NUMERICAL SOLUTION OF BOUNDARY VALUE PROBLEMS FOR RETARDED DIFFERENTIAL EQUATIONS WITH A PARAMETER

Tadeusz Jankowski

One step methods combined with an iterative method are applied to find a numerical solution of boundary value problems for retarded ordinary differential equations with a parameter. This paper deals with the convergence of such methods. Some estimates of errors are given too.

1. Introduction. We consider the system of retarded ordinary differential equations

(1)
$$y'(t) = f(t, y(t), y(\alpha_1(t)), \dots, y(\alpha_r(t)), \lambda), \quad t \in J = [a, b], \quad a < b,$$

where $f: J \times R^{q(r+1)} \times R^p \to R^q$ and $\alpha_i: J \to R$ are continuous and $\alpha_i(t) < t$, $t \in J$, $i = 1, 2, \dots, r$. Here $\lambda \in R^p$ is a parameter. We assume that the solution of (1) is given on J_a , so

(2)
$$y(t) = \Psi(t), \quad t \in J_a = [\bar{a}, a], \quad \bar{a} = \inf_{t \in J} \{\alpha_i(t), i = 1, 2, \dots, r\} \quad \Psi \in C^1(J_a, R^q).$$

Here $C^1(J_a, R^q)$ denotes the space of all functions of the class C^1 defined on J_a with a range in R^q . We are interested in the solution of (1-2) that satisfies the nonlinear boundary condition

(3)
$$g(\lambda, y(b)) = \Theta_p$$
, Θ_p is zero element in \mathbb{R}^p ,

where $g: \mathbb{R}^p \times \mathbb{R}^q \to \mathbb{R}^p$. By a solution of (1-3) we mean a function $\varphi \in C^1(J, \mathbb{R}^q)$ and a parameter $\lambda \in \mathbb{R}^p$ such that (1-3) to be satisfied. Problem (1-3) may also be named as an eigenvalue problem for retarded differential equations or as a problem of terminal control. Sometimes g may be linear with respect to its variables or may depend on λ or y(b) only.

The question of existence and uniqueness of solutions of problems with parameters is alredy investigated (see, for example, [3, 8, 9, 10]). Due to this fact it will be assumed that our problem has the exact solution (φ, λ) . A numerical approximation of this solution is a task of this paper.

Notice that φ is a function of λ . It is known that if f has continuous first order partial derivatives with respect to the last r+2 variables, then

$$Y(t;\lambda) \equiv \frac{\partial}{\partial \lambda} \varphi(t;\lambda)$$

is the solution of the problem

(4)
$$\begin{cases} Y'(t;\lambda) = f_0(t,\varphi(t),\varphi(\alpha_1(t)),\cdots,\varphi(\alpha_r(t)),\lambda)Y(t;\lambda) + \\ + \sum_{i=1}^r f_i(t,\varphi(t),\varphi(\alpha_1(t)),\cdots,\varphi(\alpha_r(t)),\lambda)Y(\alpha_i(t);\lambda) + \\ + f_\lambda(t,\varphi(t),\varphi(\alpha_1(t)),\cdots,\varphi(\alpha_r(t)),\lambda), \quad t \in J, \\ Y(a;\lambda) = 0_{q \times p}. \end{cases}$$

Here f_i denotes the partial derivative of f with respect to the (i+2)th variable for $i=0,1,\dots,r$, while f_{λ} denotes the partial derivative of f with respect to the last variable. Indeed, (φ,λ) is the solution of (1-3) if λ is a fixed point of Φ , where

$$\Phi(\lambda) \equiv g(\lambda, \varphi(b)) = \Theta_p.$$

The value of λ may be obtained by the Newton method, so

$$\lambda_{n+1} = \lambda_n - \left[\Phi'(\lambda_n)\right]^{-1} \Phi(\lambda_n), \quad n = 0, 1, \cdots,$$

where

$$\Phi'(\lambda) = g_1(\lambda, \varphi(b)) + g_2(\lambda, \varphi(b))Y(b; \lambda).$$

Here g_1 and g_2 are partial derivatives of g with respect to the first and second variable, respectively.

Our task is to determine the numerical solution (y_h, λ_{hj}) of (1-3) from the discretization of the above method. The values of y_h will be defined on the set of points t_{hn} which for arbitrary integer N are expressed by $t_{hi} = a + ih$, $i = 0, 1, \dots, N$ with h = (b - a)/N. Let

$$c_i(n)=E\left(rac{lpha_i(t_{hn})-a}{h}
ight),$$
 where E denotes the integer part, $e_i(n)=rac{lpha_i(t_{hn})-a}{h}-c_i(n)$

for $i=1,2,\dots,r,\ n=0,1,\dots,N$. It is easy to observe that $\alpha_i(t_{hn})=t_{h,c_i(n)}+he_i(n),\ i=1,2,\dots,r,\ n=0,1,\dots,N$. Now, we may define the numerical solution (y_h,λ_{hj}) of (1-3) by the following formulas

(5)
$$\begin{cases} y_h(t;\lambda_{hj}) = \Psi(t) & \text{if } t \in J_a, \\ y_h(t_{hn} + eh;\lambda_{hj}) = y_h(t_{hn};\lambda_{hj}) + hF(t_{hn},y_h(t_{hn};\lambda_{hj}),y_h(t_{h,c_1(n)} + he_1(n);\lambda_{hj}), \\ , \cdots, y_h(t_{h,c_r(n)} + he_r(n);\lambda_{hj}),\lambda_{hj},h,e) & \text{for } e \in [0,1], \ n = 0,1,\cdots,N-1, \end{cases}$$

