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Harmonic Foliations on a Complete Riemannian
Manifold
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Abstract. Let $\mathcal{F}$ be a Riemannian foliation with finite energy on a
manifold $(M, g_{M})$ with a complete bundle-like metric $g_{M}$ . Assume that
the Ricci curvature is non-negative and the transversal scalar curvature is
non-positive. If $\mathcal{F}$ is harmonic, then $\mathcal{F}$ is totally geodesic.

0 Introduction

A foliation $\mathcal{F}$ on a manifold $M$ is harmonic, if the canonical projection
$\pi$ : $TM\rightarrow Q$ of the tangent bundle to the normal bundle $Q=TM/L$ is
a harmonic Q-valued l-form ([2,3]). For this one needs the connection V’
defined by (3.10) in $Q$ , and a Riemannian metric $g_{M}$ in $M$ .

A rich variety of harmonic foliations were discussed in [2]. It is well-
known that $\mathcal{F}$ is harmonic if and only if all leaves of $\mathcal{F}$ are minimal sub-
manifolds of $M$ ([2]).

On the other hand, if $\mathcal{F}$ is Riemannian, i.e., if there exists a holonomy in-
variant metric $g_{Q}$ on $Q$ , there is a unique metric and torsion-free connection
$\nabla$ in $Q$ ([2]).

In 1984, F.W.Kamber and Ph.Tondeur([3]) studied the interplay of the
harmonicity property with the curvature of the Riemannian metric $g_{M}$ and
the curvature of the connection $\nabla$ , which is metric and trosion-free with
respect to the holonomy invariant metric $g_{Q}$ on $Q$ . Namely, let $\mathcal{F}$ be a
Riemannian foliation on a closed oriented manifold $M$ . Let $g_{M}$ be a Rie-
mannian metric on $M$ with non-negative Ricci curvature and assume the
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normal sectional curvature $K_{\nabla}$ of $g_{Q}$ to be non-positive. If $\pi$ is a harmonic
form, then each leaf is a totally geodesic submanifold of $M$ .

In this paper, we extend several results of Kamber and Tondeur $([3])$ to
the case of complete manifolds.

The paper is organized as follows. In section 1, we review the known
facts on a vector bundle. In section 2, we study the cut off functions, which is
main tools for our research in complete manifolds. In section 3, we give some
results when $\mathcal{F}$ is a Riemannian foliation on a complete manifold $(M, g_{M})$

with holonomy invariant metric $g_{Q}$ ( $g_{M}$ is not assumed to be bundle-like).
With respect to $\nabla$ , “

$\pi$ : $TM\rightarrow Q$ is harmonic” does not mean that $\mathcal{F}$ is
harmonic, i.e., all leaves of $\mathcal{F}$ are minimal submanifolds of $(M, g_{M})$ . On the
other hand, if $g_{M}$ is a bundle-like metric and the holonomy invariant metric
$g_{Q}$ is induced from $g_{M}$ , then the unique metric and torsion-free connection
$\nabla$ is given by (3.10), and then “

$\pi$ is harmonic” means that $\mathcal{F}$ is harmonic.
On the other hand, the tension field $\tau$ plays an important role in studying

a foliation on a Riemannian manifold with bundle-like metric. When a
foliation is minimal, i.e., $\tau=0$ , many results are obtained. An apparent
weakening of the condition of the vanishing tension field $\tau\in\Gamma Q$ would
be to require $\nabla\tau=0$ . But this parallel condition of $\tau$ is meaningless
because $\nabla\tau=0$ implies $\tau=0$ on a compact manifold([2]). In appendix, we
prove that the parallel condition $\nabla\tau=0$ is also meaningless on complete
manifolds.

The main tools we use are the Weitzenb\"ock formulas and cut off func-
tions.

1 Preliminaries

We review some basic facts on a vector bundle ([4]). Let $E\rightarrow M$ be a
smooth Riemannian vector bundle over a Riemannian manifold $M$ , i.e., $E$

is a vector bundle over $M$ and there is a $C^{\infty}$-assignment of an inner product
$<,$ $\cdot>$ to each fiber $E_{x}$ of $E$ over $x\in M$ . Let $A^{r}(E)$ be the space of E-
valued r-forms over $M$ . We assume a (metric) connection $\nabla$ is given in $E$ ,
i.e., $\nabla$ : $A^{0}(E)\rightarrow A^{1}(E)$ is an R-linear map such that $\nabla(fs)=f\nabla s+sdf$ ,
$f\in A^{0}(M),$ $s\in\Gamma(E)$ and such that

