Harmonic Foliations on a Complete Riemannian Manifold

S.D. Jung, T.H. Kang, B.H. Kim, H.K. Pak and J.S. Pak

Abstract. Let \mathcal{F} be a Riemannian foliation with finite energy on a manifold (M, g_M) with a complete bundle-like metric g_M . Assume that the Ricci curvature is non-negative and the transversal scalar curvature is non-positive. If \mathcal{F} is harmonic, then \mathcal{F} is totally geodesic.

0 Introduction

A foliation \mathcal{F} on a manifold M is harmonic, if the canonical projection $\pi: TM \to Q$ of the tangent bundle to the normal bundle Q = TM/L is a harmonic Q-valued 1-form ([2,3]). For this one needs the connection ∇' defined by (3.10) in Q, and a Riemannian metric g_M in M.

A rich variety of harmonic foliations were discussed in [2]. It is well-known that \mathcal{F} is harmonic if and only if all leaves of \mathcal{F} are minimal submanifolds of M ([2]).

On the other hand, if \mathcal{F} is Riemannian, i.e., if there exists a holonomy invariant metric g_Q on Q, there is a unique metric and torsion-free connection ∇ in Q ([2]).

In 1984, F.W.Kamber and Ph.Tondeur([3]) studied the interplay of the harmonicity property with the curvature of the Riemannian metric g_M and the curvature of the connection ∇ , which is metric and trosion-free with respect to the holonomy invariant metric g_Q on Q. Namely, let \mathcal{F} be a Riemannian foliation on a closed oriented manifold M. Let g_M be a Riemannian metric on M with non-negative Ricci curvature and assume the

²⁰⁰⁰ Mathematics Subject Classification. 53C12, 57R30

Key words and phrases. Cut off function, Harmonic foliation, Totally geodesic foliation

This work is supported by Korea Research Foundation Grant(KRF-2000-042-D00007)

normal sectional curvature K_{∇} of g_Q to be non-positive. If π is a harmonic form, then each leaf is a totally geodesic submanifold of M.

In this paper, we extend several results of Kamber and Tondeur([3]) to the case of complete manifolds.

The paper is organized as follows. In section 1, we review the known facts on a vector bundle. In section 2, we study the cut off functions, which is main tools for our research in complete manifolds. In section 3, we give some results when \mathcal{F} is a Riemannian foliation on a complete manifold (M, g_M) with holonomy invariant metric g_Q $(g_M$ is not assumed to be bundle-like). With respect to ∇ , " $\pi:TM\to Q$ is harmonic" does not mean that \mathcal{F} is harmonic, i.e., all leaves of \mathcal{F} are minimal submanifolds of (M, g_M) . On the other hand, if g_M is a bundle-like metric and the holonomy invariant metric g_Q is induced from g_M , then the unique metric and torsion-free connection ∇ is given by (3.10), and then " π is harmonic" means that \mathcal{F} is harmonic.

On the other hand, the tension field τ plays an important role in studying a foliation on a Riemannian manifold with bundle-like metric. When a foliation is minimal, i.e., $\tau=0$, many results are obtained. An apparent weakening of the condition of the vanishing tension field $\tau\in\Gamma Q$ would be to require $\nabla\tau=0$. But this parallel condition of τ is meaningless because $\nabla\tau=0$ implies $\tau=0$ on a compact manifold([2]). In appendix, we prove that the parallel condition $\nabla\tau=0$ is also meaningless on complete manifolds.

The main tools we use are the Weitzenböck formulas and cut off functions.

1 Preliminaries

We review some basic facts on a vector bundle ([4]). Let $E \to M$ be a smooth Riemannian vector bundle over a Riemannian manifold M, i.e., E is a vector bundle over M and there is a C^{∞} -assignment of an inner product $\langle \cdot, \cdot \rangle$ to each fiber E_x of E over $x \in M$. Let $A^r(E)$ be the space of E-valued r-forms over M. We assume a (metric) connection ∇ is given in E, i.e., $\nabla : A^0(E) \to A^1(E)$ is an \mathbb{R} -linear map such that $\nabla (fs) = f \nabla s + s df$, $f \in A^0(M)$, $s \in \Gamma(E)$ and such that