(6)
$$\begin{cases} Y_{h}(t;\lambda_{hj}) = 0_{q \times p} & \text{if } t \in J_{a}, \\ Y_{h}(t_{hn} + eh;\lambda_{hj}) = [I + hA_{hn}^{j}(0,e)]Y_{h}(t_{hn};\lambda_{hj}) \\ + h\sum_{i=1}^{r} A_{hn}^{j}(i,e)Y_{h}(t_{h,c_{i}(n)} + he_{i}(n);\lambda_{hj}) \\ + h\tilde{A}_{hn}^{j}(\lambda,e), e \in [0,1], n = 0, 1, \dots, N-1, \end{cases}$$

and

(7)
$$\begin{cases} \lambda_{h0} = \lambda_0 \in R^p, \\ \lambda_{h,j+1} = \lambda_{hj} - \left(B_{1h}^j + B_{2h}^j Y_h(b; \lambda_{hj})\right)^{-1} g(\lambda_{hj}, y_h(b; \lambda_{hj})), \end{cases}$$

defined for $j = 0, 1, \dots$. Here I is the unit matrix of order q and

$$A_{hn}^{j}(i,e) = F_{i}(t_{hn}, y_{h}(t_{hn}; \lambda_{hj}), y_{h}(t_{h,c_{1}(n)} + he_{1}(n); \lambda_{hj}),$$

$$, \cdots, y_{h}(t_{h,c_{r}(n)} + he_{r}(n); \lambda_{hj}), \lambda_{hj}, h, e),$$

$$\tilde{A}_{hn}^{j}(\lambda, e) = F_{\lambda}(t_{hn}, y_{h}(t_{hn}; \lambda_{hj}), y_{h}(t_{h,c_{1}(n)} + he_{1}(n); \lambda_{hj}),$$

$$, \cdots, y_{h}(t_{h,c_{r}(n)} + he_{r}(n); \lambda_{hj}), \lambda_{hj}, h, e),$$

where F_i denotes the partial derivative of F with respect to the (i+2)th variable for $i=0,1,\dots,r$ and F_{λ} is the partial derivative of F with respect to the (r+3)th variable. Moreover,

$$B_{ih}^j = g_i(\lambda_{hj}, y_h(b; \lambda_{hj})), \quad i = 1, 2,$$

where g_i denotes the partial derivative of g with respect to the ith variable. It will be assumed that $F(\dots,0) = \Theta_q$, $F_{\lambda}(\dots,0) = 0_{q\times p}$, $F_i(\dots,0) = 0_{q\times q}$, $i=0,1,\dots,r$. Notice that taking

$$F(t, y_0, y_1, \cdots, y_r, \lambda, h, e) = ef(t, y_0, y_1, \cdots, y_r, \lambda),$$

we obtain the Euler procedure.

If e = 1, then (6) yields

$$Y_h(t_{hn};\lambda_{hj}) = \sum_{i=0}^{n-1} \left[\prod_{s=i+1}^{n-1} \left(I + h A_{h,n+i-s}^j(0,1) \right) \right] \bar{B}_{hi}^j, \quad n = 0, 1, \dots, N,$$

with

$$\bar{B}_{hi}^{j} = h \left[\sum_{k=1}^{r} A_{hi}^{j}(k,1) Y_{h}(t_{h,c_{k}(i)} + he_{k}(i); \lambda_{hj}) + \tilde{A}_{hi}^{j}(\lambda,1) \right],$$

and $\sum_{0}^{-1} \cdots = 0_{q \times p}$, $\prod_{i}^{s} \cdots = I$ if i > s. It is also useful for the case when f does not depend on α_i , $i = 1, 2, \dots, r$; then $F_i \equiv 0$, $i = 1, 2, \dots, r$ and F, F_0, F_{λ} do not depend on the variables from 3rd to (r+2)th and the last one.

Assume for a moment that p = q, and

$$g(u,v) = \tilde{M}u + \tilde{N}v - \tilde{K}, \qquad \tilde{K} \in \mathbb{R}^p,$$

where \tilde{M} and \tilde{N} are given square matrices of order p. Let the matrix $\tilde{M} + \tilde{N}$ be nonsingular. For this case, we can take $\tilde{M} + \tilde{N}$ instead of $B_{1h}^j + B_{2h}^j Y_h(b; \lambda_{hj})$ and we do not need the elements of Y_h for finding an approximate solution of (1-3). The convergence of the new method (y_h, λ_{hj}) will be guaranteed if among other things one assumes that

$$(\star) \qquad \|(\tilde{M} + \tilde{N})^{-1}\tilde{N}\| \left[1 + \frac{Q_{\lambda}}{Q} (exp(Q(b-a)) - 1) \right] < 1, \qquad Q = \sum_{i=0}^{r} Q_{i} \neq 0.$$

Here $Q_0, Q_1, \dots, Q_r, Q_{\lambda}$ are Lipschitz constants of F with respect to the variables from the second to the last, respectively. Such methods were considered in [4, 5] both for linear and

nonlinear boundary condition (3). The above mentioned condition is not so different from the corresponding results of [1, 7, 11] for problems without retardations and parameters.

The condition similar to (\star) can be omitted for convergence of (4-7). In this paper will be formulated such sufficient conditions for convergence of our method (4-7). The estimates of errors will be given too.

