WEAK TYPE INEQUALITY FOR POISSON MAXIMAL OPERATORS

Yoo, Yoon Jae

ABSTRACT. A necessary and sufficient condition for a certain maximal operator to be of weak type (p,q), $1 \le p \le q < \infty$, is studied. This operator unifies various results about the Poisson integral operators cited in the literatures.

I. Introduction Consider the maximal operator

$$\mathcal{M}f(x,t)=\sup\{rac{1}{|Q|}\int_{Q}|f(y)|\;dy:x\in Q\; ext{and sidelength}(Q)\geq t\}.$$

It is well known that this maximal operator \mathcal{M} controls Poisson integral defined by, for $x \in \mathbf{R}^n, t \geq 0$,

$$P(f)(x,t) = \int_{\mathbf{R}^n} f(y)P(x-y,t)dy,$$

where

$$P(x,t) = \frac{c_n t}{(|x|^2 + t^2)^{\frac{n+1}{2}}}$$

is the Poisson kernel.

For a given positive measure ν on $\overline{\mathbf{R}^{n+1}_+} = \{(x,t) : x \in \mathbf{R}^n, t \geq 0\}$, the problem under what conditions \mathcal{M} is bounded from $L^p(\mathbf{R}^n)$ into $L^p(\overline{\mathbf{R}^{n+1}_+}, \nu)$ and from $L^1(\mathbf{R}^n)$ into weak- $L^1(\overline{\mathbf{R}^{n+1}_+}, \nu)$ was studied by several authors: Carleson[C] showed that \mathcal{M} is bounded from $L^p(\mathbf{R}^n, dx)$ into $L^p(\overline{\mathbf{R}^{n+1}_+}, d\nu)$ if and only if ν satisfies the Carleson condition

$$\sup_{x \in Q} \frac{\nu(\widetilde{Q})}{|Q|} \le C.$$

Later, Fefferman-Stein[FS] proved that \mathcal{M} is bounded from $L^p(\mathbf{R}^n,w(x)dx)$ into $L^p(\overline{\mathbf{R}^{n+1}_+},d\nu)$ if

$$\sup_{x \in Q} \frac{\nu(\widetilde{Q})}{|Q|} \le Cw(x) \quad a.e. \quad x,$$

where $\widetilde{Q} = Q \times (0, l(Q)]$ if we denote l(Q) the sidelength of Q. More recently, Ruiz[R] and Ruiz-Torrea[RT] unified various results concerning these problems.

¹⁹⁹¹ Mathematics Subject Classification. 42B25.

Key words and phrases. maximal operator, A_p -weights, spaces of homogeneous type.

On the other hand, Sueiro[Su] studied a certain maximal operator and applied to study the Poisson-Szegö integral. This operator is in fact a generalization of the standard Hary-Littlewood maximal operator and works on spaces of homogeneous spaces.

In this paper, a maximal operator \mathcal{M}_{Ω} will be defined on spaces of homogeneous type. This is a generalization of the operator \mathcal{M} given above. Finally we characterize the condition for which \mathcal{M}_{Ω} is of weak type (p,q). This condition will unify various results obtained before.

II. Preliminaries

Definition 2.1. Let X be a topological space and let $d: X \times X \to [0, \infty)$ is a map satisfying

- (i) d(x,x) = 0; d(x,y) > 0 if $x \neq y$;
- (ii) d(x,y)=d(y,x);
- (iii) $d(x,z) \leq K[d(x,y) + d(y,z)]$, where K is some fixed constant. Assume further that
- (iv) the balls $B(x,r) = \{y \in X : d(x,y) < r\}$ form a basis of open neighborhoods of $x \in X$ and that μ is a Borel measure on X such that
- (v) $0 < \mu(B(x, 2r) \le A\mu(B(x, r)) < \infty$, where A is some fixed constant. Then the triple (X, d, μ) is called a space of homogeneous type[CW, S].

Remark 2.1. Properties (iii) and (v) will be referred to as the triangle inequality and the doubling property respectively.

Note that the condition (v) is equivalent that for every c > 0, there exists a constant $A_c < \infty$ such that $\mu(B(x, cr)) \le A_c \mu(B(x, r))$.

Definition 2.2. Assume for each $x \in X$ we are given a set $\Omega_x \subset X \times [0, \infty)$. Let Ω denote the family $\{\Omega_x : x \in X\}$. For each $t \geq 0$ set

$$\Omega_{(x,t)} = \Omega_x \cap \big(X \times [t,\infty)\big)$$

and

$$\mathcal{R}_{lpha}(x,t) = \{(y,r) \in X \times [0,\infty) : \Omega_{(y,r)}(t) \cap B(x,\alpha t) \neq \emptyset\},$$

where $\Omega_{(y,r)}(t) = \{z \in X : (z,t) \in \Omega_{(y,r)}\}$ is the cross-section of $\Omega_{(y,r)}$ at height t.

