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STEINER TOPOLOGY
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In this paper, the notion of quasi-full Steiner tree (QFST) is introdoced whiich is
virmally an extension of full Steiner tree (FST). We discuss some properties of QFST,
and present a generating algorithm for obtaining a QFST ar denying its existence. With
tiis algorittn we can obtain 2 minimum QFST that is just the Steiner: minime] tree
(SMT) if it has the quasi-full topology. We also use this algarithm to simplify canstruc-
tion methods for some of the well- known SMTs

1. Introduction

A Steiner minimal tree (SMT) on a given set X of points called the regular points in
the Euclidean plane is the shortest tree interconnecting the points of X. Any intersections of
edges which are not in X are called Steiner points(s-points). It is well known® that each s-
-point is of degree three and any-two edges in an SMT intersect at an angle with at least
120°. An interconnecting tree satisfying the above two conditions is called a Steiner tree
(ST). The problem of finding out an SMT on a set X has been showen to be NP-hard®.
However, for certain kinds of sets of regular points, say the point sets of the Ladders, the
Zig-zag lines and the Bar waves, the related SMT problems have been well-resolved. It has
been known?® that an ST for n given poirits can have at most n-2 s-points. An ST is called a
full Steiner tree (FST) if it has n-2 s-points. It has been also known that an ST can be
considered as the union of a certain number of full Steiner tree components®. Since it is

much easier to construct FST than to construct ST,so one way to construct SMT is to con-
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struct its full Steiner tree components. This fact illustrates the significance of studying FST.

In this paper,our discussion is based on the notion of Quasi-full Steiner tree.

Definition 1. Suppose X is a given set of regular points in Euclidean plane ,a Stener tree on X
is called a Quasi-full Steiner tree (QFST) if any angles formed by its two adjacent edges are of
120°. A QFST on X is briefly denoted tn QFST (X).

Obviously, the notion of QFST is an extension of that of FST. In this paper we first
discuss some properties concerning QFST, and present later a generating algorithm for ob-
taining a QFST or denying its existence. If a QFST is obtained, by applying this algorithm
repeatedly, we improve each interim QFSTs until a minimum QFST is obtained, and this
minimal QFST is an SMT itself. Thus, our unified way of constructing SMT with quasi-

full topology makes the construction of certain well-known SMT's become very simple.

2. Preliminaries

We intréduce some notations as follows.

[u,v] (or uv). line segment between points u and v.

d[u,v]. Euclidean distance between u and v.

(uv) . vertex, which is not u and v, of a certain equilateral triangle that contains the

edge [u,v], and #atisfi&c that u, v and (uv) are counter-clockwise oriented.

p(u,v) . path from u to v.

L(u,v): broken line from u to v.

(1, XI). partition of a certain set composed of some of the line segments.

x(u) ; abscissa of point u.

y(u) . ordinate of point u.

uv— 1 ¢( I,): translation of [u,v] from I,( 1) to Io(1,).

d[T]: length of tree T.

From definition 1 and the fundamental properties of ST, we have

Lemma 1. An ST with o least four regular points is a QFST if and only if the ST is consist
ofatﬂmﬂmgwpsofmmﬂddgesmdmdzanglebdmanyawdjawﬁdgesbdmgﬁgtqdif-
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ferent groups is of 120°.

Definition 2. In an ST, a path p(u,v) (both u and v are regular points) is referred as a sim-
ple path if there are at mast two s-points in p(u,v) and-wien there are exactly two then they locate on
the different sides of [u,v]. The [u,v] is called a base of p(u,v).

Definition 3. A QFST is called separable if one of three groups of parallel edges is taken of f
(see to Lemma 1) then only isolated simple paths could exist. A separable QFST on X is denoted in
SQFST (X).

Let the set of all bases of an SQFST(X) be M, [M|=m,and (1, I ) a partition of
all bases in M which makes some of the bases members of 1 and others members of I. The
broken line L(c,d) of (I, I') is formed by first translating, one after another,all the
bases of 1 (1) to the lower (upper) side of a fixd point, which we call the basic point,
and then connecting them up. [c,d] is called the chord of ( I , I ) and (cd) is called the
characteristic point of ( I, I )(or L(c,d)). If we consider each base of L(c,d) as a vec-
tor, then [c,d] can be taken as the sum of these vectors. Now, we have

Lemma 2. The position of the chord of a (1 , 1) on M is determined anly by that of the basic
pont of (1, 1), and tis is independent of the arrangement order of ‘the basesin 1 (or 1 ). Fur-
thermore , ﬂedm‘db&gt]tsofadmrhlionsmMareofacondmdandaﬂﬂwdmdsareparaild.

