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Two classes of Lorentzian stationary surfaces
in semi-Riemannian space forms

Makoto SAKAKI

Abstract. We give certain two classes of 2-dimensional Lorentzian metrics
which can be realized as induced metrics of Lorentzian stationary surfaces in
semi-Riemannian space forms.

1. Introduction

Let N?(c) denote the n-dimensional simply connected semi-Riemannian

space form of constant curvature c and index v. A surface in N}(c) is called
Lorentzian if its induced metric is Lorentzian. We say that a Lorentzian
surface in N7 (c) is stationary if its mean curvature vector vanishes identically.
We are interested in the following question: Which 2-dimensional Lorentzian
metrics can be realized as induced metrics of Lorentzian stationary surfaces
in N} (c) ? ' ' _
" There are several related results for minimal surfaces in Riemannian space
forms (cf. [4], [5], [2], [3])- In the previous paper [7], refering to [3], we gave
two classes of 2-dimensional Riemannian metrics which can be realized as-
spacelike stationary surfaces in N?*(c). In this paper, we will give two classes
of 2-dimensional Lorentzian metrics which can be realized as Lorentzian sta-
tionary surfaces in NJ(c). :

Let M be a 2-dimensional Lorentzian manifold with Gaussian curvature
K and Laplacian A. For each real number c, set

: P
F{=2(K—c), Fiy=F+20p+1)K -3 Alog(F?) if Fg>0.

‘q=1

Our results are stat_ed as follows.

Theorem 1. Let M be a 2-dimensional simply connected Lonentéian man-
ifold. Suppose that F; > 0 for p < m, and Fy, = 0 tdentically. Then there



exists an isometric stationary immersion of M into N2™(c).

Theorem 2. Let M be a 2-dimensional stimply connected Lorentzian man-
ifold with metric ds®*. Suppose that Fy > 0 for p < m, and the metric

d8* = ([Tv, F5)V/™ds? is flat. Then there exists a one-parameter famzly
of zsometnc statzonary immersions of M into N2™+1(c).

Remark. The conditions of the theorems may be seen as genera.hzed Ricci
- conditions (cf. [4], [3], [7))-

Usmg»Theorems 1 and 2, we may obtain Lorentzian stationary surfaces
with constant curvature in pseudo-hyperbolic spaces.

Corollary 1. For every positive integer m, there exists an isometric sta-
tionary tmmersion of N?(—2/m(m + 1)) into N2™(-1).

Corollary 2. For every positive integer m, there exists a orie-pammeter ,
family of isometric stationary immersions of the Minkowski plane R? into

N‘2m+1( 1)

Remarks. (i) See [1] for minimal surfaces with constant curvature in
Riemannian space forms.

(ii) The author does not know the explicit representations of the surfaces
in the corollaries.

In Section 5, we show the existence of 2-dimensional Lorentzian metrics
with nonconstant curvature which satisfy the conditions of the theorems.
2. Preliminaries

Unless otherwise stated, we use the following conventions on the ranges
of indices:

]-S'l';.7152, 3Sa,ﬁ,Sﬂ, 1$A,B,Sn

Let {ea} be a local orthonormal frame field in N?(c), and {w“} be the dual



coframe. Here the metric.of N?(c) is given by

ds® = (w')? — (W% + nfl(wA)z - i (w?)2.
A=3 A=n—v+2

SetIlv {1,3,4,---,n— l/+1}&1‘1d]2 {2,n—v+2,n—v+3,...,n}. We
can define the connectlon forms {wB} by

deB - ZLUBGA.
. A

Then wf+wf = 0if A,Be I,or A,B€l,, Andwh=wBifAc ,Be ],
The structure equations are given by ‘

4= ——Zwﬁ/\wB,
d.UA——"'ZUJC/\WB"“ ZRBC'Dw /\CU
R%cp = cep(64 c5BD — 85680),

where eg = 1for Be€ I, and eg = —1 for B € L.
Let M be a Lorentzian surface in N?(c). We choose the frame {eA} so

‘that {&;} are tangent to M. Then w® = 0 on M. In the following, our

argument will be restricted to M. Then we have

0=dw® ==Y WA’
7

So there is a symmetric tensor hf‘j such that
= Z hgw?,

where hj; are the components of the second fundamental form h of M. The

Gaussmn curvature K of M is given by

dwy = —Kw' Aw?.