2. Definitions, assumptions and lemmas. We introduce the following

Definition 1. We say that method (5-7) is convergent to the solution (φ, λ) of problem (1-3) if

$$\lim_{\substack{N \to \infty \\ j \to \infty}} \sup_{t \in J} \|y_h(t; \lambda_{hj}) - \varphi(t)\| = 0,$$

$$\lim_{\substack{h \to 0 \\ j \to \infty}} \|\lambda_{hj} - \lambda\| = 0.$$

Definition 2. We say that method (5-7) is consistent with problem (1-3) on (φ, λ) if there exists a function $\epsilon: J_h \times H \times [0,1] \to R_+ = [0,\infty), \ J_h = [a,b-h], \ H = [0,h^*], \ h^* > 0$ such that

$$(i) \qquad \|hF(t,\varphi(t),\varphi(\alpha_1(t)),\cdots,\varphi(\alpha_r(t)),\lambda,h,e)+\varphi(t)-\varphi(t+eh)\|\leq \epsilon(t,h,e),$$

(ii)
$$\lim_{h\to 0}\sum_{i=0}^{N-1}\bar{\epsilon}(t_{hi},h)=0, \quad \text{where} \quad \bar{\epsilon}(t,h)=\sup_{e\in[0,1]}\epsilon(t,h,e).$$

Remark 1. Knowing that φ is a solution of (1-2), condition (i) may be written by

$$||hF(t,\varphi(t),\varphi(\alpha_1(t)),\cdots,\varphi(\alpha_r(t)),\lambda,h,e) - \int_t^{t+eh} f(\tau,\varphi(\tau),\varphi(\alpha_1(\tau)),\cdots,\varphi(\alpha_r(\tau)),\lambda)d\tau|| \\ \leq \epsilon(t,h,e).$$

Notice that condition (ii) will be satisfied if for example $\epsilon(t, h, e) = h^{\nu}$, $\nu > 1$, $t \in J_h$ and $e \in [0, 1]$.

Assumption H. Assume that

10 the function $F: J \times R^{q(r+1)} \times R^p \times H \times [0,1] \to R^q$ is continuous and has first order partial derivatives F_i, F_λ with respect to the (i+2)th variable for $i=0,\dots,r$, where F_λ denotes the partial derivative of F with respect to the (r+3)th variable; $\Psi \in C^1(J_a, R^q), \ \alpha_i \in C(J, [\bar{a}, b]), \ \alpha_i(t) \leq t \ \text{and} \ F(\dots, 0) = \Theta_q, \ F_\lambda(\dots, 0) = 0_{q \times p}, \ F_i(\dots, 0) = 0_{q \times q} \ \text{for} \ i=0,1,\dots,r,$

 2^0 $g: R^p \times R^q \to R^p$ is continuous and has first order partial derivatives g_1 and g_2 with respect to the first and second variable, respectively

30 there exist constants $Q_i, Q^{\lambda}, L_{si}, L_s^{\lambda}, M_i, M^{\lambda}$ for $i = 0, 1, \dots, r$, $s = 0, 1, \dots, r$ such that for $t \in J$, $h \in H$, $e \in [0, 1]$, $y_i, \bar{y}_i \in R^q$, $i = 0, 1, \dots, r$, $\mu, \bar{\mu} \in R^p$, the conditions

$$||F_i(t, y_0, y_1, \dots, y_r, \mu, h, e)|| \le Q_i, \quad i = 0, 1, \dots, r,$$

$$||F_{\lambda}(t, y_0, y_1, \cdots, y_r, \mu, h, e)|| \leq Q_{\lambda},$$

and

$$||F_s(t, y_0, y_1, \cdots, y_r, \mu, h, e) - F_s(t, \bar{y}_0, \bar{y}_1, \cdots, \bar{y}_r, \bar{\mu}, h, e)|| \le \sum_{i=0}^r L_{si} ||y_i - \bar{y}_i|| + L_s^{\lambda} ||\mu - \bar{\mu}||,$$

$$s = 0, 1, \dots, r,$$

$$\|F_{\lambda}(t,y_0,y_1,\cdots,y_r,\mu,h,e) - F_{\lambda}(t,\bar{y}_0,\bar{y}_1,\cdots,\bar{y}_r,\bar{\mu},h,e)\| \leq \sum_{i=0}^r M_i \|y_i - \bar{y}_i\| + M^{\lambda} \|\mu - \bar{\mu}\|$$

hold,

40 there exist constants $K_{i1}, K_{i2}, i = 1, 2$ such that for $x, \bar{x} \in R^p, y, \bar{y} \in R^q$ we have

$$||g_i(x,y)-g_i(\bar{x},\bar{y})|| \le K_{i1}||x-\bar{x}|| + K_{i2}||y-\bar{y}||, \quad i=1,2.$$

Put

$$V(t) = ||v(t)||, \quad t \in J, \qquad U_n = \sup_{[a,t_{hn}]} V(t).$$

Then we can formulate the lemma.

Lemma 1. Assume that $b_0, b_1, b_2 \geq 0$, $\alpha: J_h \times H \times [0,1] \rightarrow R_+$ and

(8)
$$V(t_{hn} + eh) \le (1 + hb_0)V(t_{hn}) + hb_1U_n + hb_2 + \alpha(t_{hn}, h, e), \quad n = 0, 1, \dots, N - 1.$$
Then we have

(9)
$$\sup_{t\in J}V(t)\leq \left(\bar{b}\sum_{i=0}^{N-1}\bar{\alpha}(t_{hi},h)+\bar{B}b_2+\bar{b}V(a)\right)\exp(b_1\bar{b}(b-a)),$$

where

$$\begin{split} \bar{b} &= exp(b_0(b-a)), & \bar{\alpha}(t,h) = \sup_{e \in [0,1]} \alpha(t,h,e), \\ \bar{B} &= \begin{cases} \frac{\bar{b}-1}{b_0} & \text{if } b_0 \neq 0, \\ b-a & \text{if } b_0 = 0. \end{cases} \end{split}$$

Proof. Indeed, for e = 1, we get

$$V(t_{h,n+1}) \le (1 + hb_0)V(t_{hn}) + hb_1U_n + hb_2 + \alpha(t_{hn},h,1), \quad n = 0,1,\dots,N-1.$$
 It yields the inequality

$$(10) V(t_{hn}) \leq \sum_{i=0}^{n-1} (1+hb_0)^{n-i-1} [hb_1U_i + hb_2 + \alpha(t_{hi}, h, 1)] + (1+hb_0)^n V(a), \sum_{i=0}^{n-1} = 0,$$

$$n = 0, 1, \dots, N.$$

Moreover, (8) leads to

$$\sup_{[t_{hn},t_{h,n+1}]} V(t) \leq (1+hb_0)V(t_{hn}) + hb_1U_n + hb_2 + \bar{\alpha}(t_{hn},h), \quad n = 0,1,\cdots,N-1.$$

