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Harmonic Foliations on a Complete Riemannian
Manifold

S.D. Jung, T.H. Kang, B.H. Kim, H.K. Pak and J.S. Pak

Abstract. Let F be a Riemannian foliation with finite energy on a
manifold (M, gp) with a complete bundle-like metric gps. Assume that
the Ricci curvature is non-negative and the transversal scalar curvature is
non-positive. If F is harmonic, then F is totally geodesic.

0 Introduction

A foliation F on a manifold M is harmonic, if the canonical projection
m: TM — @Q of the tangent bundle to the normal bundle @ = TM/L is
a harmonic @-valued 1-form ([2,3]). For this one needs the connection V'
defined by (3.10) in @, and a Riemannian metric g, in M.

A rich variety of harmonic foliations were discussed in [2]. It is well-
known that F is harmonic if and only if all leaves of F are minimal sub-
manifolds of M ([2]).

On the other hand, if F is Riemannian, i.e., if there exists a holonomy in-
variant metric gg on @, there is a unique metric and torsion-free connection
Vin Q ([2]).

In 1984, F.W.Kamber and Ph.Tondeur([3]) studied the interplay of the
- harmonicity property with the curvature of the Riemannian metric g»s and
the curvature of the connection V, which is metric and trosion-free with
respect to the holonomy invariant metric go on Q. Namely, let F be a
Riemannian foliation on a closed oriented manifold M. Let gas be a Rie-
mannian metric on M with non-negative Ricci curvature and assume the
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normal sectional curvature Ky of gg to be non-positive. If 7 is a harmonic
form, then each leaf is a totally geodesic submanifold of M.

In this paper, we extend several results of Kamber and Tondeur([3]) to
the case of complete manifolds.

The paper is organized as follows. In section 1, we review the known
facts on a vector bundle. In section 2, we study the cut off functions, which is
main tools for our research in complete manifolds. In section 3, we give some
results when F is a Riemannian foliation on a complete manifold (M, g,s)
with holonomy invariant metric go (gar is not assumed to be bundle-like).
With respect to V, ”n : TM — @ is harmonic” does not mean that F is
harmonic, i.e., all leaves of F are minimal submanifolds of (M, gps). On the
other hand, if g)s is a bundle-like metric and the holonomy invariant metric
9q is induced from gy, then the unique metric and torsion-free connection
V is given by (3.10), and then ”7 is harmonic” means that F is harmonic.

On the other hand, the tension field 7 plays an important role in studying
a foliation on a Riemannian manifold with bundle-like metric. When a
foliation is minimal, i.e., 7 = 0, many results are obtained. An apparent
weakening of the condition of the vanishing tension field 7 € I'Q would
be to require V7 = 0. But this parallel condition of 7 is meaningless
because V7 = 0 implies 7 = 0 on a compact manifold([2]). In appendix, we
prove that the parallel condition V7 = 0 is also meaningless on complete
manifolds.

The main tools we use are the Weitzenbock formulas and cut off func-
tions.

1 Preliminaries

We review some basic facts on a vector bundle ([4]). Let E — M be a
smooth Riemannian vector bundle over a Riemannian manifold M, i.e., E
is a vector bundle over M and there is a C*°-assignment of an inner product
< +,- > to each fiber E; of E over x € M. Let A"(E) be the space of E-
valued r-forms over M. We assume a (metric) connection V is given in F,
ie., V:A%E) — AY(E) is an R -linear map such that V(fs) = fVs+ sdf,
f € A°(M), s € I'(E) and such that

X < 81,8 >=< Vxs81,89 >+ < 51,Vxsy > (1.1)
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for any X € TM and s;, s, € A°(F). By the usual algebraic formalism,
V : A%(E) — AY(E) can be extended to an anti-derivation

dy: A"(E) —» A™Y(E)
by the following rule: if Y _s,n7* € A"(FE), then
dv(san®) = Vsa An® + sa(dn®) (1.2)
for s, € I'(F), n* € A"(M). For a Riemannian matric g on M, we extend
the star operator * : A"(M) — A" "(M)(n = dimM) to *x : A"(E) —
A"T(E) as follows: If s € I'(F) and n € A"(E), then *(sn) = s(*n).
Moreover the operator d, : A™(E) — A™"1(FE) given by
dy¢ = (1" xdy x ¢, ¢ € A(E) (1.3)

is the formal adjoint of dy with respect to a suitable inner product induced
from <, > and gp. The Laplacian A for A*(FE) is given by

