On branching theorem of the pair $(G_2, SU(3))$

Katsuya Mashimo

Dedicated to Professor Hisao Nakagawa on his sixtieth birthday

Let G be a compact connected Lie group and K be a closed subgroup. A finite dimensional complex irreducible representation $V^G(\lambda)$ of G with highest weight λ is decomposed into a direct sum of irreducible representations $V^K(\mu)$ of K with highest weight μ ;

$$V^{G}(\lambda) = \sum_{\mu} m(\lambda, \mu) V^{K}(\mu).$$

It is an important problem to study the branching multiplicity $m(\lambda, \mu)$.

In [3], F. Sato studied the stability of branching coefficient. Roughly speaking, the branching coefficient $m(\lambda, \mu)$ satisfies $m(\lambda, \mu) = m(\lambda + \lambda_0, \mu)$ if λ_0 is a spherical representation of (G, K) and λ is sufficiently large.

In [2] the author studied the branching theorem of the pair $(G_2, SO(4))$ and obtained the following stability theorem (see section 2 for the description of the fundamental weights $\{\lambda_i\}$ of G_2).

Theorem 1 (Mashimo [2]) Let $\lambda = m_1\lambda_1 + m_2\lambda_2$ be a dominant integral weight of G_2 and $\mu = \sum_{i=1}^3 b_i \varepsilon_i$ be a dominant integral weight of SO(4). Then

(1) if
$$m_1 \ge 2b_1 + b_2 + 4$$
 then $m(\lambda + 2\lambda_1, \mu) = m(\lambda, \mu)$,

(2) if
$$m_2 \ge b_1 + 1$$
 then $m(\lambda + 2\lambda_2, \mu) = m(\lambda, \mu)$.

The aim of this note is to calculate the branching coefficients of the pair $(G_2, SU(3))$ and to prove the "stability" of branching coefficients.

1. Kostant's multiplicity formula. We denote by \mathfrak{g} and \mathfrak{k} the Lie algebras of G and K respectively. We assume that G and K are of the same rank. Let T be a maximal torus of K and \mathfrak{k} be its Lie algebra. We denote by $\Sigma(G)$ the set of non-zero roots of $\mathfrak{g}^{\mathbb{C}}$ with respect $\mathfrak{t}^{\mathbb{C}}$ and $\Sigma^{+}(G)$ the set of all positive roots. We denote by $\mathcal{D}(G)$ the set of all equivalence classes of complex irreduible representations of G. Let $V^{G}(\lambda)$ be a representation space of an element λ of $\mathcal{D}(G)$.

We denote by \mathfrak{k} the Lie algebra of K and by $\Sigma(K)$ the set of all non-zero roots of $\mathfrak{k}^{\mathbf{C}}$ with respect to $\mathfrak{k}^{\mathbf{C}}$. By our assumption $\Sigma(K)$ is contained in $\Sigma(G)$. We denote by $\Sigma^+(K)$ the set of positive roots of $\mathfrak{k}^{\mathbf{C}}$. A complex irreducible representation $V^G(\lambda)$ of G is decomposed into irreducible K-modules;

$$V^G(\lambda) = \sum_{\mu \in \mathcal{D}(K)} m(\lambda, \mu) V^K(\mu).$$

Let $\gamma_1, \ldots, \gamma_r \in \sqrt{-1}\mathfrak{t}$ be the set of elements of the set $\Sigma^+(G) \setminus \Sigma^+(K)$. For every $\nu \in \sqrt{-1}\mathfrak{t}$, we denote by $P(\nu)$ the number of non-negative integral r-tuples (a_1, \ldots, a_r) such that $\nu = \sum_{j=1}^r a_j \gamma_j$. The multiplicity $m(\lambda, \mu)$ of $V^K(\mu)$ in $V^G(\lambda)$ is expressed, by using the partition function P, as follows;

Theorem 2 (Kostant [1]) The multiplicity $m(\lambda, \mu)$ is give by

$$m(\lambda, \mu) = \sum_{\sigma \in W} (\det \sigma) P(\sigma(\lambda + \delta) - (\mu + \delta)),$$

where W is the Weyl group of G and δ is half the sum of positive roots of $\mathfrak{g}^{\mathbf{C}}$.