Combining this with (10) we arrive at the inequality

$$\sup_{[t_{hn},t_{h,n+1}]} V(t) \leq hb_1 \sum_{i=0}^{n} (1+hb_0)^{n-i} U_i + \sum_{i=0}^{n} (1+hb_0)^{n-i} [\bar{\alpha}(t_{hi},h)+hb_2] + \\ + (1+hb_0)^{n+1} V(a) \\ \leq hb_1 \bar{b} \sum_{i=0}^{n} U_i + \bar{b} \sum_{i=0}^{N-1} \bar{\alpha}(t_{hi},h) + \bar{B}b_2 + \bar{b}V(a), \quad n = 0, 1, \dots, N-1.$$

Now, it is easy to prove (by induction with respect to n) that

$$U_n = \max \left(U_{n-1}, \sup_{[t_{h,n-1},t_{hn}]} V(t) \right)$$

satisfies the following inequality

(11)
$$U_n \leq hb_1\bar{b}\sum_{i=0}^{n-1}U_i + \bar{b}\sum_{i=0}^{N-1}\bar{\alpha}(t_{hi},h) + \bar{B}b_2 + \bar{b}V(a), \quad n = 0, 1, \dots, N.$$

Denote the right-hand side of this inequality by β_n . Indeed,

$$\beta_{n+1} - \beta_n = hb_1\bar{b}U_n \le hb_1\bar{b}\beta_n,$$

or

$$\beta_{n+1} \leq (1 + hb_1\bar{b})\beta_n, \quad n = 0, 1, \dots, N-1.$$

Hence we have

$$\beta_n \leq (1 + hb_1\bar{b})^n \left[\bar{b} \sum_{i=0}^{N-1} \bar{\alpha}(t_{hi}, h) + \bar{B}b_2 + \bar{b}V(a) \right], \quad n = 0, 1, \dots, N.$$

Combining this with (11) we get the inequality (9). This completes the proof.

Let

$$0 \le z_{n+1} \le D[Az_n^2 + Bz_n + C], A, B, C, D > 0, n = 0, 1, \cdots$$

Lemma 2([6]). Assume that there exists a constant d such that

$$DB < d < 1,$$

$$4\bar{p}^2AC < 1, \text{ where } \bar{p} = \frac{D}{d - DB}.$$

Now, if
$$z_0 \leq \rho = \frac{DC}{1-d} \leq \frac{1}{\bar{p}A}$$
, then

$$z_n \le d^n \rho + DC \frac{1 - d^n}{1 - d}, \quad n = 0, 1, \dots$$

3. Convergence of (5-7). Put

$$\begin{split} Q &= \sum_{i=1}^{r} Q_{i}, \quad L_{s} = \frac{1}{2} \sum_{i=0}^{r} L_{si}, \quad s = 0, 1, \cdots, r, \\ L &= \sum_{i=0}^{r} L_{i}, \quad M = \frac{1}{2} \sum_{i=0}^{r} M_{i}, \quad L^{\lambda} = M + \frac{1}{2} \sum_{i=0}^{r} L_{i}^{\lambda}, \\ c &= exp(Q_{0}(b-a)), \quad c_{1} = exp(Qc(b-a)), \\ B &= \begin{cases} \frac{c-1}{Q_{0}} & \text{if } Q_{0} \neq 0, \\ b-a & \text{if } Q_{0} = 0, \end{cases} \\ \bar{K}_{i1} &= \frac{1}{2} (K_{i1} + c_{1}K_{i2}BQ_{\lambda}) \quad \bar{K}_{i2} = \frac{1}{2} c_{1}cK_{i2}, \quad i = 1, 2, \end{cases} \\ \delta_{h} &= \sum_{i=0}^{N-1} \bar{\epsilon}(t_{hi}, h), \\ A_{1} &= c_{1}Bc(b-a)Q_{\lambda} \left[L^{\lambda} + c_{1}LBQ_{\lambda} \right] + \frac{M^{\lambda}}{2}B, \\ B_{1}(h) &= c^{2}c_{1}(b-a)(2c_{1}LBQ_{\lambda} + L^{\lambda})\delta_{h}, \\ C_{1}(h) &= (c^{2}(b-a)Lc_{1}^{2}\delta_{h} + 1)c\delta_{h}, \\ A_{2} &= \bar{K}_{11} + c_{1}GA_{1} + c_{1}BQ_{\lambda}\bar{K}_{21}, \\ B_{2}(h) &= c_{1}GB_{1}(h) + (\bar{K}_{12} + c_{1}c\bar{K}_{21} + c_{1}BQ_{\lambda}\bar{K}_{22})\delta_{h}, \\ C_{2}(h) &= c_{1} \left[GC_{1}(h) + c\bar{K}_{22}\delta_{h}^{2} \right]. \end{split}$$

Now we are in a position to establish the main theorem.