A = dydy + dbdy. (1.4)
Let €1, -+, e, be an orthonormal basis of T,M and E,,--- , E, a local
framing of T'M in a neighborhood of z, coinciding with e,,--- ,e, at z and

satisfying VM Eg = (V¥ Eg); = 0(a, 3= 1,--- ,n), where V™ denotes the
Riemannian connection of (M, gpr). Let w® be the dual coframe field of e,.
Then on A*(E) we have

dy =) w*AVe,, dy=- i(ea)Ve,, (1.5)
where Vx(sn) = (Vxs)n + s(V¥n) and i(X)(sn) = s[i(X)n] for s €

['(E), n € A*(M). From these, we obtain the following Weitzenbock for-
mula: for any ¢ € A}(E),

Ap=-> Ve Ve, ¢+ 5(8)s, (1.6)

where S(¢),(X) is defined by

S(¢)=(X) = Z{RE(ea,X)¢(ea) - ¢(RM(60’X)ea)}- (1.7)
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Here RE denotes the curvature of the connection V in F and R the cur-
vature of the Riemannian connection V™ in TM. Formula (1.6) yields then
the following ”scalar” Weizenbock formula

.__;_AM|¢|2 = |Vo|*~ < Ap, ¢ > + < S(9), ¢ >, (1.8)

where AM is the ordinary Laplacian d*d on functions on M and |¢|? =<
@,¢ > is given by |@]2 = > < é(eq), #(ea) > . The first term on the right
hand side of (1.8) is given by

Vo2 =D < Vet Ve, >.
Now we define the global scalar product < -,- > by

<ov>=[ <4v> forove(E) (1.9)
M

Let AJ(E) be the subspace of A"(E) with compact supports and L5(E) the
completion of AJ(E) with respect to the global scalar product <, >>. Then
we have

Ldvo, Y >=<L¢,dgtp >
for any ¢ € A}(E) and ¥ € At (E).

2 Cut off functions

Let zo be a point of M and fix it. For each point y € M, we denote by
p(y) the geodesic distance from x4 to y. Let B(£) = {y € M | p(y) < £} for
£ > 0. Then there exists a Lipschitz continuous function w, on M satisfying
the following properties:

0<wi(y) <1 foranyyeM,

supp wy C B(2¢),

we(y) =1 for any y € B(¥),

lim We = 1,
£—o00

(2.1)

C
|dws| < 7 almost everywhere on M,

where C(> 0) is a constant independent of £([1]). Then we have
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Lemma 2.1 ([1]) For any ¢ € A"(E), there exists a positive constant A
independent of £ such that

A
lldwe A DIl < Z§|l¢||23(2z),
A
|dwe A %l B(ae < €_2“¢”2B(2£)a
where ”¢H2B(2e) = fB(ze) < ¢, %>

Now, we remark that, for ¢ € Li(E) N A"(FE), wep has compact support
and wep — ¢(¢ — o0) in the strong sense. From (1.2) and (1.3), we have

dy (w?qb) = wgdv¢ + 2wedwy N @,

0% (w79) = widy — x(2wrdwe A ) (2:2)

for any ¢ € A"(E). By using the inequality | < a,b > | < 1|a|? + t|b]? for
any positive real number ¢, we have

% 1 %*
| < wedy @, *(dwe A %8) >y | < < llwedy dllB e + 4ll * (dwe A )| B2e-

From Lemma 2.1, we have

, 1. 14 |
| € wedy @, *(dwe A *¢) >pay | < < llwede Bl ae) + 72"||¢||2B(2e)- (2.3)