The mean curvature vector H of M is given by

1 o ia
H= EZ(hn — h3y)ea.



We say that M is stationary if H = 0 on M.

3. Proof of Theorem 1

~ Proof of Theorem 1. We choose an orthonormal frame field {e1, ez} on
M with dual coframe {w!,w?}. Here the metric on M is given by

ds? = (w1)2 _ (wz)z.
Let wj = w? be the connection form satisfying
dwt = —w AWl dw?=—wiawl

Unless otherwise stated, we use the following conventions on the ranges of
indices: - : '

1<4,5,--+<2 3<qpB, --<2m, 1<A,B,---<2m.

Let E be a vector bundle of rank 2m—2 over M with orthonormal sections
{ea} such that (eq,es) = Eqap, Wwhere &, = 1if @ is odd, and &, = ~1 if
‘is even.- Let h be a symmetric section of Hom(T'M x TM, E) such that

_( 0 JF/2 _(VF/2 0
(h?f)“(M/z 0 ) ("3"( 0 M/z)’

() == () = 0).

Forl-SpSm—l,set : .
-1 _
wab1 = —wapt =__(\/F;/2)w27 Wahy1 =w§§+1.= (v/ Fg/2)w!,
2p-1 2p+2 ' |
w2:+§ = wzgfl = (‘/F;/2)w1, w§;+2 = -wgg,?“ = —(,/IF;,’/2)w2, :

12
wiEts = Wi = (p+ 1w} + 5 - xdlog(Fy),
g=1

wh =0 otherwise,



where * is the Hodge star operator given by *w! = w? and *w? = w!. We
note that
d*df = (Af)w! Aw?

for a smooth function f on M. We define a compatible connection 1V of E
so that
1Ves = Z“’ﬁ €a-

By a computatlon using the condltlon of Theorem 1, we can show that
{wh} satisfy the structure equations:

dwé: -Zw;/\wg—cwl/\wz, '
' a
R L2 3 YR L INUES S I%
g .

dwﬁ---Zw /\(.Uﬂ Zw /\UJﬂ,

which are the integrability conditions. Therefore by the fundamental the—
orem, there exists an isometric immersion of M into N2™(c), with second
fundamental form h and normal connection +V. So it is statlonary, and we
get the conclusmn

Remark. To show the structure equatlons above, it is convenient to sep-
.arate the cases for

do, it (1Sp<m-2), dull”,
dw%:;lv d“’gj}:;%’ dwgg;; ’ du)%;;i, dw2p+1y dw2:+2’ dw§£+3: dw%:+4
- (1 <p<m-1), and other trivial ones. ‘
Proof of Corollary 1. For N}(—2/m(m + 1)), we have

1 A 2p(p+1)
1 — ——————
F”' =2 m(m+1)

for 1 <p < m. Hence by Theorem 1, there exists an isometric stationary
immersion of N?(—2/m(m + 1)) into N2™(-1). ~



Through the natural anti-isometries (cf. [6, p.110]), Corollary 1 is equiv-
alent to the following:

Corollary 3. For every positive integer m, there exists an isometric sta-
tionary immersion of N#(2/m(m + 1)) into N2™(1).

4. Proof of Theorem 2

Proof of Theorem 2. We choose an orthonormal coframe field {wl,'wz}
on M, with connection form w} = w?. Here the metric on M is given by

ds? = (Wh)? — (W?)2.

Unless otherwise stated, we use the following conventions on the ranges of
indices: '
1<4,5,---<2, 3L<a,6,---<2m+1, 1<AB,---<2m+1.

