’\)+

+h ) Filt,0(t), 0(a1(t)), -, @(an(t)), A, by €)Y (i(t); A)+

i=1

+ hFA(t’ (p(t), ‘P(al (t))v Tt ‘P(af'(t))a ’\1 h, e) - Y(t + eh; ’\)” S 7(t’ h, e)a

and
N-1
lim Y(thi,h) =0 with F(t,h) = sup ~(t,h,e),
N_mg;“/( hirh) (k) = sup (k)

where Y is the solution of (4) and ||Y|| < Y,
2° the matrix Q(X) = g1(A, @(b))+92(X, ¢(b))Y (b; )) is nonsingular and ||Q~*(\)|| < B,
then condition 3° of Theorem 1 holds if A is sufficiently close to A.

Proof. Let
i = B{h + thYh(tﬂ Anj)s
D'I]zn(i’ e) = E(thna (,O(thn), ‘P(th,cl(n) + hel(n))’ Tt ’So(th,c,-(n) + her(n))’ )\7 h’ e)’
D} (A e) = Fa(thn, o(trn), @(th,ci(n) + he1(n)), -+, @(th,c, (n) + her(n)), A, hye).
We see that

Q% — QU < llgr(Mnss ya (55 Anj)) — g1( X @(B))]|+
+ Hg2(Anj, ya(b; Anj)) — g2( X, w(B)]Y (b; V)| +
+ ll92(Anjs yn (5 A ) [Ya(b; Anj) =Y (0 DI, - 7 =0,1,--,

and by Assumption H we obtain
(20) "Qi - QI £ (K + I{lefb)z]{ + (K12 + Kzsz)V,{N + Gllq,{(b)ﬂ, 7=0,1,---,

where .
i (2) = Ya(t; Anj) — Y (85 A).

Now we need to have some relation on q{. First we note that

4], (A, e) = D} (A e)ll < 2MWj, + M Z],
AL, (s,e) ~ Di (s,e)ll <2L, W} _+L 2!, s=0,1,---,r

11
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forn=0,1,---,N, j=0,1,---. Using the above inequalities and the relation

@i (thn + eh) = [T+ hA},(0,0)] al(thn) + B Y An(i, €)a] (t,coimy + hes(n))+
=1
+h [&], (0 &) = DL, (A €)] + b [45,(0,¢) — D], (0,€)] ¥ (tani M)+

+ 1Y [AlaG©) = DL )] ¥ (th,euim + hes(n)i )+

+ hﬁ{m(A’ e) + [I + hD'I’;n(Oa e)] Y(tan;A) +h Z D)’;n(i! e)Y (ai(thn; A)—

=1

—Y(thn""'eh;’\), n=0)1""’N—17 j=0717""
we obtain
I (thn + eb))| < (1 + hQo)llg (tan)ll + hQQL,, + RIAW], + WM Z] + Y(thn, b, €)

fore€[0,1], n=0,1,---,N—1, j =0,1,---, where M and M are nonnegative constants
and . .
= sup lgi(tan)ll-

a,tan
Now applying (16) and Lemma 1 we have
—.;zNSM*ZIJt+£(h)’ j=0717"'$
where

N-1 N-1
M*=cB [1\7! + MClQAB] , &(h)=cc [CIBM Z &(thi,h) + Z '_Y(thi,h),] .

=0 1=0
Combining this with (20) and (16) we get

Qi — QW < KZ] +v(h), j=0,1,---,

where _
K = K1) + K1Y) + (K12 + K22Y3)e1 BQx + GM™,
N-1 .
v(h) = (K12 + Kx2Vs)erc Y &(tni h) + GE(R).
=0
Hence ' ‘ o
P =@ WIQ: — QW) < BIKZ] +v(h)), j=0,1,---.
Let

20 < p = sup 262(2)

and BKp<1,

— 126 —



where h is sufficiently small such that (%) holds for h < h. Because v(h) — 0 as h — 0,
so there exists a such that _
BlKp+v(h)]<a<l

holds for sufficiently small h. Now, by Lemma 4.4.14[11], we conclude that the matrix
I+Q7'(NI(@Qk — Q)]

is nonsingular. Hence the matrix

A= {I+Q' (W) [@k —aN)]}

is also nonsingular and

H(Qh) < 1—[fa

It means that 3° of Theorem 1 holds for suﬁimently small h and j = 0 with D = 8/(1—a).
Put ug(h) = p. Theorem 1 follows Z} < u;1(h) < p, where u; is defined as in Theorem
1. Furthermore,

pr <BKp+rv(h)<a<l,

so the matrices

I+Q7'(WIQL - QM) and Q) = QNI+ Q7 (A)QL — QM)

are nonsingular and

ey <L

“l—a

Now, by induction with respect to j, we can prove that condition 3° of Theorem 1 holds.
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