2. Root systems and Weyl groups of G_2 . We denote by G_2 the compact simple Lie group of type \mathfrak{g}_2 . We shall give a brief review on root systems $\Sigma(G_2)$.

Under a suitable choise of an orthonormal base $\{\varepsilon_1, \varepsilon_2, \varepsilon_3\}$ of \mathbb{R}^3 , the maximal abelian subalgebra of \mathfrak{g}_2 is $\sqrt{-1}\mathfrak{t} = \{\sum a_i\varepsilon_i : a_1 + a_2 + a_3 = 0\}$. The set of positive roots $\Sigma^+(G_2)$ of $\mathfrak{g}_2^{\mathbf{C}}$ with respect to $\mathfrak{t}^{\mathbf{C}}$ is

$$\Sigma^{+}(G_2) = \left\{ \begin{array}{cc} \varepsilon_1 - \varepsilon_2, \ \varepsilon_2 - \varepsilon_3, \ \varepsilon_1 - \varepsilon_3, \\ 2\varepsilon_1 - \varepsilon_2 - \varepsilon_3, \ \varepsilon_1 - 2\varepsilon_2 + \varepsilon_3, \ \varepsilon_1 + \varepsilon_2 - 2\varepsilon_3 \end{array} \right\}$$

and $\alpha_1 = \varepsilon_2 - \varepsilon_3$, $\alpha_2 = \varepsilon_1 - 2\varepsilon_2 + \varepsilon_3$ are simple roots. A linear form $x = \sum_{i=1}^3 a_i \varepsilon_i$ is a dominant form if and only if $a_1 - a_2 \ge a_2 - a_3 \ge 0$ and is an integral form

if and only if a_1, a_2, a_3 are integers. If $x = \sum_{i=1}^3 a_i \varepsilon_i$ is a dominant form, we have $a_1 - 2a_2 + a_3 = -3a_2 \ge 0$. The fundamental weights of G_2 are

$$\lambda_1 = \varepsilon_1 - \varepsilon_3, \ \lambda_2 = 2\varepsilon_1 - \varepsilon_2 - \varepsilon_3.$$

We denote by S_{α} the reflection with respect to the hyperplanes perpendicular to α and put $S_1 = S_{\alpha_1}$, $S_2 = S_{\alpha_2}$;

$$S_1(\sum_{i=1}^3 a_i \varepsilon_i) = a_1 \varepsilon_1 + a_3 \varepsilon_2 + a_2 \varepsilon_3,$$

$$S_2(\sum_{i=1}^3 a_i \varepsilon_i) = -a_3 \varepsilon_1 - a_2 \varepsilon_2 - a_1 \varepsilon_3.$$

3. Branching theorem of the pair $(G_2, SU(3))$. The set of roots $\{\pm \alpha_2, \pm (3\alpha_1 + \alpha_2), \pm (3\alpha_1 + 2\alpha_2)\}$ generates a Lie subalgebra isomorphic to $\mathfrak{su}(3)$. The set of fundamental roots of SU(3) is $\{3\alpha_1 + \alpha_2, \alpha_2\}$. The linear form $\sum_{i=1}^3 b_i \varepsilon_i$ is a domonant form for $\mathfrak{su}(3)$ if and only if $b_1 \geq 0 \geq \max(b_2, b_3)$ and is an integral form if and only if b_1, b_2, b_3 are integers.