$$X < s_1, s_2 > = < \nabla_X s_1, s_2 > + < s_1, \nabla_X s_2 >$$
 (1.1)

for any $X \in TM$ and $s_1, s_2 \in A^0(E)$. By the usual algebraic formalism, $\nabla : A^0(E) \to A^1(E)$ can be extended to an anti-derivation

$$d_{\nabla}: A^r(E) \to A^{r+1}(E)$$

by the following rule: if $\sum_a s_a \eta^a \in A^r(E)$, then

$$d_{\nabla}(s_a \eta^a) = \nabla s_a \wedge \eta^a + s_a(d\eta^a) \tag{1.2}$$

for $s_a \in \Gamma(E)$, $\eta^a \in A^r(M)$. For a Riemannian matric g_M on M, we extend the star operator $*: A^r(M) \to A^{n-r}(M) (n = dimM)$ to $*: A^r(E) \to A^{n-r}(E)$ as follows: If $s \in \Gamma(E)$ and $\eta \in A^r(E)$, then $*(s\eta) = s(*\eta)$. Moreover the operator $d^*_{\nabla}: A^r(E) \to A^{r-1}(E)$ given by

$$d^*_{\nabla}\phi = (-1)^{n(r+1)+1} * d_{\nabla} * \phi, \quad \phi \in A^r(E)$$
 (1.3)

is the formal adjoint of d_{∇} with respect to a suitable inner product induced from <, > and g_M . The Laplacian Δ for $A^*(E)$ is given by

$$\Delta = d_{\nabla} d_{\nabla}^* + d_{\nabla}^* d_{\nabla}. \tag{1.4}$$

Let e_1, \dots, e_n be an orthonormal basis of T_xM and E_1, \dots, E_n a local framing of TM in a neighborhood of x, coinciding with e_1, \dots, e_n at x and satisfying $\nabla_{e_{\alpha}}^{M} E_{\beta} = (\nabla_{E_{\alpha}}^{M} E_{\beta})_{x} = 0(\alpha, \beta = 1, \dots, n)$, where ∇^{M} denotes the Riemannian connection of (M, g_M) . Let ω^{α} be the dual coframe field of e_{α} . Then on $A^*(E)$ we have

$$d_{\nabla} = \sum \omega^{\alpha} \wedge \tilde{\nabla}_{e_{\alpha}}, \quad d_{\nabla}^{*} = -\sum i(e_{\alpha})\tilde{\nabla}_{e_{\alpha}}, \tag{1.5}$$

where $\tilde{\nabla}_X(s\eta) = (\nabla_X s)\eta + s(\nabla_X^M \eta)$ and $i(X)(s\eta) = s[i(X)\eta]$ for $s \in \Gamma(E)$, $\eta \in A^*(M)$. From these, we obtain the following Weitzenböck formula: for any $\phi \in A^1(E)$,

$$\Delta \phi = -\sum \tilde{\nabla}_{e_{\alpha}} \tilde{\nabla}_{E_{\alpha}} \phi + S(\phi)_{x}, \qquad (1.6)$$

where $S(\phi)_x(X)$ is defined by

$$S(\phi)_x(X) = \sum \{ R^E(e_\alpha, X)\phi(e_\alpha) - \phi(R^M(e_\alpha, X)e_\alpha) \}. \tag{1.7}$$

Here R^E denotes the curvature of the connection ∇ in E and R^M the curvature of the Riemannian connection ∇^M in TM. Formula (1.6) yields then the following "scalar" Weizenböck formula

$$-\frac{1}{2}\Delta^{M}|\phi|^{2} = |\tilde{\nabla}\phi|^{2} - \langle \Delta\phi, \phi \rangle + \langle S(\phi), \phi \rangle, \tag{1.8}$$

where Δ^M is the ordinary Laplacian d^*d on functions on M and $|\phi|^2 = \langle \phi, \phi \rangle$ is given by $|\phi|_x^2 = \sum \langle \phi(e_\alpha), \phi(e_\alpha) \rangle$. The first term on the right hand side of (1.8) is given by

$$|\tilde{\nabla}\phi|_x^2 = \sum \langle \tilde{\nabla}_{e_{\alpha}}\phi, \tilde{\nabla}_{e_{\alpha}}\phi \rangle.$$