$X<s_{1},$ $s_{2}>=<\nabla_{X}s_{1},$ $s_{2}>+<s_{1},$ $\nabla_{X}s_{2}>$ (1.1)
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for any $X\in TM$ and $s_{1},$ $s_{2}\in A^{0}(E)$ . By the usual algebraic formalism,
$\nabla$ : $A^{0}(E)\rightarrow A^{1}(E)$ can be extended to an anti-derivation

$d_{\nabla}$ : $A^{r}(E)\rightarrow A^{r+1}(E)$

by the following rule: if $\sum_{a}s_{a}\eta^{a}\in A^{r}(E)$ , then

$d_{\nabla}(s_{a}\eta^{a})=\nabla s_{a}\wedge\eta^{a}+s_{a}(d\eta^{a})$ (1.2)

for $s_{a}\in\Gamma(E),$ $\eta^{a}\in A^{r}(M)$ . For a Riemannian matric $g_{M}$ on $M$ , we extend
the star operator $*:A^{r}(M)\rightarrow A^{n-r}(M)(n=dimM)$ to $*:A^{r}(E)\rightarrow$

$A^{n-r}(E)$ as follows: If $s\in\Gamma(E)$ and $\eta\in A^{r}(E)$ , then $*(s\eta)=s(*\eta)$ .
Moreover the operator $d_{\nabla}^{*}$ : $A^{r}(E)\rightarrow A^{r-1}(E)$ given by

$ d_{\nabla}^{*}\phi=(-1)^{n(r+1)+1}*d_{\nabla}*\phi$ , $\phi\in A^{r}(E)$ (1.3)

is the formal adjoint of $d_{\nabla}$ with respect to a suitable inner product induced
from $<,$ $>andg_{M}$ . The Laplacian $\triangle$ for $A^{*}(E)$ is given by

$\Delta=d_{\nabla}d_{\nabla}^{*}+d_{\nabla}^{*}d_{\nabla}$ . (1.4)

Let $e_{1},$ $\cdots$ $e_{n}$ be an orthonormal basis of $T_{x}M$ and $E_{1},$ $\cdots$ $E_{n}$ a local
framing of $TM$ in a neighborhood of $x$ , coinciding with $e_{1},$ $\cdots e_{n}$ at $x$ and
satisfying $\nabla_{e_{\alpha}}^{M}E_{\beta}=(\nabla_{E_{\alpha}}^{M}E_{\beta})_{x}=0(\alpha, \beta=1, \cdots n)$ , where $\nabla^{M}$ denotes the
Riemannian connection of $(M, g_{M})$ . Let $\omega^{\alpha}$ be the dual coframe field of $e_{\alpha}$ .
Then on $A^{*}(E)$ we have

$d_{\nabla}=\sum\omega^{\alpha}\wedge\tilde{\nabla}_{e_{\alpha}}$ , $d_{\nabla}^{*}=-\sum i(e_{\alpha})\tilde{\nabla}_{e_{\alpha}}$ , (1.5)

where $\tilde{\nabla}_{X}(s\eta)=(\nabla_{X}s)\eta+s(\nabla_{X}^{M}\eta)$ and $i(X)(s\eta)=s[i(X)\eta]$ for $ s\in$

$\Gamma(E),$ $\eta\in A^{*}(M)$ . From these, we obtain the following Weitzenb\"ock for-
mula: for any $\phi\in A^{1}(E)$ ,

$\triangle\phi=-\sum\tilde{\nabla}_{e_{\alpha}}\tilde{\nabla}_{E_{\alpha}}\phi+S(\phi)_{x}$ , (1.6)

where $S(\phi)_{x}(X)$ is defined by

$S(\phi)_{x}(X)=\sum\{R^{E}(e_{\alpha}, X)\phi(e_{\alpha})-\phi(R^{M}(e_{\alpha}, X)e_{\alpha})\}$ . (1.7)
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Here $R^{E}$ denotes the curvature of the connection $\nabla$ in $E$ and $R^{M}$ the cur-
vature of the Riemannian connection $\nabla^{M}$ in $TM$ . Formula (1.6) yields then
the following “ scalar” Weizenb\"ock formula

$-\frac{1}{2}\Delta^{M}|\phi|^{2}=|\tilde{\nabla}\phi|^{2}-<\triangle\phi,$ $\phi>+<S(\phi),$ $\phi>$ , (1.8)

where $\triangle^{M}$ is the ordinary Laplacian $d^{*}d$ on functions on $M$ and $|\phi|^{2}=<$

$\phi,$ $\phi>is$ given by $|\phi|_{x}^{2}=\sum<\phi(e_{\alpha}),$ $\phi(e_{\alpha})>$ . The first term on the right
hand side of (1.8) is given by

$|\tilde{\nabla}\phi|_{x}^{2}=\sum<\tilde{\nabla}_{e_{\alpha}}\phi,\tilde{\nabla}_{e_{\alpha}}\phi>$ .