Since the directions of the chords are uniform y we can take the uniform direction as an
ordinate axis,now,if the leftmost regular point is considered as an original point,then we
have with us a coordinate system. A regular point with minimum (maxmum ) abscissa is
called the begir__ming (terminal) point. A base that contains the beginning (terminal) point
is called the beginning (terminal) base. Usually the beginning point is taken as the basic

point and the u and v of the base [u,v] is supposed to satisfy y(u)=y(v).
Lemma 3. If SQFST(X) ezists,then the length of the SQFST(X)  that corresponds  to
(1, 1) is equal to the distance between the characteristic point of ( 1 , 1) and the terminal point.
Proof. We prove this lemma by making induction on the number m of the bases in the
given partition (1, I ).

For m=2, X={a,,b,a,,b;},and M= {[a,,b,],[a,,b2]} , this lemma can be readi-
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ly derived from the theorem 6 and its corollary in [2].

Suppose that the conclusion is true for m=k,and we prove in the following this is also
true for m=k-1.

First, we know that if SQFST(X) =T, UT:, and T;[()T;=s;, then

d[SQFST(X)]=d[T_1]+d[Tz] )
We then get on to prove d[T;]=d[(ca,),ss] (see to Fig. 1.)

Extend [s;,a2 ] to a,' so that d[a;,a,’ J=d[bs,ss]). Translate [a;,b.] to [b;,c] and
form [by,e]//[sz2,53] so that d[b,,e]J=d[s;,ss]. Extend [a,,s,] to q so that d[s;,q]=
d[s;,s3]. Now , we have

i) [c,e]//[b1,s1] (since Aay’'s;sy=Aceb,).

ii) [s1,82]//[a,ss])s[esa]/[b1,s1] and Laigss= La;s:s: = 120°(since both the
quadralaterals s;gsss; and b,egs, are parallelograms).

iii) Points c,e and q are collineation points (since [¢c,e]//[e,q]).

iv) Points a,, (ca,), ¢ and q are concyclic points (since /a,qc=120°, ~a,;(ca,)c=
60°).

v) Points (ca;), q, s; and s, are collineation points (since ~a;q(ca;)=60°, Aaqgss
=120° and [q,ss]// [s3,5.])- |
From the construction method by Melzakz » we have

d[ (ca) ys3]=d[c,q]+d[a;,q]+d[q,ss]=d[QFST(a;,c,ss) ] (2)

Since

d[T,)=d[bi,s1]+d[s:,a22 J+d[bs,ss ]+d[a),s; ] +d[s2,53 ] +d[s1,52]
=d[e,q]+ (d[sz,a.]4d[az,a,' J)+ (d[a;,s1 ]J+d[s1,q9])+d[q,ss]
=d[e,q]+d[sz,2.' J+d[ai,q]+d[q,ss]
= (d[e,q]+d[c,e])+d[a;,q]+d[q,ss]
=d[c,q]+d[a:,q]+d[q,ss]
=d[QFST(a,,c,s:) ] 3
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then we have d[ T, ]=d[ (ca,),s;]-
Lastly,let M’ =M\ {[a,,b,]U[2z,b.]} U {[a1,c]}, X' =X\{b),az,b,} U {c}, where
X' is the set of regular points cooresponding to M’ . By (1),(2) and (3), we have
d[QFST(X' ) ]=d[QFST(a;,c¢,s3) ]+d[ T ]
=d[Ty]+d[T;]=d[SQFST(X)]
Since |M’ | =k, then by the hypothesis of the induction, we know that the conclusion is

true for m=k-1.

Figure 1. 0

3. The Generating Algorithm

3.1. The Generating Algorithm for QFST on a Given Partition

Suppose that ( Iy, I ) is the given partition on M. With respect to the coordinate
system given afore, we arrange the m bases of M orderly from left to right. Let K(i) (i=
1,2,++-,m) denote the broken line that is formed from the first i bases of M with respect to
(Ig, Xp).

Algorithm 1.
Step 1: Let L(c,d) =K (m). Draw a straight line R by connecting the characteristic

point (cd) of ( I,, I) and the terminal point (X, Yo). Draw two orientation straight
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lines R; and R; such that the angle between R and R, (R;) is of 60°(120°).

Step 2. Let the beginning base be [u,v]. Through the characteristic point of K (1)
draw a straight line L(1) //R. Through u draw [u,s’ ]//R, so that [u,s’ JL(1)=¢".
Connecting s’ with v, - a simple path p(u,v)=[u,s’ JU[s' ,v] is obtained. If u=v, then
=y’ =v.

Step 3: Suppose that 1 << i<< m and the ith base is [u,v]. Through the characteristic
point of K(i) draw a straight line L(i) /R.

If [u,v]E Io:

Through u draw [u,s]/R; so that [u,s]J\L(i-1)=s. Through v draw [v,s’ ] /R,
so that [v,s’ JL(i) =s! Connecting the current s with the previous s’, an edge [¢’ +S ],
which we call separating edge in the following,is obtained. Connecting the current s with
the current &' , a simple path p(u,v)={u,s]JU[s,s' JU[¢' ,v] is obtained.