Similarly we have

- 1 ~ 4A
| K weV,dwe A >>pary | < S |lweVPllpae + £—2||¢||23(2e)- (2.4)

3 Harmonicity of foliations

Let L C T'M be an integrable subbundle defining a foliation F and Q =
TM/L the normal bundle of . Since F is Riemannian, there exist a
holonomy invariant metric go on @ and a unique metric and torsion free
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connection V in @([2]). A Riemannian metric g); on M defines a splitting
o of the exact sequence

0— L —TM_Q —0, (3.1)

where o(Q) is the orthogonal complement Lt of L in TM. The induced
connection V on Q-valued forms involve V and VM. Let {E,}a=1... n be an
orthonormal framing with respect to g)s such thate; € L, i =1,--- ,p and
€a €0Qz, a=p+1,---,n=p+qwith V¥E; = 0. But we neither claim
nor require that (E;), € Ly for1<i<por (E,), €oQyforp+1<a<n
at points y # z. We do have (7E;), = me; = 0. In the case where g, is a
bundle-like metric, the vectors (wE,), = me, form an orthonormal basis of

Q:([3])-

Consider the canonical projection 7 : TM — @ as a Q—valued 1-form,
i.e., m € AY(Q). Then it is well known that dy7 = 0([2]), since dy7 equals
the torsion Ty given by

Ty(X,Y)=Vx7n(Y) — Vyn(X) — n[X, Y]
which is zero. Hence we have the following lemma.

Lemma 3.1 Let F be a Riemannian foliation with finite energy on a com-

plete Riemannian manifold (M, gar) with holonomy invariant metric gg on
Q. If Am € LY(Q), then

1
S lldiml? < limsup < Am,wir >< %Ild*vﬂ'llz.
Proof. We know that dym = 0([2]). Hence from (1.4) and (2.2), we have
< Am,wiT >py = <Ldy, dy (wiT) > B(2¢)
= KL wedyT,wedyT >>p(20)
-2 K wgd*vﬂ', *(dw€ A *7!‘) >B(2¢) -

From (2.3), we get

1 . 8A
§||wedv7f||23(2e) - 7{”””23(2[) < K AW,%?W >>B(2¢)

3, . 8A
< §||wtdv7f||%(2e) + ‘53‘“7?”%(24)-

Since 7, Ar € L1(Q), dyn is square-integrable. Hence we obtain the in-
equality by letting £ — oo. O
Moreover, we have the following lemma from (1.6).

— 922 —



Lemma 3.2 Let F be a Riemannian foliation on (M, gar) with holonomy

invariant metric gg on Q (gar is not assumed to be bundle-like). Then for
any ¢ € A™(Q), we have

K Ap, Wi >pan = 2 <K< wVe,dwy A d>pae +|lweVellhee
+ < S(¢), Wi >pp -
Proof. From (1.6), we have, at z € M,

<Apwip> = =Y <VgVgpo,wid>+<S(¢),wid >
= =) Ea<Vg¢,wj¢>+)> <Vré Vg, (wi¢) >
+ < S(@),wid >
= = EBa<Vp0$,widp>+Y < Vg, 2wdwe(Ea) A >
+weVolP+ < S(9), wie >
= —div(weXe) + D | < Vi, 0, 2wdwe(Es) A ¢ > +|w V|2
+ < S(¢), wio >,
where a vector field X, satisfies
am(Xe,Y) =< Vy o, wed >
for any Y. The last line is proved as follows: at x € M,
div(weXe) = D gu(VY (weXy), Ea)
= Y Eogu(weXe,Ba) =Y Ea < Vg, ¢,wje > .

