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Let G be a compact connected Lie group and K be a closed subgroup. A
finite dimensional complex irreducible representation V() of G with highest
weight X is decomposed into a direct sum of irreducible representations VX (y)
of K with highest weight y;

‘VG()\) = _m(A, WVE(p).

n

It is an important problem to study the branching multiplicity m(A, g).

In [3], F. Sato studied the stability of branching coefficient. Roughly speak-
ing, the branching coefficient m(X\, p) satisfies m(A, p) = m(A + Ao, p) if Ao is
a spherical representation of (G, K) and A is sufficiently large.

In [2] the author studied the branching theorem of the pair (G, SO(4))
and obtained the following stability theorem (see section 2 for the description
of the fundamental weights {);} of G,).

Theorem 1 (Mashimo [2]) Let A = myA; + my), be a dominant integral
weight of Gy and p = Y)_, bie; be a dominant integral weight of SO(4). Then

(1) if my > 2by + by + 4 then m(XA + 2)q, ) = m(X, p),
(2) if my > by + 1 then m(X + 20y, 1) = m(X, p).

The aim of this note is to calculate the branching coefficients of the pair
(G2, SU(3)) and to prove the “stability” of branching coefficients.
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1. Kostant’s multiplicity formula. We denote by g and € the Lie algebras
of G and K respectively. We assume that G and K are of the same rank. Let
T be a maximal torus of K and t be its Lie algebra. We denote by ¥(G) the set
of non-zero roots of g€ with respect tC and Z*(G) the set of all positive roots.
We denote by D(G) the set of all equivalence classes of complex irreduible
representations of G. Let VZ()) be a representation space of an element A of
D(G).

We denote by € the Lie algebra of K and by ¥(K) the set of all non-zero
roots of €€ with respect to tC. By our assumption X(K) is contained in X(G).
We denote by £+(K) the set of positive roots of €. A complex irreducible
reprensentation V() of G is decomposed into irreducible K -modules;

Ve = X mOw)VE(w).
r€ED(K)

Let 71,...,7 € V/—It be the set of elements of the set X*(G) \ E¥(K).
For every v € \/—1t, we denote by P(v) the number of non-negative integral
r-tuples (ai,...,a,) such that » = Y7_; a;7;. The multiplicity m(A,p) of
VE(u) in V() is expressed, by using the partition function P, as follows;

Theorem 2 (Kostant [1]) The multiplicity m(A, p) is give by

m(, p) = Z (det o) P(a(X + 8) — (pu + 6)),
aeW

where W is the Weyl group of G and é is half the sum of positive roots of gC.

2. Root systems and Weyl groups of (;. We denote by (5, the compact
simple Lie group of type g,. We shall give a brief review on root systems
2(Gy).

Under a suitable choise of an orthonormal base {€;,¢;,€3} of R?, the max-
imal abelian subalgebra of g, is V=1t = {Taie; : a3 + ay + az = 0}. The set
of positive roots L+(G,) of g,€ with respect to t€ is

2+(Gz) — &) — &, €3 — €3, &1 — &3,
26 — €3 — €3, €1 — 262 + €3, €1 + €2 — 263

and oy = g,—¢€3, ay = £, —2€,+¢3 are simpe roots. A linear form x = 7, a;¢;
is a dominant form if and only if ¢y — a; > a; — a3 > 0 and is an integral form
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if and only if a;,ay, a3 are integers. If x = S°7_, a;e; is a dominant form, we
have a; — 2a, 4+ a3 = —3a, > 0. The fundamental weights of G, are

Al =& — &3, A-z :261 — &y — E3.

We denote by S, the reflection with respect to the hyperplanes perpendic-

ular to a and put S; = S,,, S2 = Sa,;

3
Sl(z ai€;) = a16; + azey + azes,

=1

3
SQ(E (l,‘E,‘) = —da3f1 — A€y — A1E3.
=1

3. Branching theorem of the pair (G;, SU(3)). The set of roots
{£az, £(3a1 + a32), £(3cq + 2a2)} generates a Lie subalgebra isomorphic to
su(3). The set of fundamental roots of SU(3) is {3c; + a,,a3}. The linear
form 32, be; is a domonant form for su(3) if and only if b; > 0 > max(b,, b3)
and is an integral form if and only if b;, b;, b5 are integers.

Kostant’s partition function for the pair (G, SU(3)) is given as follows;

Lemma 3 For an integral weight x = 37 x;6; of g, we have
Plx)=#{k€Z:0 <k <min(x,x; + z3)}.

PT‘OOf. Put Y1 = aiFay = E1—E2, Y2 = (X1 = E€3—E3, and Y3 = 2(\!1-{-(12 = €1—¢&3,
which are elements of X+(G,) \ +(SU(3))

Since y; and v, are linearly independent and ¥; = v; + v,, the expressions
of z as linear combinations of v; are z = (z1 — K)y + (27 + x5 — k)v: + ks
(k > 0). Thus we obtain the lemma. Q.E.D.