Now we define the global scalar $product\ll\cdot,$ $\cdot\gg by$

$\ll\phi,$ $\psi\gg=\int_{M}<\phi,$ $\psi>$ for $\phi,$ $\psi\in A^{*}(E)$ . (1.9)

Let $A_{0}^{r}(E)$ be the subspace of $A^{r}(E)$ with compact supports and $L_{2}^{r}(E)$ the
completion of $A_{0}^{r}(E)$ with respect to the global scalar $product\ll,$ $\gg$ . Then
we have

$\ll d_{\nabla}\phi,$ $\psi\gg=\ll\phi,$ $ d_{\nabla}^{*}\psi\gg$

for any $\phi\in A_{0}^{r}(E)$ and $\psi\in A_{0}^{r+1}(E)$ .

2 Cut off functions

Let $x_{0}$ be a point of $M$ and fix it. For each point $y\in M$ , we denote by
$\rho(y)$ the geodesic distance from $x_{0}$ to $y$ . Let $B(\ell)=\{y\in M|\rho(y)<\ell\}$ for
$P>0$ . Then there exists a Lipschitz continuous function $\omega_{\ell}$ on $M$ satisfying
the following properties:

$0\leq\omega_{\ell}(y)\leq 1$ for any $y\in M$ ,
supp $\omega_{\ell}\subset B(2l)$ ,
$\omega_{\ell}(y)=1$ for any $y\in B(\ell)$ ,

(2.1)
$\lim_{\ell\rightarrow\infty}\omega_{\ell}=1$ ,

$|d\omega_{\ell}|\leq\frac{C}{\ell}$ almost everywhere on $M$,

where $C(>0)$ is a constant independent of $\ell([1])$ . Then we have
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Lemma 2.1 ([1]) For any $\phi\in A^{r}(E)$ , there exists a positive constant $A$

independent of $\ell$ such that

$\Vert d\omega_{\ell}\wedge\phi\Vert_{B(2\ell)}^{2}\leq\frac{A}{\ell^{2}}\Vert\phi\Vert_{B(2\ell)}^{2}$ ,

$\Vert d\omega_{\ell}\wedge*\phi\Vert_{B(2\ell)}^{2}\leq\frac{A}{l^{2}}\Vert\phi\Vert_{B(2\ell)}^{2}$ ,

where $\Vert\phi||_{B(2\ell)}^{2}=\int_{B(2\ell)}<\phi,$ $\phi>$ .

Now, we remark that, for $\phi\in L_{2}^{r}(E)\cap A^{r}(E),$ $\omega_{\ell}\phi$ has compact support
and $\omega_{\ell}\phi\rightarrow\phi(p\rightarrow\infty)$ in the strong sense. From (1.2) and (1.3), we have

$ d_{\nabla}(\omega_{\ell}^{2}\phi)=\omega_{\ell}^{2}d_{\nabla}\phi+2\omega\ell d\omega\ell\wedge\phi$ ,
(2.2)

$d_{\nabla}^{*}(\omega_{\ell}^{2}\phi)=\omega_{\ell}^{2}d_{\nabla}^{*}\phi-*(2\omega_{\ell}d\omega_{\ell}\wedge*\phi)$

for any $\phi\in A^{r}(E)$ . By using the inequality $|<a,$ $b>|\leq\frac{1}{t}|a|^{2}+t|b|^{2}$ for
any positive real number $t$ , we have

$|\ll\omega_{\ell}d_{\nabla}^{*}\phi,$ $*(d\omega_{\ell}\wedge*\phi)\gg B(2\ell)|\leq\frac{1}{4}||\omega_{\ell}d_{\nabla}^{*}\phi\Vert_{B(2\ell)}^{2}+4\Vert*(d\omega_{\ell}\wedge*\phi)\Vert_{B(2\ell)}^{2}$ .