By integrating and by the divergence theorem([1]), which is applicable to

Lipschitz continuous forms, we obtain our results. O

From (2.4) and Lemma 3.2, we have

1 ~ 8A
§||weV¢||23(2z) + < 5(¢),wid >pey — 72‘||¢||23(2e)
K Ad,wpd > p(20)

3 ~ 84
< §||w3V¢||23(2e)+ <K S(¢),w;d >B2e) +“[2‘”¢||23(2e)-

IA

From the first inequality above, we have the following Proposition.
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Proposition 3.3 ([1]) Suppose < S(¢),¢ >> —C|@|? for some constant
C > 0 independent of x € M and every ¢ € A™(Q). If ¢ and A¢ are in
L3(Q), then V¢ is in L,.

Lemma 3.4 Suppose < S(¢),d >> —C|¢|? for some constant C > 0 in-
dependent of t € M and every ¢ € A™(Q). If ¢ and A¢ are in L3(Q),
then

1, e . S
§||V¢||2 + S(¢) < limsup < A¢,wid >pen< §||V<f’||2 + S(9),

where S(¢) = limsup < S(@), w;¢ >p(2e) -

Hence if the foliation has finite energy (i.e., ||7]|? < oo) such that Axr €
L1(Q), then we have

1 = . 3,
§||V7r||2 + S(m) < limsup < AT, wpm >p2n< §||V7r||2 + S(m).  (3.2)

From (3.2) and Lemma 3.1, we have the following Proposition.

Proposition 3.5 Let F be a Riemannian foliation with finite energy on a
complete Riemannian manifold. If Ar € L}(Q) and < S(w),m >> —C|r|?
for some constant C' > 0, then we have

1, 3. .
sIVrl® +S(m) < Slldor?,
1, .. 3 -

slldonll® < SVl + S(r).

To analyze the sign of the term S(w), it is convenient to introduce the
self-adjoint operator B, : TM — TM ([2]) by

g (B X,Y) = go(n(X),n(Y)) for X, Y e TM. (3.3)

Clearly, KerB, = L, ImB, = 0Q = L+. We further refine the choice of
local framings by requiring that the orthogonal basis e;,- - , e, of T, M also
diagonalize By, i.e.,

Br(e;)=0(i=1,---,p); Br(es) =Xe€a (a=p+1,---,n), (3.4)
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where A\, > 0, since gq is positive definite. Clearly we have

gQ(W(ea)’ 7r(eb)) = AaOab- (35)

Now, we consider the normal sectional curvature KV (e,,e;) in direction of
the normal 2-plane spanned by e,, e, defined by

1
K (eq, ) = X—/\_ng(RX(ea),w(eb)w(eb)? (€a)), (3.6)

where RY y = [Vx,Vy] — V[xy] is the curvautre tensor on Q. Note that
since V is a basic connection, :(X)RY = 0 for X € I'L([2]), hence RY, =

W(ea)’_
RY _. The transversal Ricci operator p¥ : @ — @ and the transversal scalar

curvature oV are given respectively by
pY(X) = Z RX .. € oY =Tr(p"). (3.7)
a

All these geometric quantities should be thought of as the corresponding
curvature properties of a Riemannian manifold serving as a model space for
F. Furthermore, we have

9a(m(p”" (€a)), T (€a)) =ga((Bx 0 p¥" )ea, €a)
=9M(PVM (€a), Brea) (3.8)
=)\agM (pVM (ea)a ea)a

where p¥" is the Ricci operator of V™ given by pV" (X) = > R¥, éa-
From (1.7), we obtain

<S(m), T >a= =Y MKV (ea,€5) + O Aagu(p¥" (€a),€a).  (3.9)
a#b a

Thus non-negative Ricci curvature on M and non-positive normal sectional
curvature KV imply < S(w),m >> 0. From Proposition 3.5 and (3.9), we
obtain the following Theorem.

Theorem 3.6 Let F be a Riemannian foliation with finite energy on a
complete Riemannian manifold (M, gar) with holonomy invariant metric gg
on Q (gar is not assumed to be bundle-like). Assume that the Ricci curvature
p™ on M is non-negative and the normal sectional curvature KV of gg 18

non-positive. Then

L1 = 0 if and only if Vr = 0 and limsup < S(n),win >=0.
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Note that for the normal bundle @ of a foliation on M the connection V'
on @ defined by a Riemannian metric gy via (3.10) below need not be
metric with respect to gg induced by gar. Thus we say that ¢ € A™(M, Q)
is harmonic if dy¢ = 0 and dy,¢ = 0. In case V is metric, this condition is
equivalent to A¢ = 0 for ¢ with ¢, A¢ € L3(Q).