Definition 2.3. Assume that we have a family $\Omega = {\Omega_x : x \in X}$. For $f \in L^1_{loc}(X, d\mu)$ and $x \in X$, $t \ge 0$ set

$$\mathcal{M}_{\Omega}f(x,t) = \sup_{(y,s)\in\Omega_{(x,t)}} \frac{1}{\mu(B(y,s))} \int_{B(y,s)} |f| d\mu.$$

Definition 2.4. Let $1 \leq p, q < \infty$. An operator T defined in $L^p(wd\mu)$ and having a ν -measurable function as its range is said to be of weak type (p,q) with respect to (ν,w) if there is a constant A(p,q) so that

$$u\{(x,t): |T(f)(x,t)| > \lambda\} \le A(p,q) \left(\frac{\|f\|_{L^p(wd\mu)}}{\lambda}\right)^q$$

for all $\lambda > 0$.

Definition 2.5. Let $1 \leq p \leq q < \infty$. A pair (ν, w) is said to satisfy the condition $C_{p,q}(\Omega)$ if there are constant $C = C(K, A, \alpha, p, q)$ and $\alpha > 0$ such that

$$\frac{\nu(\mathcal{R}_{\alpha}(x,r))}{\mu(B(x,r))^{q}} \left(\int_{B(x,r)} w^{-\frac{1}{p-1}} d\mu \right)^{q(p-1)/p} \leq C(K,A,\alpha,p,q),$$

if p > 1 and

$$\frac{\nu(\mathcal{R}_{\alpha}(x,r))}{\mu(B(x,r))^{q}} \leq C(K,A,\alpha,p,q)w(y)^{q}$$

a.e. $y \in B(x,r)$ if p=1.

Example 2.1. If $\Omega_x = \{(y,t) \in \mathbf{R}^n \times [0,\infty) : |x-y| < t\}$, then Ω induces the standard maximal operator \mathcal{M} given in the introduction. Note that $\mathcal{R}_{\alpha}(x,r)$ is a truncated cone having a base $B(x,(1+\alpha)r)$, a top $B(x,\alpha r)$, and a height r.

Throughout the article, there are several constants which are not necessarily the same at each occurrence. These constants depend only on K, A, α, p , and q.

III. Main Results

The following lemma is given in [CW]. Also see [Su].

Lemma 3.1. Let E be a bounded subset of X and for each $x \in X$, assign r(x) > 0. Then there is a sequence of disjoint balls $B(x_i, r(x_i))$, $x_i \in E$, such that the balls $B(x_i, 4Kr(x_i))$ cover E, where K is the constant in the definition 2.1. Further, every $x \in E$ is contained in some ball $B(x_i, 4Kr(x_i))$ satisfying $r(x) \leq 2r(x_i)$.

Theorem 3.1. Assume that Ω satisfies that if $x \in X$, $(y,r) \in \Omega_x$ and $s \geq r$, then $(y,s) \in \Omega_x$. Let $1 \leq p \leq q < \infty$. Then \mathcal{M}_{Ω} is of weak type (p,q) with respect to (ν,w) if and only if (ν,w) satisfies the condition $C_{p,q}(\Omega)$.

Proof. Suppose that \mathcal{M}_{Ω} is of weak type (p,q) with respect to (ν,w) . If $(x_0,t) \in \mathcal{R}_{\alpha}(x,r)$, then $\Omega_{(x_0,t)}(r) \cap B(x,\alpha r) \neq \phi$ and so we can choose $y \in \Omega_{(x_0,t)}(r) \cap B(x,\alpha r)$. From the triangle inequality,

(1)
$$B(x,r) \subset B(y,K(\alpha+1)r) \subset B(x,(K^2\alpha+K\alpha+K^2)r).$$

For a nonnegative measurable function f defined on X, we put

$$f_{B(y,r)} = rac{1}{\mu(B(y,r))} \int_{B(y,r)} f \ d\mu$$

for simplicity. Since $(y, K(\alpha+1)r) \in \Omega_{(x_0,t)}$ by the hypothesis, it follows from (1) and the doubling property that

$$\mathcal{M}_{\Omega} f \chi_{B(x,r)}(x_{o},t) \geq \frac{1}{\mu(B(y,K(\alpha+1)r))} \int_{B(y,K(\alpha+1)r)} f$$

$$\geq \frac{1}{\mu(B(x,(K^{2}\alpha+K\alpha+K^{2})r))} \int_{B(x,r)} f$$

$$\geq \frac{\mu(B(x,r))}{\mu(B(x,(K^{2}\alpha+K\alpha+K^{2})r))} f_{B(x,r)}$$

$$> C(K,A,\alpha) f_{B(x,r)}$$

for some constant $C(K, A, \alpha)$.