Kostant's partition function for the pair $(G_2, SU(3))$ is given as follows;

Lemma 3 For an integral weight $x = \sum_{i=1}^{3} x_i \varepsilon_i$ of \mathfrak{g}_2 we have

$$P(x) = \#\{k \in \mathbf{Z} : 0 \le k \le \min(x_1, x_1 + x_2)\}.$$

Proof. Put $\gamma_1 = \alpha_1 + \alpha_2 = \varepsilon_1 - \varepsilon_2$, $\gamma_2 = \alpha_1 = \varepsilon_2 - \varepsilon_3$, and $\gamma_3 = 2\alpha_1 + \alpha_2 = \varepsilon_1 - \varepsilon_3$, which are elements of $\Sigma^+(G_2) \setminus \Sigma^+(SU(3))$

Since γ_1 and γ_2 are linearly independent and $\gamma_3 = \gamma_1 + \gamma_2$, the expressions of x as linear combinations of γ_i are $x = (x_1 - k)\gamma_1 + (x_1 + x_2 - k)\gamma_2 + k\gamma_3$ $(k \ge 0)$. Thus we obtain the lemma. Q.E.D.

Theorem 4 Let $\lambda = \sum_{i=1}^{3} a_i \varepsilon_i$ be a dominant integral weight of G_2 and $\mu = \sum_{i=1}^{3} b_i \varepsilon_i$ be a dominant integral weight of SU(3). Then the multiplicity $m(\lambda, \nu)$ is equal to

$$\#\{k \in \mathbf{Z}_{\geq 0} : -a_2 - b_1 - b_2 - 1 < k \leq \min(a_1 - b_1, a_1 + a_2 - b_1 - b_2)\} \\
-\#\{k \in \mathbf{Z}_{\geq 0} : -a_2 - b_1 - 2 < k \leq \min(a_1 - b_1 - b_2 + 1, a_1 + a_2 - b_1 - 1)\}.$$

Proof. It is easily verified that for $\lambda \in \mathcal{D}(G_2)$, $\mu \in \mathcal{D}(SU(3))$, $P(\sigma(\lambda + \delta) - (\mu + \delta)) = 0$ if $\sigma \notin \{1, S_{\alpha_1}, S_{\alpha_2}, S_{\alpha_1 + \alpha_2} \circ S_{\alpha_2}\}$. Put $S_0 = 1$, $S_3 = S_{\alpha_1 + \alpha_2} \circ S_{\alpha_2}$ and $P_i = P(S_i(\lambda + \delta) - (\mu + \delta))$ $(0 \le i \le 3)$. Denote by n(a, b) the number of elements of $\{k \in \mathbf{Z} : 0 \le k \le \min(a, b)\}$. We have

(1)
$$\begin{cases} P_0 = n(a_1 - b_1, a_1 + a_2 - b_1 - b_2), \\ P_1 = n(a_1 - b_1, -a_2 - b_1 - b_2 - 1), \\ P_2 = n(a_1 + a_2 - b_1 - 1, a_1 - b_1 - b_2 + 1), \\ P_3 = n(-a_2 - b_1 - 2, a_1 - b_1 - b_2 + 1). \end{cases}$$

Put $\alpha = a_1 - b_1$, $\beta = -a_2 - b_1 - b_2 - 1$ and $\gamma = a_1 + a_2 - b_1 - b_2$. Since $\gamma > \beta$ we consider 3 cases (i) $\alpha \leq \beta < \gamma$, (ii) $\beta < \alpha \leq \gamma$ and (iii) $\beta < \gamma \leq \alpha$. If $\alpha \leq \beta$ then $P_0 = P_1$. If $\beta < \alpha \leq \gamma$ then $P_0 - P_1 = \{k \in \mathbb{Z}_{\geq 0} : \beta < k \leq \alpha\}$. If $\beta < \gamma \leq \alpha$ then $P_0 - P_1 = \{k \in \mathbb{Z}_{\geq 0} : \beta < k \leq \gamma\}$. In any case we have

(2)
$$P_0 - P_1 = \# \left\{ k \in \mathbf{Z}_{\geq 0} : \begin{array}{l} -a_2 - b_1 - b_2 - 1 < k \\ k \leq \min(a_1 - b_1, a_1 + a_2 - b_1 - b_2) \end{array} \right\}.$$

Similarly we have

$$P_2 - P_3 = \# \left\{ k \in \mathbf{Z}_{\geq 0} : \begin{array}{c} -a_2 - b_1 - 2 < k \\ k \leq \min(a_1 - b_1 - b_2 + 1, a_1 + a_2 - b_1 - 1) \end{array} \right\}.$$

From theorem 2 we obtain the theorem. Q.E.D.