Now we define the global scalar product $\ll \cdot, \cdot \gg$ by

$$\ll \phi, \psi \gg = \int_M <\phi, \psi > \text{ for } \phi, \psi \in A^*(E).$$
 (1.9)

Let $A_0^r(E)$ be the subspace of $A^r(E)$ with compact supports and $L_2^r(E)$ the completion of $A_0^r(E)$ with respect to the global scalar product \ll , \gg . Then we have

$$\ll d_{\nabla}\phi, \psi \gg = \ll \phi, d_{\nabla}^*\psi \gg$$

for any $\phi \in A_0^r(E)$ and $\psi \in A_0^{r+1}(E)$.

2 Cut off functions

Let x_0 be a point of M and fix it. For each point $y \in M$, we denote by $\rho(y)$ the geodesic distance from x_0 to y. Let $B(\ell) = \{y \in M \mid \rho(y) < \ell\}$ for $\ell > 0$. Then there exists a Lipschitz continuous function ω_{ℓ} on M satisfying the following properties:

$$0 \le \omega_{\ell}(y) \le 1$$
 for any $y \in M$,
 $\sup \omega_{\ell} \subset B(2\ell)$,
 $\omega_{\ell}(y) = 1$ for any $y \in B(\ell)$,
 $\lim_{\ell \to \infty} \omega_{\ell} = 1$,
 $|d\omega_{\ell}| \le \frac{C}{\ell}$ almost everywhere on M ,

where C(>0) is a constant independent of $\ell([1])$. Then we have

Lemma 2.1 ([1]) For any $\phi \in A^r(E)$, there exists a positive constant A independent of ℓ such that

$$||d\omega_{\ell} \wedge \phi||_{B(2\ell)}^{2} \leq \frac{A}{\ell^{2}} ||\phi||_{B(2\ell)}^{2},$$
$$||d\omega_{\ell} \wedge *\phi||_{B(2\ell)}^{2} \leq \frac{A}{\ell^{2}} ||\phi||_{B(2\ell)}^{2},$$

where $\|\phi\|_{B(2\ell)}^2 = \int_{B(2\ell)} \langle \phi, \phi \rangle$.

Now, we remark that, for $\phi \in L_2^r(E) \cap A^r(E)$, $\omega_{\ell}\phi$ has compact support and $\omega_{\ell}\phi \to \phi(\ell \to \infty)$ in the strong sense. From (1.2) and (1.3), we have

$$d_{\nabla}(\omega_{\ell}^{2}\phi) = \omega_{\ell}^{2}d_{\nabla}\phi + 2\omega_{\ell}d\omega_{\ell} \wedge \phi,$$

$$d_{\nabla}^{*}(\omega_{\ell}^{2}\phi) = \omega_{\ell}^{2}d_{\nabla}^{*}\phi - *(2\omega_{\ell}d\omega_{\ell} \wedge *\phi)$$
(2.2)

for any $\phi \in A^r(E)$. By using the inequality $|\langle a,b\rangle| \leq \frac{1}{t}|a|^2 + t|b|^2$ for any positive real number t, we have

$$|\ll \omega_{\ell} d_{\nabla}^* \phi, *(d\omega_{\ell} \wedge *\phi) \gg_{B(2\ell)} | \leq \frac{1}{4} ||\omega_{\ell} d_{\nabla}^* \phi||_{B(2\ell)}^2 + 4 ||*(d\omega_{\ell} \wedge *\phi)||_{B(2\ell)}^2.$$

From Lemma 2.1, we have

$$| \ll \omega_{\ell} d_{\nabla}^* \phi, *(d\omega_{\ell} \wedge *\phi) \gg_{B(2\ell)} | \leq \frac{1}{4} ||\omega_{\ell} d_{\nabla}^* \phi||_{B(2\ell)}^2 + \frac{4A}{\ell^2} ||\phi||_{B(2\ell)}^2.$$
 (2.3)

Similarly we have

$$|\ll \omega_{\ell}\tilde{\nabla}\phi, d\omega_{\ell} \wedge \phi \gg_{B(2\ell)}| \leq \frac{1}{4} ||\omega_{\ell}\tilde{\nabla}\phi||_{B(2\ell)}^2 + \frac{4A}{\ell^2} ||\phi||_{B(2\ell)}^2. \tag{2.4}$$