Theorem 1. If Assumption H is satisfied, and

10 there exists the unique solution (φ, λ) of (1-3),

 2^{0} method (5-7) is consistent with problem (1-3) on (φ, λ) ,

 3^0 the matrices $B_{1h}^j + B_{2h}^j Y_h(b; \lambda_{hj}), \ j = 0, 1, \cdots$ are nonsingular and there exists a constant D > 0 such that

$$||(B_{1h}^j + B_{2h}^j Y_h(b; \lambda_{hj}))^{-1}|| \le D, \quad j = 0, 1, \dots,$$

then, for sufficiently small \bar{h} , there exists a constant d such that

$$\begin{cases} DB_2(h) < d < 1, \\ 4\bar{p}^2(h)A_2C_2(h) < 1, & \bar{p}(h) = \frac{D}{d - DB_2(h)}, \\ DC_2(h)A_2\bar{p}(h) + d \le 1 \end{cases}$$

hold for $h \leq \bar{h}$ and method (5-7) is convergent to the solution (φ, λ) of (1-3) provided that

$$\|\lambda_{h0}-\lambda\|\leq u_0(h)=\sup_{0\leq x\leq \bar{h}}\frac{DC_2(x)}{1-d},\quad h\leq \bar{h}.$$

Furthermore, the estimates

(13)
$$\sup_{t \in J} \|y_h(t; \lambda_{hj}) - \varphi(t)\| \le c_1 B Q_{\lambda} u_j(h) + c_1 c \sum_{i=0}^{N-1} \bar{\epsilon}(t_{hi}, h),$$

$$(14) \sup_{t \in J} \|Y_h(t;\lambda_{hj})(\lambda_{hj}-\lambda) - y_h(t;\lambda_{hj}) + \varphi(t)\| \le c_1 \left[A_1 u_j^2(h) + B_1(h) u_j(h) + C_1(h) \right]$$

hold for $h \leq \bar{h}$ and $j = 0, 1, \dots$, with

$$u_j(h) = d^j u_0(h) + DC_2(h) \frac{1-d^j}{1-d}, \quad j=0,1,\cdots.$$

Proof. Put

$$\begin{split} v_h^j(t) &= y_h(t;\lambda_{hj}) - \varphi(t), \qquad V_{hn}^j = \|v_h^j(t_{hn})\|, \qquad W_{hn}^j = \sup_{[a,t_{hn}]} \|v_h^j(t)\|, \\ z_h^j &= \lambda_{hj} - \lambda, \qquad Z_h^j = \|z_h^j\|, \\ C_{hn}(e) &= hF(t_{hn}, \varphi(t_{hn}), \varphi(\alpha_1(t_{hn})), \cdots, \varphi(\alpha_r(t_{hn}), \lambda, h, e) + \varphi(t_{hn}) - \varphi(t_{hn} + eh), \\ \bar{A}_{hn}^j(i,e) &= \int_0^1 F_i(t_{hn}, \varphi(t_{hn}) + \tau v_h^j(t_{hn}), \varphi(t_{h,c_1(n)} + he_1(n)) + \tau v_h^j(t_{h,c_1(n)} + he_1(n)), \\ & , \cdots, \varphi(t_{h,c_r(n)} + he_r(n)) + \tau v_h^j(t_{h,c_r(n)} + he_r(n)), \lambda + \tau z_h^j, h, e) d\tau, \\ \tilde{A}_{hn}^j(\lambda, e) &= \int_0^1 F_\lambda(t_{hn}, \varphi(t_{hn}) + \tau v_h^j(t_{hn}), \varphi(t_{h,c_1(n)} + he_1(n)) + \tau v_h^j(t_{h,c_1(n)} + he_1(n)) + \tau v_h^j(t_{h,c_r(n)} + he_r(n)), \lambda + \tau z_h^j, h, e) d\tau, \\ &, \dots, \varphi(t_{h,c_r(n)} + he_r(n)) + \tau v_h^j(t_{h,c_r(n)} + he_r(n)), \lambda + \tau z_h^j, h, e) d\tau, \\ \bar{B}_{ih}^j &= \int_0^1 g_i(\lambda + \tau z_h^j, \varphi(b) + \tau v_h^j(b)) d\tau, \quad i = 1, 2. \end{split}$$

By the definition of y_h and the mean value theorem, we obtain

(15)
$$v_h^j(t_{hn} + eh) = y_h(t_{hn}; \lambda_{hj}) + hF(t_{hn}, y_h(t_{hn}; \lambda_{hj}), y_h(t_{h,c_1(n)} + he_1(n); \lambda_{hj}),$$

$$\begin{aligned} &, \cdots, y_{h}(t_{h,c_{r}(n)} + he_{r}(n); \lambda_{hj}), \lambda_{hj}, h, e) - \varphi(t_{hn}) + C_{hn}(e) - \\ &- hF(t_{hn}, \varphi(t_{hn}), \varphi(t_{h,c_{1}(n)} + he_{1}(n)), \cdots, \varphi(t_{h,c_{r}(n)} + he_{r}(n)), \lambda, h, e) \\ &= \left[I + h\bar{A}_{hn}^{j}(0, e) \right] v_{h}^{j}(t_{hn}) + h\sum_{i=1}^{r} \bar{A}_{hn}^{j}(i, e) v_{h}^{j}(t_{h,c_{i}(n)} + he_{i}(n)) + \\ &+ h\tilde{A}_{hn}^{j}(\lambda, e) z_{h}^{j} + C_{hn}(e), \quad n = 0, 1, \cdots, N - 1, \quad j = 0, 1, \cdots. \end{aligned}$$

It is easy to see that

$$||v_h^j(t_{hn} + eh)|| \le (1 + hQ_0)V_{hn}^j + hQW_{hn}^j + hQ_\lambda Z_h^j + \epsilon(t_{hn}, h, e)$$

for $e \in [0,1], n = 0,1,\dots,N-1, j = 0,1,\dots$. Now using Lemma 1 we arrive the inequality

(16)
$$W_{hN}^{j} \leq c_{1}c \sum_{i=0}^{N-1} \bar{\epsilon}(t_{hi}, h) + c_{1}BQ_{\lambda}Z_{h}^{j}, \quad j = 0, 1, \cdots.$$

Put

$$T_h^j(t) = Y_h(t; \lambda_{hj}) z_h^j - v_h^j(t), \qquad \tilde{T}_{hn}^j = \|T_h^j(t_{hn})\|, \qquad X_{hn}^j = \sup_{[a,t_{hn}]} \|T_h^j(t)\|.$$