If [u,v]€E I,

Through u draw [u,s’ ]//R.so that [u,s’ JONL(i)=s'. Through v draw [v,s] /R,
so that [v,s][L(i-1) =s. Connecting thé current s with the previous s/,a separating edge
[s' ,s] is obtained. Connecting the current s with the current s’, a simple path p(u,v)=
[u,s’ JULs ,sJU[s,v] is obtained.

Repeat this step until i=m-1.

Step 4: Let [u,v] be the terminal base. Through u draw [u,s]//R, so that [u,s]
L(m-1)=s. Connecting v with s,a simple path p(u,v)=[u,s]U[s,v] is obtained.
Connecting the current s with the previous s/, a separating edge [¢' ,s] is obtained. If u=v,
then u==s=v. Stop.

Now, the union of all the simple paths and separating edges produced by this algorithm
is the very QFST that we want to generate, and this one is specif.ically denoted in QFST

(1o, Io) in the following.

Corollary. The SQFST( 1 o, 1) exists if and only if its ith base intersects with both L (i)
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and L(i-1), for i=2,3,+-,m-1, and the beginning (terminal) base intersects with L(1)
(L(m-1)).
The partition ( I ¢, I ;) in the above corollary is called a feasible partition.
Definition 4. A4 QFST(1, 1) is called optimal of is tree length s the shortest among
all QFSTs on X. An optimal QFST (X) is denoted in QFST* (X), and the partition (1 , 1) is
called an optumal partiion.
3. 2. The Generating Algorithm for Optimal Partition
Let P(X) be the set of all partitions on M, (x,y) the characteristic point of ( I ¢,

1), and y(c)<y(d)for L(c,d). We have

x= —x/?/Z( %Ay[uv]+ Zez.;\y[uv]) 4)
y=1/2¢ 2 sy[uv]— 2 Ay[uv]) (5)
well, we€l,

where Ax[uv]=x() —x(v), Ay[uVJ%YCU)—Y(V)-
Under transformation uv— I ¢( I o) ,the partition ( I ¢, I ¢)becomes( 1, I ) and Ax

and Ay turn out as

Ax= ‘2 Ax[uv]— E}Ax[uv] (6)
Ay= ; ay[uv]— Z: Ay[uv] (7)

Define the test number A(1, X)of (I, I)by(8)

ACT , I)=2(x-x0) Ax+2(y-yo) Ay+ Ax2+ Ay? (8)

Algorithm 2.
Step 0: (I, Io):=(M,)
Step 1.
ACT 1) e=min{ 2.1, I)|(1,1)7#% (10, 10),(1,1)EPX)}
9
Step 2:If (1o, Iy) is feasible, test A\( 1/, 1/)>=0? |
if2(C1’,1')=0, trun to step 3,
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else (1o,X4):=(1',X"), and turn to step 1;
else take P(X): =P(XO\{( 10, I o)}, test P(XD=(F ?
if P(X)=¢, turn to step 4, .
else (I1¢9,X0):=(17,1"), and turn to step 1.
Step 3. Generate QFST( I o, I o) with algorithm 1.Then output
QFST* (X)=QFST( 1, 1),
and d[QFST* (X)J=V (x-X¢)?+ (y-ys)?,stop. (10)
Step 4. the SMT(X) is not a QFST, stop.

3.3. Main Result
Theorem. If the SMT (X) is of a separable quasi-full topology ,then the QFST * (X) oblained
s an SMT (X) itself. If the QFST* (X) cannot be gemerated, then the SMT (X ) may not.be separa-
bly quasi- full.
Proof . By virtue of the minimum property of SMT, we have
d[SMT (X) J<Xd[QFST(X)]. (11)
From (8) and Lemma 3 we have |
AT, D) =[(x+Ax—x0)?+ (y+2Ay—y0)?]—[(x—x0) 4 (y—y0)?]
=d?[QFST( 1, 1 )]—d?[QFST( 1., 1] (12)
Where (14, I,) is the original feasible partition and (1, I) isa new' partition formed
through interchanging some of the basesin (14, 14). 2(I',X’)>=0 implies that
ACI,XI)=0 for any feasible ( I , I ),that is to say no matter how one constructs new
feasible partitions from making combinations of the bases,no QFST( I , I ) with smaller
length can be obtained. Therefore,the QFST( 1,4, I () is an optirﬁal separable one which
we denote in the following in QFST* (X). Now, we have
d[QFST( 14, I 0)]=d[QFST* (X)J<d[QFST( 1, I)].
Since SMT(X) is a separably quasi-full one, so

d[QFST* (X)J<d[SMT(X)]. (13)
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By (11) and (13),
d[SMT(X) ]=d[QFST* (X)]. (14)
Since (1, Iy) is feasible, so QFST* (X) exists; Therefore SMT (X)=QFST* (X).
If the QFST * (X) cannot be generated by the generating algorithm, then, of course,

the SMT (X) may not be separably quasi-full. ]
4. Examples

4.1. SMT on point set of Ladder

Example 1. It is known that the SMT on Ladder was first given out by Chung and
Graham in [1]. For such SMT, the set of regular points is L,= {a\,bx| ax=(2k—2,2),
b= (2k-2,0), k=1,2,+-+,n} which is shown in Fig. 2. , where a,, b,(k=1,2,+**,n)
are coordinates of the :egular points.