Let λ be chosen so that $0 < \lambda < f_{B(x,r)}$. If we write

$$E_{\lambda} = \{ \mathcal{M}_{\Omega}(f \cdot \chi_{B(x,r)}) > C(K, A, \alpha) \lambda \},$$

then the previous argument shows that $\mathcal{R}_{\alpha}(x,r) \subset E_{\lambda}$ and so

(3)
$$\nu(\mathcal{R}_{\alpha}(x,r)) \leq \frac{C(K,A,\alpha,p,q)}{\lambda^{q}} \left(\int_{B(x,r)} f^{p} w \ d\mu \right)^{\frac{q}{p}}.$$

Hence

$$(4) \qquad \frac{\nu(\mathcal{R}_{\alpha}(x,r))}{\mu(B(x,r))^{q}} \left(\int_{B(x,r)} f d\mu \right)^{q} \leq C(A,K,\alpha,p,q) \left(\int_{B(x,r)} f^{p} w d\mu \right)^{\frac{q}{p}}.$$

Suppose p > 1 and p' = p/(1-p). If we replace f by $w^{-\frac{1}{p-1}}\chi_{B(x,r)}$ so that $f = f^p w$ on B(x,r), then (4) implies

(5)
$$\frac{\nu(\mathcal{R}_{\alpha}(x,r))}{\mu(B(x,r))^q} \left(\int_{B(x,r)} w^{-\frac{1}{p-1}} d\mu \right)^{q/p'} \leq C(K,A,\alpha,p,q).$$

Thus (ν, w) satisfies the condition $C_{p,q}(\Omega)$ for the case p > 1 and $1 \le q < \infty$. Suppose p = 1. By (4), we have

(6)
$$\frac{\nu(\mathcal{R}_{\alpha}(x,r))}{\mu(B(x,r))^{q}} \leq C \left(\frac{1}{\mu(S)} \int_{S} w d\mu\right)^{q},$$

for any $S \subset B(x,r)$. Pick a so that $a > \text{ess.inf}_{y \in B(x,r)} w(y)$ and let $S_a = B(x,r) \cap \{w < a\}$. Replace S in (6) by S_a . Then by (6) we obtain

$$\frac{\nu(\mathcal{R}_{\alpha}(x,r))}{\mu(B(x,r))^q} \le Ca^p$$

and so

(7)
$$\frac{\nu(\mathcal{R}_{\alpha}(x,r))}{\mu(B(x,r))^q} \le Cw(y)^q$$

a.e. $y \in B(x,r)$.

Conversely, suppose (ν, w) satisfies the condition $C_{p,q}(\Omega)$. We follow the idea of Sueiro[Su]. For each $\lambda > 0$, define

$$E_{\lambda} = \{(x,t) \in X \times [0,\infty) : \mathcal{M}_{\Omega}f(x,t) > \lambda\}$$

and

$$E_\lambda' = \{x \in X : \sup_{r>0} \frac{1}{\mu(B(x,r))} \int_{B(x,r)} |f| d\mu > \lambda\}$$

Also for each $x \in E'_{\lambda}$, if we put

$$r(x)=\sup\{r>0:\frac{1}{\mu(B(x,r))}\int_{B(x,r)}|f|d\mu>\lambda\},$$

then r(x) > 0 and

$$\frac{1}{\mu(B(x,r(x)))}\int_{B(x,r(x))}|f|\ d\mu\ \geq\ \lambda.$$

Assume for a moment that E'_{λ} is bounded. Then by the covering lemma, there exists a sequence of balls $\{B(x_i, r(x_i))\}$ so that $E'_{\lambda} \subset \bigcup_i B(x_i, 4Kr_i)$, where $r_i = r(x_i)$. Now we want to verify