The definition of Y_h and (15) yield

$$(17) T_h^j(t_{hn} + eh) = \left[I + hA_{hn}^j(0, e)\right] Y_h(t_{hn}; \lambda_{hj}) z_h^j - v_h^j(t_{hn} + eh)$$

$$+ \left\{h \sum_{i=1}^r A_{hn}^j(i, e) Y_h(t_{h,c_i(n)} + he_i(n); \lambda_{hj}) + h\tilde{A}_{hn}^j(\lambda, e)\right\} z_h^j$$

$$= \left[I + hA_{hn}^j(0, e)\right] T_h^j(t_{hn}) + h\left[A_{hn}^j(0, e) - \bar{A}_{hn}^j(0, e)\right] v_h^j(t_{hn}) +$$

$$+ h \sum_{i=1}^r A_{hn}^j(i, e) T_h^j(t_{h,c_i(n)} + he_i(n)) + h\left[\tilde{A}_{hn}^j(\lambda, e) - \tilde{A}_{hn}^j(\lambda, e)\right] z_h^j +$$

$$+ h \sum_{i=1}^r \left[A_{hn}^j(i, e) - \bar{A}_{hn}^j(i, e)\right] v_h^j(t_{h,c_i(n)} + he_i(n)) - C_{hn}(e)$$

for $e \in [0, 1], n = 0, 1, \dots, N - 1, j = 0, 1, \dots$

By Assumption H, we get

$$\begin{split} \|A_{hn}^{j}(s,e) - \bar{A}_{hn}^{j}(s,e)\| &\leq \frac{1}{2} \left(L_{s0} V_{hn}^{j} + \sum_{i=1}^{r} L_{si} \|v_{h}^{j}(t_{h,c_{i}(n)} + he_{i}(n))\| + L_{s}^{\lambda} Z_{h}^{j} \right) \\ &\leq L_{s} W_{hn}^{j} + \frac{1}{2} L_{s}^{\lambda} Z_{h}^{j}, \quad s = 0, 1, \cdots, r, \\ \|\tilde{A}_{hn}^{j}(\lambda,e) - \tilde{\tilde{A}}_{hn}^{j}(\lambda,e)\| &\leq \frac{1}{2} \left(M_{0} V_{hn}^{j} + \sum_{i=1}^{r} M_{i} \|v_{h}^{j}(t_{h,c_{i}(n)} + he_{i}(n))\| + M^{\lambda} Z_{h}^{j} \right) \\ &\leq M W_{hn}^{j} + \frac{1}{2} M^{\lambda} Z_{h}^{j} \end{split}$$

for $e \in [0, 1], n = 0, 1, \dots, N, j = 0, 1, \dots$

Combining this with (17), we have

$$||T_h^j(t_{hn}+eh)|| \le (1+hQ_0)\tilde{T}_{hn}^j + hQX_{hn}^j + \frac{h}{2}M^{\lambda} \left(Z_h^j\right)^2 + P_{hn}^j(e), \quad n = 0, 1, \dots, N-1,$$

$$j = 0, 1, \dots$$

for $e \in [0, 1]$ with

$$P_{hn}^{j}(e) = h \left[L \left(W_{hn}^{j} \right)^{2} + L^{\lambda} Z_{h}^{j} W_{hn}^{j} \right] + \epsilon(t_{hn}, h, e).$$

Now, using (16) and Lemma 1, we have the relation

(18)
$$X_{hN}^{j} \leq c_1 \left[A_1 \left(Z_h^{j} \right)^2 + B_1(h) Z_h^{j} + C_1(h) \right], \quad j = 0, 1 \cdots.$$

In view of Assumption $H(2^0 \text{ and } 4^0)$ and (16), we have

$$(19) ||B_{ih}^{j} - \bar{B}_{ih}^{j}|| \le \frac{1}{2} \left(K_{i1} Z_{h}^{j} + K_{i2} V_{hN}^{j} \right) \le \bar{K}_{i1} Z_{h}^{j} + \bar{K}_{i2} \sum_{i=0}^{N-1} \bar{\epsilon}(t_{hi}, h), \quad i = 1, 2,$$

$$j = 0, 1, \cdots.$$

Now we need some relation on z_h^j . By the definition of λ_{hj} and Assumption $H(2^0,4^0)$ we arrive at the inequality

$$\begin{split} z_h^{j+1} &= \lambda_{hj} - \left[Q_h^j \right]^{-1} g(\lambda_{hj}, y_h(b; \lambda_{hj})) - \lambda \\ &= \left[Q_h^j \right]^{-1} \left\{ Q_h^j(\lambda_{hj} - \lambda) - g(\lambda_{hj}, y_h(b; \lambda_{hj})) + g(\lambda, \varphi(b)) \right\} \\ &= \left[Q_h^j \right]^{-1} \left[(B_{1h}^j - \bar{B}_{1h}^j) z_h^j + B_{2h}^j T_h^j(b) + (B_{2h}^j - \bar{B}_{2h}^j) v_h^j(b) \right], \quad j = 0, 1, \cdots \end{split}$$

for

$$Q_h^j = B_{1h}^j + B_{2h}^j Y_h(b; \lambda_{hj}).$$

Combining this with (16, 18, 19) and using condition 30 of Theorem 1, we have

$$Z_h^{j+1} \leq D\left[A_2\left(Z_h^j\right)^2 + B_2(h)Z_h^j + C_2(h)\right], \quad j = 0, 1, \cdots.$$

Now the estimates (12-14) follow directly from Lemma 2 and (16, 18).