3 Harmonicity of foliations

Let $L \subset TM$ be an integrable subbundle defining a foliation \mathcal{F} and Q = TM/L the normal bundle of \mathcal{F} . Since \mathcal{F} is Riemannian, there exist a holonomy invariant metric g_Q on Q and a unique metric and torsion free

connection ∇ in Q([2]). A Riemannian metric g_M on M defines a splitting σ of the exact sequence

$$0 \longrightarrow L \longrightarrow TM \stackrel{\pi}{\longleftrightarrow} Q \longrightarrow 0, \tag{3.1}$$

where $\sigma(Q)$ is the orthogonal complement L^{\perp} of L in TM. The induced connection $\tilde{\nabla}$ on Q-valued forms involve ∇ and ∇^M . Let $\{E_{\alpha}\}_{\alpha=1,\cdots,n}$ be an orthonormal framing with respect to g_M such that $e_i \in L_x$, $i=1,\cdots,p$ and $e_a \in \sigma Q_x$, $a=p+1,\cdots,n=p+q$ with $\nabla^M_{e_{\alpha}}E_{\beta}=0$. But we neither claim nor require that $(E_i)_y \in L_y$ for $1 \leq i \leq p$ or $(E_a)_y \in \sigma Q_y$ for $p+1 \leq a \leq n$ at points $y \neq x$. We do have $(\pi E_i)_x = \pi e_i = 0$. In the case where g_M is a bundle-like metric, the vectors $(\pi E_a)_x = \pi e_a$ form an orthonormal basis of $Q_x([3])$.

Consider the canonical projection $\pi: TM \to Q$ as a Q-valued 1-form, i.e., $\pi \in A^1(Q)$. Then it is well known that $d_{\nabla}\pi = 0([2])$, since $d_{\nabla}\pi$ equals the torsion T_{∇} given by

$$T_{\nabla}(X,Y) = \nabla_X \pi(Y) - \nabla_Y \pi(X) - \pi[X,Y]$$

which is zero. Hence we have the following lemma.

Lemma 3.1 Let \mathcal{F} be a Riemannian foliation with finite energy on a complete Riemannian manifold (M, g_M) with holonomy invariant metric g_Q on Q. If $\Delta \pi \in L^1_2(Q)$, then

$$\frac{1}{2}||d_{\nabla}^*\pi||^2 \leq \text{limsup} \ll \Delta\pi, \omega_{\ell}^2\pi \gg \leq \frac{3}{2}||d_{\nabla}^*\pi||^2.$$

Proof. We know that $d_{\nabla}\pi = 0([2])$. Hence from (1.4) and (2.2), we have

From (2.3), we get

$$\frac{1}{2} \|\omega_{\ell} d_{\nabla}^{*} \pi\|_{B(2\ell)}^{2} - \frac{8A}{\ell^{2}} \|\pi\|_{B(2\ell)}^{2} \leq \ll \Delta \pi, \omega_{\ell}^{2} \pi \gg_{B(2\ell)} \\
\leq \frac{3}{2} \|\omega_{\ell} d_{\nabla}^{*} \pi\|_{B(2\ell)}^{2} + \frac{8A}{\ell^{2}} \|\pi\|_{B(2\ell)}^{2}.$$

Since $\pi, \Delta \pi \in L_2^1(Q)$, $d^*_{\nabla} \pi$ is square-integrable. Hence we obtain the inequality by letting $\ell \to \infty$. \square

Moreover, we have the following lemma from (1.6).

Lemma 3.2 Let \mathcal{F} be a Riemannian foliation on (M, g_M) with holonomy invariant metric g_Q on Q $(g_M$ is not assumed to be bundle-like). Then for any $\phi \in A^r(Q)$, we have

$$\ll \Delta \phi, \omega_{\ell}^{2} \phi \gg_{B(2\ell)} = 2 \ll \omega_{\ell} \tilde{\nabla} \phi, d\omega_{\ell} \wedge \phi \gg_{B(2\ell)} + ||\omega_{\ell} \tilde{\nabla} \phi||_{B(2\ell)}^{2} + \ll S(\phi), \omega_{\ell}^{2} \phi \gg_{B(2\ell)}.$$