Using the above theorem we have the following stability theorem.

Theorem 5 Let $\lambda = m_1\lambda_1 + m_2\lambda_2$ be a dominant integral weight of G_2 and $\mu = \sum_{i=1}^3 b_i \varepsilon_i$ be a dominant integral weight of SU(3). Then

- (1) if $m_2 \ge b_1 + 1$ then $m(\lambda, \mu) = 0$,
- (2) if $m_1 + m_2 \ge b_1 + 1$ then $m(\lambda + \lambda_1, \mu) = m(\lambda, \mu)$.

Proof. (1) From $m_2-b_1-1=-a_2-b_1-1\geq 0$ we have $b_2\geq -b_1>a_2$. Thus we have $\min(a_1-b_1,a_1+a_2-b_1-b_2)=a_1+a_2-b_1-b_2$. Since $-a_2-b_1-b_2-1\geq 0$, we have

$$P_0 - P_1 = a_1 + a_2 - b_1 - b_2 - (-a_2 - b_1 - b_2 - 1) = a_1 + 2a_2 + 1.$$

Similarly we have $P_2 - P_3 = a_1 + 2a_2 + 1$. Therefore $m(\lambda, \nu) = (P_0 - P_1) - (P_2 - P_3) = 0$.

(2) Put $\lambda + \lambda_1 = \sum_{i=1}^3 a_i' \varepsilon_i$ and denote $P_i' = P(S_i(\lambda + \lambda_1, \delta) - (\mu + \delta))$ $(0 \le i \le 3)$. From $\lambda > \mu$ we have $a_1 \ge b_1$. It is easily verified that $\min(a_1 - b_1, a_1 + a_2 - b_1 - b_2) \ge 0$ and $\min(a_1 - b_1, a_1 + a_2 - b_1 - b_2) > -a_2 - b_1 - b_2 - 1$ holds. Thus $P_0 - P_1$ is non-zero. From (2) and

$$P_0' - P_1' = \# \left\{ k \in \mathbf{Z}_{\geq 0} : \begin{array}{c} -a_2 - b_1 - b_2 - 1 < k \\ k \leq \min(a_1 - b_1 + 1, a_1 + a_2 - b_1 - b_2 + 1) \end{array} \right\}.$$

it is easily seen that $P_0' - P_1' = P_0 - P_1 + 1$. Similarly we have $P_2' - P_3' = P_2 - P_3 + 1$. Thus we have $m(\lambda + \lambda_1, \nu) = m(\lambda, \nu)$. Q.E.D.

Remark 6 Since every complex irreducible representation of G_2 is self-conjugate, we have

$$m(\sum_{i=1}^{2} m_i \lambda_i, n_1 \mu_1 + n_2 \mu_2) = m(\sum_{i=1}^{2} m_i \lambda_i, n_2 \mu_1 + n_1 \mu_2).$$

4. Examples. We give here tables of branching multiplicities $m(\sum_{i=1}^{2} m_i \lambda_i, \sum_{j=1}^{2} n_j \mu_j)$ with $n_1 + n_2 \leq 5$, $n_1 \geq n_2 \geq 0$.