From Lemma 2.1, we have

$|\ll\omega_{\ell}d_{\nabla}^{*}\phi,$ $*(d\omega_{\ell}\wedge*\phi)\gg_{B(2\ell)}|\leq\frac{1}{4}\Vert\omega_{\ell}d_{\nabla}^{*}\phi||_{B(2\ell)}^{2}+\frac{4A}{\ell^{2}}\Vert\phi\Vert_{B(2\ell)}^{2}$ . (2.3)

Similarly we have

$|\ll\omega_{\ell}\tilde{\nabla}\phi,$ $d\omega_{\ell}\wedge\emptyset\gg B(2\ell)|\leq\frac{1}{4}||\omega_{\ell}\tilde{\nabla}\phi||_{B(2\ell)}^{2}+\frac{4A}{\ell^{2}}||\phi\Vert_{B(2\ell)}^{2}$ . (2.4)

3 Harmonicity of foliations

Let $L\subset TM$ be an integrable subbundle defining a foliation $\mathcal{F}$ and $Q=$

$TM/L$ the normal bundle of $\mathcal{F}$ . Since $\mathcal{F}$ is Riemannian, there exist a
holonomy invariant metric $g_{Q}$ on $Q$ and a unique metric and torsion free
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connection $\nabla$ in $Q([2])$ . A Riemannian metric $g_{M}$ on $M$ defines a splitting
$\sigma$ of the exact sequence

$0\rightarrow L\rightarrow TM\leftarrow\rightarrow Q\sigma\pi\rightarrow 0$ , (3.1)

where $\sigma(Q)$ is the orthogonal complement $L^{\perp}$ of $L$ in $TM$ . The induced
connection $\tilde{\nabla}$ on Q-valued forms involve $\nabla$ and $\nabla^{M}$ . Let $\{E_{\alpha}\}_{\alpha=1,\cdots,n}$ be an
orthonormal framing with respect to $g_{M}$ such that $e_{i}\in L_{x},$ $i=1,$ $\cdots p$ and
$e_{a}\in\sigma Q_{x},$ $a=p+1,$ $\cdots n=p+q$ with $\nabla_{e_{\alpha}}^{M}E_{\beta}=0$ . But we neither claim
nor require that $(E_{i})_{y}\in L_{y}$ for $1\leq i\leq p$ or $(E_{a})_{y}\in\sigma Q_{y}$ for $p+1\leq a\leq n$

at points $y\neq x$ . We do have $(\pi E_{i})_{x}=\pi e_{i}=0$ . In the case where $g_{M}$ is a
bundle-like metric, the vectors $(\pi E_{a})_{x}=\pi e_{a}$ form an orthonormal basis of
$Q_{x}([3])$ .

Consider the canonical projection $\pi$ : $TM\rightarrow Q$ as a $Q$-valued l-form,
i.e., $\pi\in A^{1}(Q)$ . Then it is well known that $d_{\nabla}\pi=0([2])$ , since $ d_{\nabla}\pi$ equals
the torsion $T_{\nabla}$ given by

$T_{\nabla}(X, Y)=\nabla_{X}\pi(Y)-\nabla_{Y}\pi(X)-\pi[X, Y]$

which is zero. Hence we have the following lemma.

Lemma 3.1 Let $\mathcal{F}$ be a Riemannian foliation with finite energy on a com-
plete Riemannian manifold $(M, g_{M})$ with holonomy invareant metrec $g_{Q}$ on
Q. If $\Delta\pi\in L_{2}^{1}(Q)$ , then

$\frac{1}{2}||d_{\nabla}^{*}\pi||^{2}\leq\lim\sup\ll\Delta\pi,\omega_{\ell}^{2}\pi\gg\leq\frac{3}{2}||d_{\nabla}^{*}\pi||^{2}$ .

Proof. We know that $d_{\nabla}\pi=0([2])$ . Hence from (1.4) and (2.2), we have
$\ll\Delta\pi,$ $\omega_{\ell^{\pi\gg}B(2\ell)}^{2}$ $=$ $\ll d_{\nabla}^{*}\pi,$ $d_{\nabla}^{*}(\omega_{\ell}^{2}\pi)\gg B(2\ell)$

$=$ $\ll\omega d^{*}\pi,\omega_{\ell}d^{*}\pi\gg$

$-2\ll\omega_{\ell}d_{\nabla}^{*}\pi,$ $*(d\omega p\wedge*\pi)\gg B(2\ell)$ .

From (2.3), we get

$\frac{1}{2}||\omega_{\ell}d_{\nabla}^{*}\pi\Vert_{B(2\ell)}^{2}-\frac{8A}{\ell^{2}}||\pi||_{B(2\ell)}^{2}$
$\leq$ $\ll\Delta\pi,$ $\omega_{\ell^{\pi\gg}B(2\ell)}^{2}$

$\leq$ $\frac{3}{2}\Vert\omega_{\ell}d_{\nabla}^{*}\pi\Vert_{B(2\ell)}^{2}+\frac{8A}{p}\Vert\pi\Vert_{B(2\ell)}^{2}$ .