The condition V7 = 0 implies that

(Va)(X,Y) = (Vx7)(Y) = Vxn(Y) — n(V¥Y) = 0.

In particular, for X,Y € TL, V¥Y € I'L. This means that each leaf £ is a
totally geodesic submanifold of M. Hence we have the following Corollary.

Corollary 3.7 Let F be a Riemannian foliation satisfying the conditions
in Theorem 3.6.

(1) If m is a harmonic form, then each leaf is a totally geodesic subman-
ifold of M.

(2) If there exists some point x € B(2f) such that < S(r),w?w >,;# 0,
then 7 is not a harmonic form.

If the codimension of F is one, then the normal sectional curvature Ky
is zero. Hence Corollary 3.7 holds under the assumption that the Ricci
curvature of g)s is non-negative.

Now we discuss the bundle-like metric case([2]), i.e., go can be assumed
to be induced by g as

90(37 t) = gm(o(s),o(t))

for any s, t € I'Q. The projection 7 : TM — @ is then an orthogonal
projection. The particular connection V'’ in Q) defined by

3.10
Vs =n(V¥o(s)) for X e "Lt (3.10)

{V’Xs =([X,0(s)]) for X € T'L
is then the unique metric and torsion-free connection with respect to gg.
The harmonicity of =, i.e., the condition dy,,m = O(since we already have
dg'm = 0), is then equivalent to the property that all leaves of F are minimal
submanifolds of (M, ga) ([2]). Noting that (Vx7)(X) = 0 for any X € I'Q,
we see that 7 = dy 7. Then F is harmonic if and only if 7 = 0 (see Appendix
or [2]).
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The operator B, : TM — T M defined by (3.3) is the map o o7 and the
non-zero eigenvalues A\, equal 1. Then we have

< ST, T >p= oV + Z < pVM(ea)vea >
a

7.
where oV is the transversal scalar curvature of Q. Hence from Theorem

3.6, we have the following Corollary.

Corollary 3.8 Let F be a Riemannian foliation with finite energy on M

with a complete bundle-like metric gpr. Assume that the Ricci curvature p™
on M is non-negative and the transversal scalar curvature is non-positive.
If F is harmonic, then F is totally geodesic.

Appendix

Let F be a foliation on a Riemannian manifold (M, gps) with bundle-like
metric gpr. The Q-valued symmetric bilinear form o = —Vr restricted to
any leaf £ C M of F is then the second fundamental form of the Riemannian
submanifold £ C M. By [2], the tension 7 = Tra of F is evaluated at x € M

by
. =Tra= Z a(eg, ep) = Za(ei, e) € Q.
B i
It is immediate that 7 = d¢, 7, and F is harmonic iff 7 = 0([2]).

This tension field 7 plays an important role in studying a foliated Rie-
mannian manifold. When a foliation is minimal, i.e., 7 = 0, many results
are similar to those in an ordinary manifold. So an apparent weakening of
the condition of the vanishing tension field would be to require V'7 = 0.
But the V’-parallel condition of 7 is meaningless on a compact manifold
because V't = 0 implies 7 = 0([2]). On a complete Riemannian manifold,
we obtain the following result which is similar to the one in [2].

Theorem A. Let F be a Riemannian foliation with finite energy on M with
a complete bundle-like metric g)r. Then we have

Vir=0=r1=0.
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Proof. For a 0-form 7 € A°%(Q), we have by definition dy»7 = V'7. Since
dvnr = 0, we have

Am = dv’d*VITr = dvlT = V'T.
This implies that if V/7 = 0, then A7m = 0. From the first inequality in
Lemma 3.4, we obtain 7 = dg,m = 0. O
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