Remark 2. If

$$\sum_{i=0}^{N-1} \bar{\epsilon}(t_{hi}, h) = 0(h^{\nu}), \quad \nu > 0 \text{ as } h \to 0,$$

then

$$\|\lambda_{hj}-\lambda\|=d^j\|\lambda_0-\lambda\|+0(h^{\nu}),$$

$$\sup_{t \in J} \|y_h(t; \lambda_{hj}) - \varphi(t)\| = c_1 B Q_{\lambda} d^j \|\lambda_0 - \lambda\| + 0(h^{\nu})$$

as $h \to 0$ and $j \to \infty$.

Now we try to formulate some conditions by which 3° of Theorem 1 holds. We have the following lemma.

Lemma 3. Assume that Assumption H and conditions $1^0 - 2^0$ of Theorem 1 are satisfied, and

 1^0 there exists a function $\gamma:J_h\times H\times [0,1]\to R_+$ such that

$$\begin{split} \|[I+hF_0(t,\varphi(t),\varphi(\alpha_1(t)),\cdots,\varphi(\alpha_r(t)),\lambda,h,e)]Y(t;\lambda) + \\ &+ h\sum_{i=1}^r F_i(t,\varphi(t),\varphi(\alpha_1(t)),\cdots,\varphi(\alpha_r(t)),\lambda,h,e)Y(\alpha_i(t);\lambda) + \\ &+ hF_\lambda(t,\varphi(t),\varphi(\alpha_1(t)),\cdots,\varphi(\alpha_r(t)),\lambda,h,e) - Y(t+eh;\lambda)\| \leq \gamma(t,h,e), \end{split}$$

and

$$\lim_{N\to\infty}\sum_{i=0}^{N-1}\bar{\gamma}(t_{hi},h)=0\quad \text{with}\quad \bar{\gamma}(t,h)=\sup_{e\in[0,1]}\gamma(t,h,e),$$

where Y is the solution of (4) and $||Y|| \leq Y_b$,

2º the matrix $Q(\lambda) = g_1(\lambda, \varphi(b)) + g_2(\lambda, \varphi(b))Y(b; \lambda)$ is nonsingular and $||Q^{-1}(\lambda)|| \leq \beta$, then condition 3º of Theorem 1 holds if λ_0 is sufficiently close to λ .

Proof. Let

$$\begin{split} Q_{h}^{j} &= B_{1h}^{j} + B_{2h}^{j} Y_{h}(b; \lambda_{hj}), \\ D_{hn}^{j}(i, e) &= F_{i}(t_{hn}, \varphi(t_{hn}), \varphi(t_{h,c_{1}(n)} + he_{1}(n)), \cdots, \varphi(t_{h,c_{r}(n)} + he_{r}(n)), \lambda, h, e), \\ \tilde{D}_{hn}^{j}(\lambda, e) &= F_{\lambda}(t_{hn}, \varphi(t_{hn}), \varphi(t_{h,c_{1}(n)} + he_{1}(n)), \cdots, \varphi(t_{h,c_{r}(n)} + he_{r}(n)), \lambda, h, e). \end{split}$$

We see that

$$||Q_{h}^{j} - Q(\lambda)|| \leq ||g_{1}(\lambda_{hj}, y_{h}(b; \lambda_{hj})) - g_{1}(\lambda, \varphi(b))|| + + ||[g_{2}(\lambda_{hj}, y_{h}(b; \lambda_{hj})) - g_{2}(\lambda, \varphi(b))]Y(b; \lambda)|| + + ||g_{2}(\lambda_{hj}, y_{h}(b; \lambda_{hj}))[Y_{h}(b; \lambda_{hj}) - Y(b; \lambda))]||, \quad j = 0, 1, \dots,$$

and by Assumption H we obtain

(20)
$$||Q_h^j - Q(\lambda)|| \le (K_{11} + K_{21}Y_b)Z_h^j + (K_{12} + K_{22}Y_b)V_{hN}^j + G||q_h^j(b)||, \quad j = 0, 1, \cdots,$$
 where

$$q_h^j(t) = Y_h(t; \lambda_{hj}) - Y(t; \lambda).$$

Now we need to have some relation on q_h^j . First we note that

$$\begin{split} & \|\tilde{A}_{hn}^{j}(\lambda, e) - \tilde{D}_{hn}^{j}(\lambda, e)\| \le 2MW_{hn}^{j} + M^{\lambda}Z_{h}^{j}, \\ & \|A_{hn}^{j}(s, e) - D_{hn}^{j}(s, e)\| \le 2L_{s}W_{hn}^{j} + L^{\lambda}Z_{h}^{j}, \quad s = 0, 1, \dots, r \end{split}$$

for $n = 0, 1, \dots, N$, $j = 0, 1, \dots$. Using the above inequalities and the relation

$$\begin{split} q_{h}^{j}(t_{hn}+eh) &= \left[I + hA_{hn}^{j}(0,e)\right] q_{h}^{j}(t_{hn}) + h\sum_{i=1}^{r} A_{hn}^{j}(i,e)q_{h}^{j}(t_{h,c_{i}(n)} + he_{i}(n)) + \\ &+ h\left[\tilde{A}_{hn}^{j}(\lambda,e) - \tilde{D}_{hn}^{j}(\lambda,e)\right] + h\left[A_{hn}^{j}(0,e) - D_{hn}^{j}(0,e)\right] Y(t_{hn};\lambda) + \\ &+ h\sum_{i=1}^{r} \left[A_{hn}^{j}(i,e) - D_{hn}^{j}(i,e)\right] Y(t_{h,c_{i}(n)} + he_{i}(n);\lambda) + \\ &+ h\tilde{D}_{hn}^{j}(\lambda,e) + \left[I + hD_{hn}^{j}(0,e)\right] Y(t_{hn};\lambda) + h\sum_{i=1}^{r} D_{hn}^{j}(i,e)Y(\alpha_{i}(t_{hn};\lambda) - \\ &- Y(t_{hn} + eh;\lambda), \quad n = 0, 1, \cdots, N-1, \quad j = 0, 1, \cdots, \end{split}$$