Since $\pi,$ $\Delta\pi\in L_{2}^{1}(Q),$ $ d_{\nabla}^{*}\pi$ is square-integrable. Hence we obtain the in-
equality by letting $\ell\rightarrow\infty$ .

Moreover, we have the following lemma from (1.6).
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Lemma 3.2 Let $\mathcal{F}$ be a Riemannian foliation on $(M, g_{M})$ with holonomy
invariant metric $g_{Q}$ on $Q$ ($g_{M}$ is not assumed to be bundle-like). Then for
any $\phi\in A^{r}(Q)$ , we have

$\ll\triangle\phi,$ $\omega^{2}\phi\gg$ $=$ $2\ll\omega_{\ell}\tilde{\nabla}\phi,$ $d\omega_{\ell}\wedge\emptyset\gg B(2\ell)+\Vert\omega_{\ell}\tilde{\nabla}\phi\Vert_{B(2\ell)}^{2}$

$+\ll S(\phi),$ $\omega_{\ell}^{2}\phi\gg B(2\ell)$

Proof. From (1.6), we have, at $x\in M$ ,

$<\triangle\phi,$ $\omega_{\ell}^{2}\phi>$ $=$ $-\sum<\tilde{\nabla}_{E_{\alpha}}\tilde{\nabla}_{E_{\alpha}}\phi,$ $\omega_{\ell}^{2}\phi>+<S(\phi),$ $\omega_{\ell}^{2}\phi>$

$=$ $-\sum E_{\alpha}<\tilde{\nabla}_{E_{\alpha}}\phi,$ $\omega_{\ell}^{2}\phi>+\sum<\tilde{\nabla}_{E_{\alpha}}\phi,\tilde{\nabla}_{E_{\alpha}}(\omega_{p}^{2}\phi)>$

$+<S(\phi),$ $\omega_{\ell}^{2}\phi>$

$=$ $-\sum E_{\alpha}<\tilde{\nabla}_{E_{\alpha}}\phi,$ $\omega_{\ell}^{2}\phi>+\sum<\tilde{\nabla}_{E_{\alpha}}\phi,$ $2\omega_{\ell}d\omega_{\ell}(E_{\alpha})\wedge\phi>$

$+|\omega_{\ell}\tilde{\nabla}\phi|^{2}+<S(\phi),$ $\omega_{\ell}^{2}\phi>$

$=$ $-div(\omega_{\ell}X_{\ell})+\sum<\tilde{\nabla}_{E_{\alpha}}\phi,$ $2\omega_{\ell}d\omega_{\ell}(E_{\alpha})\wedge\phi>+|\omega p\tilde{\nabla}\phi|^{2}$

$+<S(\phi),$ $\omega_{\ell}^{2}\phi>$ ,

where a vector field $X_{\ell}$ satisfies

$g_{M}(X_{\ell}, Y)=<\tilde{\nabla}_{Y}\phi,$ $\omega_{\ell}\phi>$

for any Y. The last line is proved as follows: at $x\in M$ ,

$div(\omega_{\ell}X_{\ell})$ $=$ $\sum g_{M}(\nabla_{E_{\alpha}}^{M}(\omega_{\ell}X_{\ell}), E_{\alpha})$

$=$ $\sum E_{\alpha}g_{M}(\omega_{\ell}X_{\ell}, E_{\alpha})=\sum E_{\alpha}<\tilde{\nabla}_{E_{\alpha}}\phi,$ $\omega_{\ell}^{2}\phi>$ .

By integrating and by the divergence theorem([l]), which is applicable to
Lipschitz continuous forms, we obtain our results.

From (2.4) and Lemma 3.2, we have

$\frac{1}{2}\Vert\omega p\tilde{\nabla}\phi\Vert_{B(2\ell)}^{2}$ $+$ $\ll S(\phi),$ $\omega_{p}^{2}\phi\gg B(2p)-\frac{8A}{\ell^{2}}\Vert\phi\Vert_{B(2p)}^{2}$

$\leq$ $\ll\Delta\phi,\omega_{\ell\emptyset\gg}^{2}B(2\ell)$

$\leq$ $\frac{3}{2}||\omega_{\ell}\tilde{\nabla}\phi\Vert_{B(2\ell)}^{2}+\ll S(\phi),$ $\omega_{p}^{2}\phi\gg B(2p)+\frac{8A}{\ell^{2}}\Vert\phi\Vert_{B(2\ell)}^{2}$ .