Let E be a vector bundle of rank 2m—1 over M with orthonormal sections

{ea} such that (e,,eg) = €adag, Where &, = 1 if a is odd, and &, = -1 if
is even. Let h be a symmetric section of Hom(T'M x T'M, E) such that

(h?j) =:< \/;916/2 \/F(')F/Z ) ) (h?,') = ( \/FE:/Q \/]:Orla/z ) ’
(h) = -+ = (R{) = (0).

Let {w8} (1 < A, B < 2m) be defined as in the proof of Theorem 1.
The flatness of the metric ds? is equivalent to

Alog(F?) = 2(m + 1)K.
1 .

p=

So the equation

. 1 m c
dt=—(m+ 1wy — 5 > xdlog(Fy)

. p=1
is integrable. Let ¢ be a solution of this equation. For each real number 8,

set
w%ﬁ;% = —w%,’gf} = /F¢/2{sinh(t + 0)w1 ~— cosh(t + 9)w?},



wim = wimtl = JFe /2{cosh(t + 0)w — sinh(t —|— 0)w?},
Wiy = Wit =0 for 1< A<2m—2.

We define a compatible connection 'V of E so that
1Ves = ngea.
. [+

By a computation, we can show that {wf} satisfy the structure equa-
tions. Hence, there exists a one-parameter family of isometric stationary
immersions of M into N, 2’"“(c)

Remark. To show the structure equations above, we should consider the
cases for dwim ! and dws, . Other cases are the same as in the proof of
Theorem 1. :

Proof of Corollary 2. It is immediate from Theorem 2.

5 A rema,rk

Here we show the existence of 2-dimensional Lorentzian metrics with
nonconstant curvature which satisfy the conditions of the theorems. Let

ds® = e*(dz? — dy?)

be a 2-dimensional Lorentzian metric, where v = u(z) is a smooth function
depending only on z. Then we have

A = —2u 6% & K = —2u, I K =2 ~2u, /1, N 2y,
=€ 3—1‘5—_3?/3 y = —€ 'U,‘, = 4€ uu —e u -,
and FY is represented by v® (0 <k < 2p)

The condition Fy, = 0 of Theorem 1 becomes an ordinary d1fferent1al
equation for u of 2m—th order. For m > 2, choosing a suitable initial condition
at z = 0 so that F;(0) >0 (1 < p <m—1) and K'(0) # 0, we can show the
existence of a solutlon u of F¢ = 0. This u gives a 2-dimensional Lorentzian
metric with nonconstant curvature satisfying the condition of Theorem 1.



The condition of Theorem 2 becomes an ordinary differential equation for
u of (2m + 2)-th order. For m > 1, choosing a suitable initial condition as
above, we can show the existence of 2-dimensional Lorentzian metrics with
nonconstant curvature satisfying the condition of Theorem 2.

References

[1] R. Bryant, Minimal surfaces of constant curvature in S*, Trans. Amer.
Math. Soc. 290 (1985), 259-271.

[2] I. V. Guadalupe and R. A. Tribuzy, Minimal immersions of surfaces
into 4-dimensional space forms, Rend. Sem. Mat. Umv Padova 73 (1985)
1-13. -

[3] G. D. Johnson, An intrinsic characterization of a class of minimal
surfaces in constant curvature manifolds, Pacific J. Math. 149 (1991), 113-
125 .

[4] H. B. Lawson, Complete minimal surfaces in S3, Ann. of Math. 92
(1970), 335-374.

[5] H. B. Lawson, Lectures on Mlmmal Submanifolds, Berkeley, 1980.

[6] B. O’Neill, Semi-Riemannian Geometry with Applications to Relativ-
ity, Academic Press, 1983. '

[7) M. Sakaki, Two classes of spacelike stationary surfaces in serm-Rlemanman
space forms, Kyushu J. Math. 57 (2003), 159-164. :

Department of Mathematical System Saence
Faculty of Science and Technology

Hirosaki University

Hirosaki 036-8561

Japan

E-mail: sakakl@cc hirosaki-u.ac. Jp

Received September 16, 2003 Revised January 19, 2004