(8)
$$E_{\lambda} \subset \cup_{i} \mathcal{R}_{\alpha}(x_{i}, 4Kr_{i}/\alpha)$$

To do this, let $(x,t) \in E_{\lambda}$. Then

$$\frac{1}{\mu(B(y,r))}\int_{B(y,r)}|f|\ d\mu>\lambda$$

for some $(y,r)\in\Omega_{(x,t)}$. So $y\in E'_\lambda$ and $t\leq r\leq r(y)$. By the last part of the covering lemma, $y\in B(x_i,4Kr_i)$ for some i such that $r(y)\leq 2r_i$. Here we may assume $\alpha<2K$. Consequently, $t\leq r\leq r(y)\leq 2r_i<\frac{4K}{\alpha}r_i$ and so $(y,4Kr_i/\alpha)\in\Omega_{(x,t)}$. Since $y\in B(x_i,\alpha(4K/\alpha)r_i)$, it follows that $y\in\Omega_{(x,t)}(4Kr_i/\alpha)\cap B(x_i,\alpha(4K/\alpha)r_i)$, and thus $(x,t)\in\mathcal{R}_\alpha(x_i,4Kr_i/\alpha)$, and so (8) holds.

Now suppose 1 . Since

$$\begin{split} \mu(B(x_i, r_i)) & \leq \frac{1}{\lambda} \int_{B(x_i, r_i)} |f| d\mu \\ & \leq \frac{1}{\lambda} \left(\int_{B(x_i, r_i)} |f|^p w d\mu \right)^{\frac{1}{p}} \left(\int_{B(x_i, r_i)} w^{-\frac{1}{p-1}} \ d\mu \right)^{\frac{p-1}{p}}, \end{split}$$

by the Hölder's inequality, it follows from the disjointness of $\{B(x_i, r_i)\}$ that

$$\begin{split} \nu(E_{\lambda}) & \leq \sum_{i} \nu(\mathcal{R}_{\alpha}(x_{i}, 4Kr_{i}/\alpha)) \\ & \leq C(K, A, \alpha, p, q) \sum_{i} \mu(B(x_{i}, 4Kr_{i}/\alpha))^{q} \left(\int_{B(x_{i}, 4Kr_{i}/\alpha)} w^{-\frac{1}{p-1}} \ d\mu \right)^{-\frac{q}{p'}} \\ & \leq C(K, A, \alpha, p, q) \sum_{i} \mu(B(x_{i}, r_{i}))^{q} \left(\int_{B(x_{i}, r_{i})} w^{-\frac{1}{p-1}} \ d\mu \right)^{-\frac{q}{p'}} \\ & \leq \frac{C(K, A, \alpha, p, q)}{\lambda^{q}} \sum_{i} \left(\int_{B(x_{i}, r_{i})} |f|^{p} w \ d\mu \right)^{\frac{q}{p}} \left(\int_{B(x_{i}, r_{i})} w^{-\frac{1}{p-1}} \ d\mu \right)^{\frac{q(p-1)}{p} - \frac{q}{p'}} \\ & = \frac{C(K, A, \alpha, p, q)}{\lambda^{q}} \sum_{i} \left(\int_{B(x_{i}, r_{i})} |f|^{p} w \ d\mu \right)^{\frac{q}{p}} \\ & \leq \frac{C(K, A, \alpha, p, q)}{\lambda^{q}} \|f\|_{L^{p}(w)}^{q}. \end{split}$$

Next suppose p=1 and $1 \le q < \infty$. Since $4K/\alpha > 1$, we have

$$\begin{split} \nu(E_{\lambda}) &\leq \sum_{i} \nu(\mathcal{R}_{\alpha}(x_{i}, 4Kr_{i}/\alpha)) \\ &\leq C \sum_{i} [\mu(B(x_{i}, 4Kr_{i}/\alpha))]^{q} ess.inf_{y \in B(x_{i}, 4Kr_{i}/\alpha)} w(y)^{q} \\ &\leq C \sum_{i} [\mu(B(x_{i}, r_{i}))]^{q} ess.inf_{y \in B(x_{i}, r_{i})} w(y)^{q} \\ &\leq C \sum_{i} \left(\frac{1}{\lambda} \int_{B(x_{i}, r_{i})} |f| w d\mu \right)^{q}. \end{split}$$

Hence \mathcal{M}_{Ω} is of weak type (1,q) with respect to (ν,w) .