From the first inequality above, we have the following Proposition.
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Proposition 3.3 ([1]) Suppose $<S(\phi))\phi>\geq-C|\phi|^{2}$ for some constant
$C>0$ independent of $x\in M$ and every $\phi\in A^{r}(Q)$ . If $\phi$ and $\triangle\phi$ are in
$Lr(Q)$ , then $\tilde{\nabla}\phi$ is in $L_{2}$ .

Lemma 3.4 Suppose $<S(\phi),$ $\phi>\geq-C|\phi|^{2}$ for some constant $C>0$ in-
dependent of $x\in M$ and every $\phi\in A^{r}(Q)$ . If $\phi$ and $\triangle\phi$ are in $L_{2}^{*}(Q)$ ,
then

$\frac{1}{2}||\tilde{\nabla}\phi\Vert^{2}+S(\phi)\leq\lim\sup\ll\Delta\phi,\omega_{\ell}^{2}\phi\gg B(2p)\leq\frac{3}{2}||\tilde{\nabla}\phi||^{2}+S(\phi)$ ,

where $S(\phi)=\lim\sup\ll S(\phi),\omega_{\ell}^{2}\phi\gg B(2\ell)$ .

Hence if the foliation has finite energy (i.e., $\Vert\pi\Vert^{2}<\infty$) such that $\triangle\pi\in$

$L_{2}^{1}(Q)$ , then we have

$\frac{1}{2}||\tilde{\nabla}\pi\Vert^{2}+S(\pi)\leq\lim\sup\ll\Delta\pi,\omega_{\ell}^{2}\pi\gg B(2\ell)\leq\frac{3}{2}||\tilde{\nabla}\pi||^{2}+S(\pi)$ . (3.2)

IFlrom (3.2) and Lemma 3.1, we have the following Proposition.

Proposition 3.5 Let $\mathcal{F}$ be a Riemannian foliation with finite energy on a
complete Riemannian manifold. If $\Delta\pi\in L_{2}^{1}(Q)$ $and<S(\pi),$ $\pi>\geq-C|\pi|^{2}$

for some constant $C>0$ , then we have

$\frac{1}{2}||\tilde{\nabla}\pi||^{2}+S(\pi)\leq$ Sll $d_{\nabla}^{*}\pi\Vert^{2}$ ,

$\frac{1}{2}\Vert d_{\nabla}^{*}\pi||^{2}\leq\frac{3}{2}\Vert\tilde{\nabla}\pi\Vert^{2}+S(\pi)$ .

To analyze the sign of the term $S(\pi)$ , it is convenient to introduce the
self-adjoint operator $B_{\pi}$ : $TM\rightarrow TM$ ([2]) by

$g_{M}(B_{\pi}X, Y)=g_{Q}(\pi(X), \pi(Y))$ for $X,$ $Y\in TM$ . (3.3)

Clearly, $KerB_{\pi}=L,$ $ImB_{\pi}=\sigma Q\cong L^{\perp}$ . We further refine the choice of
local framings by requiring that the orthogonal basis $e_{1},$ $\cdots e_{n}$ of $T_{x}M$ also
diagonalize $B_{\pi}$ , i.e.,

$B_{\pi}(e_{i})=0(i=1, \cdots , p);B_{\pi}(e_{a})=\lambda_{a}e_{a}(a=p+1, \cdots n)$ , (3.4)
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where $\lambda_{a}>0$ , since $g_{Q}$ is positive definite. Clearly we have
$g_{Q}(\pi(e_{a}), \pi(e_{b}))=\lambda_{a}\delta_{ab}$ . (3.5)

Now, we consider the normal sectional curvature $K^{\nabla}(e_{a}, e_{b})$ in direction of
the normal 2-plane spanned by $e_{a},$ $e_{b}$ defined by

$K^{\nabla}(e_{a}, e_{b})=\frac{1}{\lambda_{a}\lambda_{b}}g_{Q}(R_{\pi(e_{a}),\pi(e_{b})}^{\nabla}\pi(e_{b}), \pi(e_{a}))$ , (3.6)

where $R_{X,Y}^{\nabla}=[\nabla_{X}, \nabla_{Y}]-\nabla_{[X,Y]}$ is the curvautre tensor on $Q$ . Note that
since $\nabla$ is a basic connection, $i(X)R^{\nabla}=0$ for $X\in\Gamma L([2])$ , hence $R_{\pi(e_{a}),-}^{\nabla}=$