Theorem 4 Let A = 33 a;e; be a dominant integral weight of Gy and y =
2, bie; be a dominant integral weight of SU(3). Then the multiplicity m(A, v)
s equal to

Hh€Zso:~ay—by—by—1 <k < min(ay — by, ay; + ay — by — by)}
—F#hk€Zso: —a;— b —2< k< min(a; — by —by + 1,a; + ay — b — 1)}.
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Proof. 1t is easily verified that for A € D(G,), p € D(SU(3)), P(a(A + 6) —
(u+6)) =0if 0 ¢ {1,S4,, 502, Sar+az © Saz}. Put So =1, .53 = Sai4a; © Say
and P; = P(S;(A +8) — (p+6)) (0 <z <3). Denote by n(a,b) the number
of elements of {k € Z : 0 < k < min(a,b)}. We have

Po =n(ay —bi,a1 +ay — b — by),

(1) P1 =n(a1—b1,——a2—bl—b2——1),
P, =n(a;+a;—b —1,a; — by —b; +1),
133 :71,(-—(12—'171 —2,(11 —bl —b2+1).

Puta=a; -0, =—a,—b—by—1and y =a;+a; — by — b,. Sincey > 3
we consider 3 cases (i) a < B < v, (i) f<a<vyand (ii) <y < a If
a<Bthen Bhb=P.lfB<a<ythen Bbhb—Po={k€Zs:<k<a}. If
B<y<athen Pb— P, ={k €2y : 8 <k <~v}. In any case we have

—a;— b —by— 1<k }

k < min(a; — by,a1 + az — by — by)

(2) PO—P1=#{keZZO:

Similarly we have

_ . —(12—’)1—2<k
Pz—Ps—#{keZZO’ k<min(a; — b — by +1,a; + a; — b — 1) }

From theorem 2 we obtain the theorem. Q.E.D.

Using the above theorem we have the following stability theorem.

Theorem 5 Let A = myA; + ma)Xs be a dominant integral weight of G and
k=32 be; be a dominant integral weight of SU(3). Then

(1) ifmy > b +1 then m(\, u) =0,
(2) ifmy+my> b+ 1 then m(XA + A\, pu) = m(A, u).

Proof. (1) From my—b; —1 = —ay,—b;—1 > 0 we have b, > —b; > a,. Thus we
have min(a, — by, a1 +a; —by —by) = ay+ay—by —by. Since —ay,—b;—by,—1 > 0,
we have ‘

P()—Pl=(ll+(l«2—bl—b2—(—(l-2—b1—b-)—-l)=(ll+2(l2+1.

Similarly we have P, — P; = a; + 2a, + 1. Therefore m(\,v) = (P, — P;) —
(Pz - P’;) = 0
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(2) Put A+, = 32, ale; and denote P! = P(S;(A+XA1,8)—(u+6)) (0 < i< 3).
From A > p we have a; > b;. It is easily verified that min(a; — b;,ay + ay —
by —b;) > 0 and min(a; — by, a; +ay — b — by) > —ay — by — by — 1 holds. Thus
Py — P, is non-zero. From (2) and

it is easily seen that Pj — P{ = P, — P, + 1. Similarly we have P; — P; =
P, — P3 + 1. Thus we have m(XA + Ay, v) = m(\, v). Q.E.D.

—ay—b—by—1<k

! ’r .
PO—Pl-—#{kEZZO' kSmin((l]"‘bl+1’“1+a2_b1_b2+1)

Remark 6 Since every complex irreducible representation of G4 is self-conjugate,
we have

2 2
m(z MiAi, Ny + Napy) = m(z M, Napy + nyps).

=1 =1

4. Examples.  We give here tables of branching multiplicities

m(S2, mi, 2}2':1 nip;) with ny +ny <5, ny > ny > 0.

mi\my [0 1 mi\my |0 1]2
o1 o0 0j0j11(0
1111 0 141({1}0
(n1,n2) = (0,0) . 2111110
(n1,m2) = (1,0)
mi\my [0 [1[2]3 my\my 0] 1]2]3
"o0flofo|1]oO 0jjojrf1y0
Lfoj1ry14{0 14012110
211 (1(17]0 2(1(2(11]0
311110 3(1}12(110
(nq1,n3) = (2,0) (n1,ny) = (1,1)
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(n1,m2) = (3,1)
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mi\my 0123456 my\m, |0 1123|456
offofojojoj1yi1]o0 O(ofo0o10]1111]11710
14300({0]0(1|2]|11/0 10101212110
210(0(1(2}12(1]0 210101213 ]2]1/0
310112122110 310[1}13(3(2]11/0
4010(2(2(2(2]110 4101213312110
S1(2121212(110 SN1]213[3[2]1110
6 (12121212110 6112131321110

(n1,ny) = (4,1) (n1,n2) = (3,2)
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