$m_1 \backslash m_2$	0	1
0	1	0
1	1	0
(n_1,n_2)	= (0	0, 0)

$m_1 \backslash m_2$	0	1	2	
0	0	1	0	
1	1	1	0	
2	1	1	0	
(n_1,n_2)	= (1	,0)		

$m_1 \backslash m_2$	0	1	2	3				
0	0	0	1	0				
1	0	1	1	0				
2	1	1	1	0				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
(n_1,n_2) =	= (2	(0,0)						

$\boxed{m_1 \backslash m_2}$	0	1	2	3	4
0	0	0	0	1	0
1	0	0	1	1	0
$ $ $ $	0	1	1	1	0
3	1	1	1	1	0
4	1	1	1	1	0
(n_1,n_2)	= (3	$\overline{3,0)}$			

$\boxed{m_1 ackslash m_2}$	0	1	2	3	4
0	0	0	1	1	0
1	0	1	2	1	0
2	0	2	2	1	0
3	1	2	2	1	0
4	1	2	2	1	0
(n_1,n_2)	= (2	$\overline{2,1)}$			

$\boxed{m_1 \backslash m_2}$	0	1	2	3	4	5
0	0	0	0	0	1	0
1	0	0	0	1	1	0
$ $ $ $	0	0	1	1	1	0
3	0	1	1	1	1	0
4	1	1	1	1	1	0
5	1	1	1	1	1	0
(n_1,n_2) :	= (4	1,0)				

$m_1 \backslash m_2$	0	1	2	3	4	5
0	0	0	0	1	1	0
1	0	0	1	2	1	0
2	0	1	2	2	1	0
3	0	2	2	2	1	0
4	1	2	2	2	1	0
5	1	2	2	2	1	0
$\overline{(n_1,n_2)}$	= (3	$\overline{3,1}$				

$\boxed{m_1 \backslash m_2}$	0	1	2	3	4	5
0	0	0	1	1	1	0
1	0	0	2	2	1	0
	0	1	3	2	1	0
3	0	2	3	2	1	0
4	1	2	3	2	1	0
5	1	2	3	2	1	0
(n_1, n_2) :	= (2)	(2, 2)				

$m_1 ackslash m_2$	0	1	2	3	4	5	6
0	0	0	0	0	0	1	0
1	0	0	0	0	1	1	0
2	0	0	0	1	1	1	0
3	0	0	1	1	1	1	0
4	0	1	1	1	1	1	0
5	1	1	1	1	1	1	0
6	1	1	1	1	1	1	0
(n_1,n_2) :	= (5	(0,0)					

$m_1 \backslash m_2$	0	1	2	3	4	5	6
0	0	0	0	0	1	1	0
-1	0	0	0	1	2	1	0
2	0	0	1	2	2	1	0
3	0	1	2	2	2	1	0
4	0	2	2	2	2	1	0
5	1	2	2	2	2	1	$\mid 0 \mid$
6	1	2	2	2	2	1	0

٠ ١	1 -	_	_	_	_	-	•	ı
6	1	2	2	2	2	1	0	
(n_1,n_2) :	= (4	(1, 1)						

$m_1 \backslash m_2$	0	1	2	3	4	5	6
0	0	0	0	1	1	1	0
1	0	0	1	2	2	1	0
2	0	0	2	3	2	1	0
3	0	1	3	3	2	1	0
4	0	2	3	3	2	1	0
~ 5	1	2	3	3	2	1	0
6	1	2	3	3	2	1	0

References

- [1] J. Lepowsky, Representations of semisimple Lie groups and an enveloping algebra decomposition, Thesis, Massachusetts Institute of Technology(1970).
- [2] K. Mashimo, Spectra of Laplacian on $G_2/SO(4)$, Bull. Fac. Gen. Ed. Tokyo Univ. of Agr. & Tech., 26(1989), 85–92.
- [3] F. Sato, On the stability of branching coefficients of rational representations of reductive groups, Com. Mat. Univ. Sancti Pauli 42(1993), 189-207.

Department of Mathematics Tokyo University of Agriculture and Technology Fuchu, Tokyo 183, Japan e - mail: mashimo@cc.tuat.ac.jp

Received November 11, 1996

Revised April 25, 1997