$R_{e_{a},-}^{\nabla}$ . The transversal Ricci operator $\rho^{\nabla}$ : $Q\rightarrow Q$ and the transversal scalar
curvature $\sigma^{\nabla}$ are given respectively by

$\rho^{\nabla}(X)=\sum_{a}R_{X,e_{a}}^{\nabla}e_{a}$
, $\sigma^{\nabla}=Tr(\rho^{\nabla})$ . (3.7)

All these geometric quantities should be thought of as the corresponding
curvature properties of a Riemannian manifold serving as a model space for
$\mathcal{F}$ . Furthermore, we have

$g_{Q}(\pi(\rho^{\nabla^{M}}(e_{a})), \pi(e_{a}))=g_{M}((B_{\pi}\circ\rho^{\nabla^{M}})e_{a}, e_{a})$

$=g_{M}(\rho^{\nabla^{M}}(e_{a}), B_{\pi}e_{a})$ (3.8)
$=\lambda_{a}g_{M}(\rho^{\nabla^{M}}(e_{a}), e_{a})$ ,

where $\rho^{\nabla^{M}}$ is the Ricci operator of $\nabla^{M}$ given by $\rho^{\nabla^{M}}(X)=\sum R_{X,e_{\alpha}}^{M}e_{\alpha}$ .
From (1.7), we obtain

$<S(\pi),$
$\pi>x=-\sum_{a\neq b}\lambda_{a}\lambda_{b}K^{\nabla}(e_{a}, e_{b})+\sum_{a}\lambda_{a}g_{M}(\rho^{\nabla^{M}}(e_{a}), e_{a})$

. (3.9)

Thus non-negative Ricci curvature on $M$ and non-positive normal sectional
curvature $K^{\nabla}$ imply $<S(\pi),$ $\pi>\geq 0$ . From Proposition 3.5 and (3.9), we
obtain the following Theorem.

Theorem 3.6 Let $\mathcal{F}$ be a Riemannian foliation with finite energy on a
complete Riemannian manifold $(M, g_{M})$ with holonomy invariant metric $g_{Q}$

on $Q$ ($g_{M}$ is not assumed to be bundle-like). Assume that the Ricci curvature
$\rho^{M}$ on $M$ is non-negative and the normal sectional curvature $K^{\nabla}$ of $g_{Q}$ is
non-positive. Then

$d_{\nabla}^{*}\pi=0$ if and only if $\tilde{\nabla}\pi=0$ and $\lim\sup\ll S(\pi),$ $\omega_{p}^{2}\pi\gg=0$ .
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Note that for the normal bundle $Q$ of a foliation on $M$ the connection V’
on $Q$ defined by a Riemannian metric $g_{M}$ via (3.10) below need not be
metric with respect to $g_{Q}$ induced by $g_{M}$ . Thus we say that $\phi\in A^{r}(M, Q)$

is harmonic if $d_{\nabla}\phi=0$ and $d_{\nabla}^{*}\phi=0$ . In case $\nabla$ is metric, this condition is
equivalent to $\triangle\phi=0$ for $\phi$ with $\phi,$ $\triangle\phi\in L_{2}^{*}(Q)$ .

The condition $\tilde{\nabla}\pi=0$ implies that

$(\tilde{\nabla}\pi)(X, Y)=(\tilde{\nabla}_{X}\pi)(Y)=\nabla_{X}\pi(Y)-\pi(\nabla_{X}^{M}Y)=0$ .

In particular, for $X,$ $Y\in\Gamma L,$ $\nabla_{X}^{M}Y\in\Gamma L$ . This means that each leaf $\mathcal{L}$ is a
totally geodesic submanifold of $M$ . Hence we have the following Corollary.

Corollary 3.7 Let $\mathcal{F}$ be a Riemannian foliation satisfying the conditions
$in$ Theorem 3.6.

(1) If $\pi$ is a harmonic form, then each leaf is a totally geodesic subman-
ifold of $M$ .

(2) If there exists some point $x\in B(2\ell)$ such $that<S(\pi),$ $\omega_{p}^{2}\pi>_{x}\neq 0$ ,
then $\pi$ is not a harmonic form.

If the codimension of $\mathcal{F}$ is one, then the normal sectional curvature $K_{\nabla}$

is zero. Hence Corollary 3.7 holds under the assumption that the Ricci
curvature of $g_{M}$ is non-negative.