Proof. From (1.6), we have, at $x \in M$,

$$<\Delta\phi, \omega_{\ell}^{2}\phi> = -\sum <\tilde{\nabla}_{E_{\alpha}}\tilde{\nabla}_{E_{\alpha}}\phi, \omega_{\ell}^{2}\phi> + < S(\phi), \omega_{\ell}^{2}\phi>$$

$$= -\sum E_{\alpha} <\tilde{\nabla}_{E_{\alpha}}\phi, \omega_{\ell}^{2}\phi> + \sum <\tilde{\nabla}_{E_{\alpha}}\phi, \tilde{\nabla}_{E_{\alpha}}(\omega_{\ell}^{2}\phi)>$$

$$+ < S(\phi), \omega_{\ell}^{2}\phi>$$

$$= -\sum E_{\alpha} <\tilde{\nabla}_{E_{\alpha}}\phi, \omega_{\ell}^{2}\phi> + \sum <\tilde{\nabla}_{E_{\alpha}}\phi, 2\omega_{\ell}d\omega_{\ell}(E_{\alpha}) \wedge \phi>$$

$$+|\omega_{\ell}\tilde{\nabla}\phi|^{2} + < S(\phi), \omega_{\ell}^{2}\phi>$$

$$= -div(\omega_{\ell}X_{\ell}) + \sum <\tilde{\nabla}_{E_{\alpha}}\phi, 2\omega_{\ell}d\omega_{\ell}(E_{\alpha}) \wedge \phi> + |\omega_{\ell}\tilde{\nabla}\phi|^{2}$$

$$+ < S(\phi), \omega_{\ell}^{2}\phi>,$$

where a vector field X_{ℓ} satisfies

$$g_M(X_{\ell}, Y) = <\tilde{\nabla}_Y \phi, \omega_{\ell} \phi >$$

for any Y. The last line is proved as follows: at $x \in M$,

$$div(\omega_{\ell}X_{\ell}) = \sum g_{M}(\nabla^{M}_{E_{\alpha}}(\omega_{\ell}X_{\ell}), E_{\alpha})$$

$$= \sum E_{\alpha}g_{M}(\omega_{\ell}X_{\ell}, E_{\alpha}) = \sum E_{\alpha} < \tilde{\nabla}_{E_{\alpha}}\phi, \omega_{\ell}^{2}\phi > .$$

By integrating and by the divergence theorem([1]), which is applicable to Lipschitz continuous forms, we obtain our results. \Box

From (2.4) and Lemma 3.2, we have

$$\frac{1}{2} \|\omega_{\ell} \tilde{\nabla} \phi\|_{B(2\ell)}^{2} + \ll S(\phi), \omega_{\ell}^{2} \phi \gg_{B(2\ell)} - \frac{8A}{\ell^{2}} \|\phi\|_{B(2\ell)}^{2} \\
\leq \ll \Delta \phi, \omega_{\ell}^{2} \phi \gg_{B(2\ell)} \\
\leq \frac{3}{2} \|\omega_{\ell} \tilde{\nabla} \phi\|_{B(2\ell)}^{2} + \ll S(\phi), \omega_{\ell}^{2} \phi \gg_{B(2\ell)} + \frac{8A}{\ell^{2}} \|\phi\|_{B(2\ell)}^{2}.$$

From the first inequality above, we have the following Proposition.

Proposition 3.3 ([1]) Suppose $\langle S(\phi), \phi \rangle \geq -C|\phi|^2$ for some constant C > 0 independent of $x \in M$ and every $\phi \in A^r(Q)$. If ϕ and $\Delta \phi$ are in $L_2^r(Q)$, then $\tilde{\nabla} \phi$ is in L_2 .

Lemma 3.4 Suppose $\langle S(\phi), \phi \rangle \geq -C|\phi|^2$ for some constant C > 0 independent of $x \in M$ and every $\phi \in A^r(Q)$. If ϕ and $\Delta \phi$ are in $L_2^*(Q)$, then

$$\frac{1}{2}\|\tilde{\nabla}\phi\|^2 + \mathcal{S}(\phi) \leq \text{limsup} \ll \Delta\phi, \omega_{\ell}^2\phi \gg_{B(2\ell)} \leq \frac{3}{2}\|\tilde{\nabla}\phi\|^2 + \mathcal{S}(\phi),$$

where $S(\phi) = \limsup \ll S(\phi), \omega_{\ell}^2 \phi \gg_{B(2\ell)}$.