Finally if E'_{λ} is not bounded, then fix $a \in X$ and r > 0. If we consider

$$E_\lambda'' = \{(x,t): \mathcal{M}_\Omega f(x,t) > \lambda \text{ and } y \in E_\lambda' \cap B(a,r) \text{ for some } y \in \Omega_{(x,t)}(r)\}$$

and letting $r \to \infty$, then we obtain the same estimate. This completes the proof. \Box

Remark 3.1. If p = q, then the condition $C_{p,p}(\Omega)$ reduces to the condition $C_p(w)$ given by Ruiz[R]:

$$\sup_{Q} \frac{\nu(\widetilde{Q})}{|Q|} \left(\frac{1}{|Q|} \int_{Q} w(x)^{-1/(p-1)} dx \right)^{p-1} \leq C$$

if p > 1, and

$$\sup_{x \in Q} \frac{\nu(\widetilde{Q})}{|Q|} \le Cw(x) \text{ a.e.},$$

if p = 1, where the supremum is taken over all cubes Q in \mathbb{R}^n .

Corollary. (Ruiz[R]) Let $p \geq 1$. The maximal operator \mathcal{M} is weak type (p,p) with respect to (ν, w) if and only if (ν, w) satisfies the condition $C_p(w)$.

Remark 3.2. Let $d\nu = d\mu \otimes d\delta$, where $d\delta$ is the Dirac mass on $[0, \infty)$, concentrated on 0. Set

$$\mathcal{S}_{\alpha}(x,r) = \{ y \in X : \Omega_y(r) \cap B(x,\alpha r) \neq \emptyset \}.$$

Then

$$u(\mathcal{R}_{m{lpha}}(x,r)) = \mu(\mathcal{S}_{m{lpha}}(x,r)).$$

The inequality (4), with $f \equiv 1$ and $w \equiv 1$, gives

$$\frac{\nu(\mathcal{S}_{\alpha}(x,r))}{\mu(B(x,r))} \leq C,$$

which is obtained by Sueiro[Su].

Let u be a nonnegative measurable function on X. If $d\nu = ud\mu \otimes d\delta$ and $p = q \geq 1$, then the inequality (4) also gives the condition obtained by Wenjie[W], which generalizes the Muckenhoupt's A_p condition[M].

Definition 3.1. Set $\widehat{\Omega} = {\{\widehat{\Omega}_{(x_o,t)} : (x_o,t) \in X \times [0,\infty)\}}$, where

$$\widehat{\Omega}_{(x_o,t)} = \{(x,r) \in X \times [t,\infty) : (x,s) \in \Omega_{x_o} \text{ for some } s \leq r\}$$

and

$$\widehat{\mathcal{R}}_{\alpha}(x,r) = \{(x_o,t) \in X \times [0,\infty) : \widehat{\Omega}_{(x_o,t)} \cap B(x,\alpha r) \neq \phi\}.$$

Following theorem 3.1 with this definition, we obtain

Theorem 3.2. Let $1 \leq p \leq q < \infty$. Then $\mathcal{M}_{\widehat{\Omega}}$ is of weak type (p,q) with respect to (ν, w) if and only if (ν, w) satisfies the condition $C_{p,q}(\widehat{\Omega})$.

Acknowledgements. The author would like to thank the refree for pointing out the errors.

REFERENCES

- [C] L. Carleson, Interpolation by bounded analytic functions and the corona problem, Ann. Math. 76 (1962), 547-559.
- [CW] R.R. Coifman and G. Weiss, Analyse harmonique non-commutative sur certain espaces homogènes, Lecture Notes in Math. 242 (1971), Springer-Verlag, Berlin.
- [FS] C. Fefferman C. and E. M. Stein, Some maximal inequalities, Amer.J. Math. 93 (1971), 107-115.
- [M] B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 115-121.
- [R] F.J. Ruiz, A Unified approach to Carleson measures and A_p weights, Pacific J.Math. 117 (1985), 397-404.
- [RT] F. J. Ruiz and J.L. Torrea, A Unified approach to Carleson measures and A_p weights II, Pacific J.Math. 120 (1985), 189-197.
- [GcRf] J. Garcia-Cuerva and J.L. Rubio De Francia, Weighted Norm Inequalities and Related Topic, Elsevier Science, North-Holland, 1985.
- [S] E.M.Stein, Harmonic Analysis: Real variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, Princeton, N.J., 1993.
- [Su] J. Sueiro, On maximal functions and Poisson-Szegö integrals, Trans. Amer. Math. Soc. 298 (1986), 653-669.
- [W] P. Wenjie, Weghted Norm Inequaities for Certain Maximal Operator with Approach Region, Lecture Notes in Math. 1494 (1988), Springer Verlag, Berlin, 169-175.

Department of Mathematical Education, Kyungpook National University, Taegu, Republic of Korea, 702-701

E-mail address: yjyoo@kyungpook.ac.kr

Received March 28, 1997

Revised July 8, 1997