Now we discuss the bundle-like metric case([2]), i.e., $g_{Q}$ can be assumed
to be induced by $g_{M}$ as

$g_{Q}(s, t)=g_{M}(\sigma(s), \sigma(t))$

for any $s,$ $t\in\Gamma Q$ . The projection $\pi$ : $TM\rightarrow Q$ is then an orthogonal
projection. The particular connection V’ in $Q$ defined by

$\left\{\begin{array}{ll}\nabla_{X}^{\prime}s=\pi([X, \sigma(s)]) & for X\in\Gamma L\\\nabla_{X}^{\prime}s=\pi(\nabla_{X}^{M}\sigma(s)) & for X\in\Gamma L^{\perp}\end{array}\right.$ (3.10)

is then the unique metric and torsion-free connection with respect to $g_{Q}$ .
The harmonicity of $\pi$ , i.e., the condition $d_{\nabla}^{*},\pi=0(since$ we already have
$d_{\nabla^{\prime}}\pi=0)$ , is then equivalent to the property that all leaves of $\mathcal{F}$ are minimal
submanifolds of $(M, g_{M})$ ([2]). Noting that $(\tilde{\nabla}_{X}\pi)(X)=0$ for any $X\in\Gamma Q$ ,
we see that $\tau=d_{\nabla}^{*},\pi$ . Then $\mathcal{F}$ is harmonic if and only if $\tau=0$ (see Appendix
or [2]).
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The operator $B_{\pi}$ : $TM\rightarrow TM$ defined by (3.3) is the map $\sigma\circ\pi$ and the
non-zero eigenvalues $\lambda_{a}$ equal 1. Then we have

$<S\pi,$
$\pi>x=-\sigma^{\nabla^{\prime}}+\sum_{a}<\rho^{\nabla^{M}}(e_{a}),$

$e_{a}>$

where $\sigma^{\nabla^{\prime}}$ is the transversal scalar curvature of $Q$ . Hence from Theorem
3.6, we have the following Corollary.

Corollary 3.8 Let $\mathcal{F}$ be a Riemannian foliation with finite energy on $M$

with a complete bundle-like metric $g_{M}$ . Assume that the Ricci curvature $\rho^{M}$

on $M$ is non-negative and the tmnsversal scalar curvature is non-positive.
If $\mathcal{F}$ is harmonic, then $\mathcal{F}$ is totally geodesic.

Appendix

Let $\mathcal{F}$ be a foliation on a Riemannian manifold $(M, g_{M})$ with bundle-like
metric $g_{M}$ . The Q-valued symmetric bilinear form $\alpha=-\tilde{\nabla}\pi$ restricted to
any leaf $\mathcal{L}\subset M$ of $\mathcal{F}$ is then the second fundamental form of the Riemannian
submanifold $\mathcal{L}\subset M$ . By [2], the tension $\tau=Tr\alpha$ of $\mathcal{F}$ is evaluated at $x\in M$

by

$\tau_{x}=Tr\alpha=\sum_{\beta}\alpha(e_{\beta}, e_{\beta})=\sum_{i}\alpha(e_{i}, e_{i})\in Q_{x}$
.

It is immediate that $\tau=d_{\nabla}^{*},\pi$ , and $\mathcal{F}$ is harmonic iff $\tau=0([2])$ .
This tension field $\tau$ plays an important role in studying a foliated Rie-

mannian manifold. When a foliation is minimal, i.e., $\tau=0$ , many results
are similar to those in an ordinary manifold. So an apparent weakening of
the condition of the vanishing tension field would be to require $\nabla^{\prime}\tau=0$ .
But the V’-parallel condition of $\tau$ is meaningless on a compact manifold
because $\nabla^{\prime}\tau=0$ implies $\tau=0([2])$ . On a complete Riemannian manifold,
we obtain the following result which is similar to the one in [2].

Theorem A. Let $\mathcal{F}$ be a Riemannian foliation with finite energy on $M$ with
a complete bundle-like metric $g_{M}$ . Then we have

$\nabla^{\prime}\tau=0\Rightarrow\tau=0$ .
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Proof. For a O-form $\tau\in A^{0}(Q)$ , we have by definition $ d_{\nabla}/\tau=\nabla^{\prime}\tau$ . Since
$d_{\nabla^{\prime}}\pi=0$ , we have

$\triangle\pi=d_{\nabla^{\prime}}d_{\nabla^{\prime}}^{*}\pi=d_{\nabla^{\prime}}\tau=\nabla^{\prime}\tau$ .

This implies that if $\nabla^{\prime}\tau=0$ , then $\triangle\pi=0$ . From the first inequality in
Lemma 3.4, we obtain $\tau=d_{\nabla}^{*},\pi=0$ . $\square $
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