Hence if the foliation has finite energy (i.e., $\|\pi\|^2 < \infty$) such that $\Delta \pi \in L_2^1(Q)$, then we have

$$\frac{1}{2}\|\tilde{\nabla}\pi\|^2 + \mathcal{S}(\pi) \le \text{limsup} \ll \Delta\pi, \omega_{\ell}^2\pi \gg_{B(2\ell)} \le \frac{3}{2}\|\tilde{\nabla}\pi\|^2 + \mathcal{S}(\pi). \tag{3.2}$$

From (3.2) and Lemma 3.1, we have the following Proposition.

Proposition 3.5 Let \mathcal{F} be a Riemannian foliation with finite energy on a complete Riemannian manifold. If $\Delta \pi \in L^1_2(Q)$ and $\langle S(\pi), \pi \rangle \geq -C|\pi|^2$ for some constant C > 0, then we have

$$\frac{1}{2} \|\tilde{\nabla}\pi\|^2 + \mathcal{S}(\pi) \le \frac{3}{2} \|d_{\nabla}^*\pi\|^2,$$
$$\frac{1}{2} \|d_{\nabla}^*\pi\|^2 \le \frac{3}{2} \|\tilde{\nabla}\pi\|^2 + \mathcal{S}(\pi).$$

To analyze the sign of the term $S(\pi)$, it is convenient to introduce the self-adjoint operator $B_{\pi}: TM \to TM$ ([2]) by

$$g_M(B_{\pi}X, Y) = g_O(\pi(X), \pi(Y)) \quad \text{for } X, Y \in TM.$$
 (3.3)

Clearly, $KerB_{\pi} = L$, $ImB_{\pi} = \sigma Q \cong L^{\perp}$. We further refine the choice of local framings by requiring that the orthogonal basis e_1, \dots, e_n of T_xM also diagonalize B_{π} , i.e.,

$$B_{\pi}(e_i) = 0 \ (i = 1, \dots, p); \ B_{\pi}(e_a) = \lambda_a e_a \ (a = p + 1, \dots, n),$$
 (3.4)

where $\lambda_a > 0$, since g_Q is positive definite. Clearly we have

$$g_Q(\pi(e_a), \pi(e_b)) = \lambda_a \delta_{ab}. \tag{3.5}$$

Now, we consider the normal sectional curvature $K^{\nabla}(e_a, e_b)$ in direction of the normal 2-plane spanned by e_a, e_b defined by

$$K^{\nabla}(e_a, e_b) = \frac{1}{\lambda_a \lambda_b} g_Q(R^{\nabla}_{\pi(e_a), \pi(e_b)} \pi(e_b), \pi(e_a)), \tag{3.6}$$

where $R_{X,Y}^{\nabla} = [\nabla_X, \nabla_Y] - \nabla_{[X,Y]}$ is the curvature tensor on Q. Note that since ∇ is a basic connection, $i(X)R^{\nabla} = 0$ for $X \in \Gamma L([2])$, hence $R_{\pi(e_a),-}^{\nabla} = R_{e_a,-}^{\nabla}$. The transversal Ricci operator $\rho^{\nabla} : Q \to Q$ and the transversal scalar curvature σ^{∇} are given respectively by

$$\rho^{\nabla}(X) = \sum_{a} R_{X,e_a}^{\nabla} e_a, \quad \sigma^{\nabla} = Tr(\rho^{\nabla}). \tag{3.7}$$