By applying the results gained in [1], we can prove that the SMT(L,) is separably
quasi-full. We now take [ax,bx ] as the base and b, as the basic point.

yl
a, a, a, a,, a,
T T |
! i ! ! |
{ : | . i
d 4 J§ - J iy
° b! bz b: b..—1 bn x
Figure 2.

(1) When n is an odd number, let ( I ¢, I ¢) be such one that I o={[ac,b:] | k=
2,4,-+yn-1} and I o= {[a,,b,] | k=1,3,---,n}, and let a, be the terminal point of L.,.
Now, the broken line L(c,d) of ( I o, I ;) coincides with its chord [c,d] on the ordinate
axis, where c=(0,1-n), d=(0,1+4n) (see to Fig. 3. ). The QFST* (Ls) , as in shown
in Fig. 3. , is constructed by appplying the generating algorithm in 3. 1. Obviously, for this

( T, I,), the distance between the characteristic point and a, is the shortest, so the QFST
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(1o, Io) is QFST* (L,) , which is just the one given by Chung and Graham in [1].
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(2) When n is an even number, let ( 1 o, I ) be such one that I o= {[a,,b:] | k=

‘}a;' (d )

AN

Rs, .

et
\a /

/

2,4,++,n} and I ¢={[a\,b] | k=1,3,+:-,n-1}, and let b, be the terminal point of L,.
The QFST( I o, I ¢), as is shown in Fig. 4. (n=4), is constructed by Algorithm 1.

/R

Y,

as a,

b,

Lb 2’

~db/ (c)
Figure 4.

bz b-; b-l

For this ( I o, I ), the basic point b, becomes the mid-point of [c¢,d], and the termi-
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nal point b, locates on the abscissa axis, hence d[ (cd),b, ] is the minimum,and we have
QFST ( 14, 10)=QFST" (L,) =SMT(L,). This result accords with the one given by
Chung and Graham in [1].

4.2 SMT on point set of Zig-zag line

Example 2. In [3],Du, Hwang and Weng gave out the SMT on the point set of Zig-
zag line on conditions that Z,= {a;,a;,**,a,} is Convex-normal. A Zig-zag line is one as

is shown in Fig. 5. (n=7).

Figure 5.

Du, Hwang and Weng proved® that p(a,,a.+;) on the [a,a,+; ] are simple paths (k
=1,3,,m; where m=n-2 for odd n,or m=n-1 for even n). Let a, be the basic point,
a, the terminal point, I =M and ¥ o=¢. The QFST( 1,4, I ,), as is shown in Fig. 6.
(n=7), is constructed by applying Algorithm 1.
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-~ ~
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S - -
~ o .- -7
\\ - -
\< c—
Figure 6.
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By the Convex-normal condition set in [3], we have
d[ay,ac+2]=>max{d[a,ac+1],d[acs1,2042])

where /a,=a and 60°<Ca<<120°for every k. Now,we have /a,a,a,<_/a;a,a3< ~aca,

(see to Fig. 6. , n=7). Since (1o, I ¢)=(M, ), d[(ca;),a,] must be the minimum

(see to Fig. 6. ) so QFST( I ¢, 1 ¢)=QFST" (Z,) =SMT(Z,) . This result is in accord

with the one given in [3].

4.3. SMT on point set of Bar wave

Example 3. In [4],Du and Hwang gave out the SMT(B,), where B,= {a,, by| k=
1,2,...,n} (see to Fig. 7. for n=>5), d[ai,av+;]=max{d[ac,b ], d[ax+1» bes1]} for
=1,2,...,n-1. Du and Hwang proved in [4] that paths on [as,b.] are all simple
paths. Let I,={[a, bx] | kiseven}, I o= {[a:, bx] | k is odd},and a, the terminal
point of B,. *

P a, ,; a a,

\\ b2 b’ b‘ bs

= N b" (c)

Figure 7.
Obviously, the characteristic point of ( 1 4, I o) is on the abscissa axis, hence the
QFST(B.) constructed by applying Algorithm 1. is an optimal QFST* (B,) . Therefore,
QFST* (B,) =SMT(B,) and this is in accord with the result gained in [4].
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