we obtain

$$||q_h^j(t_{hn}+eh)|| \leq (1+hQ_0)||q_h^j(t_{hn})|| + hQ\bar{Q}_{hn}^j + h\bar{M}W_{hn}^j + h\bar{M}Z_h^j + \gamma(t_{hn},h,e)$$

for $e \in [0,1], n = 0, 1, \dots, N-1, j = 0, 1, \dots$, where \bar{M} and $\bar{\bar{M}}$ are nonnegative constants and

$$\bar{Q}_{hn}^{j} = \sup_{[a,t_{hn}]} \|q_{h}^{j}(t_{hn})\|.$$

Now applying (16) and Lemma 1 we have

$$\bar{Q}_{hN}^{j} \leq M^{\star} Z_{h}^{j} + \xi(h), \quad j = 0, 1, \cdots,$$

where

$$M^{\star}=c_1 B\left[\bar{\bar{M}}+\bar{M}c_1 Q_{\lambda} B\right], \quad \xi(h)=c_1 c\left[c_1 B \bar{M}\sum_{i=0}^{N-1} \bar{\epsilon}(t_{hi},h)+\sum_{i=0}^{N-1} \bar{\gamma}(t_{hi},h),\right].$$

Combining this with (20) and (16) we get

$$||Q_h^j - Q(h)|| \le \bar{K}Z_h^j + \nu(h), \quad j = 0, 1, \dots,$$

where

$$\bar{K} = K_{11} + K_{21}Y_b + (K_{12} + K_{22}Y_b)c_1BQ_{\lambda} + GM^{\star},$$

$$\nu(h) = (K_{12} + K_{22}Y_b)c_1c\sum_{i=0}^{N-1} \bar{\epsilon}(t_{hi}, h) + G\xi(h).$$

Hence

$$p_h^j = ||Q^{-1}(\lambda)[Q_h^j - Q(\lambda)]|| \le \beta[\bar{K}Z_h^j + \nu(h)], \quad j = 0, 1, \dots$$

Let

$$Z_h^0 \le \rho = \sup_{x < \bar{h}} \frac{DC_2(x)}{1 - d}$$
 and $\beta \bar{K} \rho < 1$,

where \bar{h} is sufficiently small such that $(\star\star)$ holds for $h \leq \bar{h}$. Because $\nu(h) \to 0$ as $h \to 0$, so there exists α such that

$$\beta[\bar{K}\rho + \nu(h)] \le \alpha < 1$$

holds for sufficiently small h. Now, by Lemma 4.4.14[11], we conclude that the matrix

$$I + Q^{-1}(\lambda)[Q_h^0 - Q(\lambda)]$$

is nonsingular. Hence the matrix

$$Q_h^0 = Q(\lambda) \left\{ I + Q^{-1}(\lambda) \left[Q_h^0 - Q(\lambda) \right] \right\}$$

is also nonsingular and

$$\|\left(Q_h^0\right)^{-1}\| \leq \frac{\beta}{1-\alpha}.$$

It means that 3^0 of Theorem 1 holds for sufficiently small h and j=0 with $D=\beta/(1-\alpha)$. Put $u_0(h)=\rho$. Theorem 1 follows $Z_h^1 \leq u_1(h) \leq \rho$, where u_1 is defined as in Theorem 1. Furthermore,

$$p_h^1 \le \beta(\bar{K}\rho + \nu(h)) \le \alpha < 1,$$

so the matrices

$$I+Q^{-1}(\lambda)[Q_h^1-Q(\lambda)] \quad \text{and} \quad Q_h^1=Q(\lambda)[I+Q^{-1}(\lambda)(Q_h^1-Q(\lambda))]$$

are nonsingular and

$$\|\left(Q_h^1\right)^{-1}\| \leq \frac{\beta}{1-\alpha}.$$

Now, by induction with respect to j, we can prove that condition 3^0 of Theorem 1 holds.

References

- [1] J.W.Daniel and R.E.Moore, Computation and theory in ordinary differential equations, Freeman, San Francisco, 1970.
- [2] A.Feldstein and R.Goodman, Numerical solution of ordinary and retarded differential equations with discontinuous derivatives, Numer. Math. 21(1973), 1-13.
- [3] T.Jankowski, Boundary value problems with a parameter of differential equations with deviated arguments, Math. Nachr. 125(1986), 7-28.
- [4] T.Jankowski, One-step methods for ordinary differential equations with parameters, Aplikace Mat. 35(1990), 67-83.
- [5] T.Jankowski, One-step methods for retarded differential equations with parameters, Computing 43(1990), 343-359.
- [6] T.Jankowski, On the convergence of multistep methods for nonlinear two-point boundary value problems, Ann. Pol. Math. 53(1991), 185-200.
- [7] H.Keller, Numerical solution of two-point boundary value problems, Society for Industrial and Applied Mathematics, Philadelphia 24(1976).

- [8] A.Pasquali, Un procedimento di calcolo connesso ad un noto problema ai limiti per l'eqazione $x' = f(t, x, \lambda)$, Matematiche 23(1968), 319-328.
- [9] **T.Pomentale**, A constructive theorem of existence and uniqueness for the problem $y' = f(x, y, \lambda)$, $y(a) = \alpha$, $y(b) = \beta$, ZAMM 56(1976), 387-388.
- [10] Z.B.Seidov, A multipoint boundary value problem with a parameter for system of differential equations in Banach space (Russian), Sibirski Math. Z. 9(1968), 223-228.
- [11] J.Stoer and R.Bulirsch, Introduction to numerical analysis, Springer-Verlag, New York, Heidelberg, Berlin, 1980.

Tadeusz Jankowski
Technical University of Gdańsk
Department of Numerical Analysis
ul. G.Narutowicza 11/12
80-952 Gdańsk, Poland

Received July 6, 1993