All these geometric quantities should be thought of as the corresponding curvature properties of a Riemannian manifold serving as a model space for \mathcal{F} . Furthermore, we have

$$g_{Q}(\pi(\rho^{\nabla^{M}}(e_{a})), \pi(e_{a})) = g_{M}((B_{\pi} \circ \rho^{\nabla^{M}})e_{a}, e_{a})$$

$$= g_{M}(\rho^{\nabla^{M}}(e_{a}), B_{\pi}e_{a})$$

$$= \lambda_{a}g_{M}(\rho^{\nabla^{M}}(e_{a}), e_{a}),$$

$$(3.8)$$

where ρ^{∇^M} is the Ricci operator of ∇^M given by $\rho^{\nabla^M}(X) = \sum R_{X,e_\alpha}^M e_\alpha$. From (1.7), we obtain

$$\langle S(\pi), \pi \rangle_{x} = -\sum_{a \neq b} \lambda_{a} \lambda_{b} K^{\nabla}(e_{a}, e_{b}) + \sum_{a} \lambda_{a} g_{M}(\rho^{\nabla^{M}}(e_{a}), e_{a}).$$
 (3.9)

Thus non-negative Ricci curvature on M and non-positive normal sectional curvature K^{∇} imply $\langle S(\pi), \pi \rangle \geq 0$. From Proposition 3.5 and (3.9), we obtain the following Theorem.

Theorem 3.6 Let \mathcal{F} be a Riemannian foliation with finite energy on a complete Riemannian manifold (M, g_M) with holonomy invariant metric g_Q on Q $(g_M$ is not assumed to be bundle-like). Assume that the Ricci curvature ρ^M on M is non-negative and the normal sectional curvature K^{∇} of g_Q is non-positive. Then

$$d^*_{\nabla}\pi = 0$$
 if and only if $\tilde{\nabla}\pi = 0$ and $\limsup \ll S(\pi), \omega_{\ell}^2\pi \gg = 0$.

Note that for the normal bundle Q of a foliation on M the connection ∇' on Q defined by a Riemannian metric g_M via (3.10) below need not be metric with respect to g_Q induced by g_M . Thus we say that $\phi \in A^r(M,Q)$ is harmonic if $d_{\nabla}\phi = 0$ and $d_{\nabla}^*\phi = 0$. In case ∇ is metric, this condition is equivalent to $\Delta \phi = 0$ for ϕ with $\phi, \Delta \phi \in L_2^*(Q)$.

The condition $\tilde{\nabla}\pi = 0$ implies that

$$(\tilde{\nabla}\pi)(X,Y) = (\tilde{\nabla}_X\pi)(Y) = \nabla_X\pi(Y) - \pi(\nabla_X^MY) = 0.$$

In particular, for $X, Y \in \Gamma L$, $\nabla_X^M Y \in \Gamma L$. This means that each leaf \mathcal{L} is a totally geodesic submanifold of M. Hence we have the following Corollary.

Corollary 3.7 Let \mathcal{F} be a Riemannian foliation satisfying the conditions in Theorem 3.6.

- (1) If π is a harmonic form, then each leaf is a totally geodesic submanifold of M.
- (2) If there exists some point $x \in B(2\ell)$ such that $\langle S(\pi), \omega_{\ell}^2 \pi \rangle_x \neq 0$, then π is not a harmonic form.

If the codimension of \mathcal{F} is one, then the normal sectional curvature K_{∇} is zero. Hence Corollary 3.7 holds under the assumption that the Ricci curvature of g_M is non-negative.

Now we discuss the bundle-like metric case([2]), i.e., g_Q can be assumed to be induced by g_M as

$$g_{Q}(s,t) = g_{M}(\sigma(s),\sigma(t))$$

for any $s, t \in \Gamma Q$. The projection $\pi: TM \to Q$ is then an orthogonal projection. The particular connection ∇' in Q defined by

$$\begin{cases} \nabla'_X s = \pi([X, \sigma(s)]) & \text{for } X \in \Gamma L \\ \nabla'_X s = \pi(\nabla^M_X \sigma(s)) & \text{for } X \in \Gamma L^{\perp} \end{cases}$$
 (3.10)

is then the unique metric and torsion-free connection with respect to g_Q . The harmonicity of π , i.e., the condition $d_{\nabla'}^*\pi = 0$ (since we already have $d_{\nabla'}\pi = 0$), is then equivalent to the property that all leaves of \mathcal{F} are minimal submanifolds of (M, g_M) ([2]). Noting that $(\tilde{\nabla}_X \pi)(X) = 0$ for any $X \in \Gamma Q$, we see that $\tau = d_{\nabla'}^*\pi$. Then \mathcal{F} is harmonic if and only if $\tau = 0$ (see Appendix or [2]).

The operator $B_{\pi}: TM \to TM$ defined by (3.3) is the map $\sigma \circ \pi$ and the non-zero eigenvalues λ_a equal 1. Then we have

$$\langle S\pi, \pi \rangle_x = -\sigma^{\nabla'} + \sum_a \langle \rho^{\nabla^M}(e_a), e_a \rangle$$

where $\sigma^{\nabla'}$ is the transversal scalar curvature of Q. Hence from Theorem 3.6, we have the following Corollary.

Corollary 3.8 Let \mathcal{F} be a Riemannian foliation with finite energy on M with a complete bundle-like metric g_M . Assume that the Ricci curvature ρ^M on M is non-negative and the transversal scalar curvature is non-positive. If \mathcal{F} is harmonic, then \mathcal{F} is totally geodesic.

Appendix

Let \mathcal{F} be a foliation on a Riemannian manifold (M, g_M) with bundle-like metric g_M . The Q-valued symmetric bilinear form $\alpha = -\tilde{\nabla}\pi$ restricted to any leaf $\mathcal{L} \subset M$ of \mathcal{F} is then the second fundamental form of the Riemannian submanifold $\mathcal{L} \subset M$. By [2], the tension $\tau = Tr\alpha$ of \mathcal{F} is evaluated at $x \in M$ by

$$\tau_x = Tr\alpha = \sum_{\beta} \alpha(e_{\beta}, e_{\beta}) = \sum_i \alpha(e_i, e_i) \in Q_x.$$

It is immediate that $\tau = d^*_{\nabla'}\pi$, and \mathcal{F} is harmonic iff $\tau = 0([2])$.

This tension field τ plays an important role in studying a foliated Riemannian manifold. When a foliation is minimal, i.e., $\tau=0$, many results are similar to those in an ordinary manifold. So an apparent weakening of the condition of the vanishing tension field would be to require $\nabla' \tau=0$. But the ∇' -parallel condition of τ is meaningless on a compact manifold because $\nabla' \tau=0$ implies $\tau=0([2])$. On a complete Riemannian manifold, we obtain the following result which is similar to the one in [2].

Theorem A. Let \mathcal{F} be a Riemannian foliation with finite energy on M with a complete bundle-like metric g_M . Then we have

$$\nabla' \tau = 0 \Longrightarrow \tau = 0.$$

Proof. For a 0-form $\tau \in A^0(Q)$, we have by definition $d_{\nabla'}\tau = \nabla'\tau$. Since $d_{\nabla'}\pi = 0$, we have

$$\Delta \pi = d_{\nabla'} d_{\nabla'}^* \pi = d_{\nabla'} \tau = \nabla' \tau.$$

This implies that if $\nabla' \tau = 0$, then $\Delta \pi = 0$. From the first inequality in Lemma 3.4, we obtain $\tau = d^*_{\nabla'} \pi = 0$. \square

Acknowledgements

The authors would like to thank the referee for his helpful and kind suggestions.

References

- [1] J. Dodziuk, Vanishing theorems for square-integrable harmonic forms, Geometry and Analysis, Papers dedicated to the memory of V. K. Patodi, 21-27 Springer-Verlag, 1981.
- [2] F. W. Kamber and Ph. Tondeur, *Harmonic foliations*, Proc. National Science Foundation Conference on Harmonic Maps, Tulane, Dec. 1980, Lecture Notes in Math, 949, Springer-Verlag, New York, 1982, 87-121.
- [3] F. W. Kamber and Ph. Tondeur, Curvature properties of harmonic foliations, Illinois J. Math. 28 (1984), 458-471.
- [4] H. Wu, A remark on the Bochner technique in differential geometry, Proc. Amer. Math. Soc. 78 (1980), 403-408.

S.D. Jung Department of Mathematics, Cheju National University, Cheju 690-756, Korea T.H. Kang Department of Mathematics, University of Ulsan, Ulsan 680-749, Korea

B.H. Kim Department of Mathematics, Kyung Hee University, Suwon 449-701, Korea H.K. Pak Department of Mathematics, Kyungsan University, Kyungsan 712-240, Korea J.S. Pak
Department of Mathematics,
Teachers College,
Kyungpook National University,
Taegu 702-701, Korea

Received September 30, 2002 Revised May 6, 2003