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STRUCTURE OF GROUP C*-ALGEBRAS OF
SEMI-DIRECT PRODUCTS OF C* BY Z

TAKAHIRO SUDO

ABSTRACT. We consider the structure of group C*-algebras of semi-direct products of C*
by Z. As an application we estimate the stable rank and connected stable rank of these
C*-algebras, and treat the case of semi-direct products of R® by Z similarly.

§0. INTRODUCTION

Group C*-algebras have played important roles in the progress of the theory of C*-
algebras. In particular, their structure for Lie groups has been investigated (cf.[Dx],
[Rs], [Gr1,2], [Pg], [Wg], etc). On the other hand, the stable rank for C*-algebras
was introduced by M.A. Rieffel [Rfl] as a noncommutative analogue of the covering
dimension for topological spaces, and he raised an interesting problem such as describing
the stable rank of group C*-algebras of Lie groups in terms of groups. On this problem
some partial answers were obtained by [Sh],[ST1,2] and [Sd1-4]. In particular, in [Sd4]
the author investigated the structure of group C*-algebras of Lie semi-direct products
of C* by R, and estimated their stable rank and connected stable rank.

In this paper we obtain finite composition series of group C*-algebras of the semi-
direct products of C* by Z, by analyzing their subquotients explicitly using some meth-
ods of [Sd4] similarly. Using this result we give the rank estimations of these group
C*-algebras, and especially that of semi-direct products of R* by Z. These are dis-
connected solvable (Lie) groups, and contain the discrete Mautner group studied by L.
Baggett [Bg] to construct some unitary representations of the Mautner group through
Mackey machine. We emphasize that this paper will be the first step to explore the
algebraic structure of C*-algebras of general disconnected solvable Lie groups.

We now prepare some notations. Let C*(G) be the (full) group C*-algebra of a
locally compact group G (cf.[Dx, Part II],[Pd, Chapter 7]). We denote by G; the
space of all 1-dimensional representations of G. Let Co(X) be the C*-algebra of all
complex valued continuous functions on a locally compact Hausdorff space X vanishing
at infinity. When X is compact, we set Co(X) = C(X). Let K be the C*-algebra of all
compact operators on a countably infinite dimensional Hilbert space. For a C*-algebra
2, we denote by sr(2), csr(2) its stable rank, connected stable rank respectively ([Rf1]).
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By definition, sr(2),csr(A) € {1,2,---,00}. We review some formulas of these stable
ranks used later as follows:
(F1): For an exact sequence of C*-algebras: 0 - J — 2A — %A/J — 0, we have that

sr(J) Vsr(A/J) < sr(A) < sr(J) Vsr(A/T) Vcsr(A/T), csr(A) < csr(T) V csr(A/T),

where V is the maximum (See [Rfl, Theorem 4.3, 4.4 and 4.11}, [Sh, Theorem 3.9]).
(F2): By [Rfl, Proposition 1.7] and [Nsl], for X a locally compact Hausdorff space,

st(Co(X)) = [dimX*/2] +1, csr(Co(X)) <[(dimX* +1)/2]+1

where X+ means the one-point compactification of X, dim X is the covering dimension
of X*, and [z] means the maximum integer < . We set dim¢ X = [dim X/2] + 1.

(F3): For the n x n matrix algebra M,(2A) over a C*-algebra 2, by [Rfl, Theorem
6.1) and [Rf2, Theorem 4.7],

st(Mn(2)) = {(sr(™) — 1)/n} +1, csr(Mp(2)) < {(csr(2A) —1)/n} +1 .

where {z} means the least integer > z.
(F4): For a C*-algebra 2,

sr(AQ®K) =sr(A) A2, csr(ARK) < csr(A) A2
where A is the minimum. See [Rfl, Theorem 3.6 and 6.4], ([Sh, Theorem 3.10], [Ns1]).

§1. GROUP C*-ALGEBRAS OF SEMI-DIRECT PRODUCTS OF C* BY Z

Let G = C" %4 Z be a semi-direct product with a an automorphic action of Z on C*,
in other words, oy € GL,,(C) for t € Z. By definition of C*-crossed products (cf.[Pd,
Chapter 7]) and using the Fourier transform, we have the isomorphisms:

C*(G) = C*(C*) xa Z = Co(C*) xa Z

where & is defined by the equation of the inner product: (a:(z)|lw) = (z|&:(w)) for
z,w € C*, t € Z. Since the origin 0,, of C* is &-invariant, we have the following exact
sequence:

0— Co(C" \{On}) Xag L — Co(C") Xg L — C'(Z) —0

because C*(Z) = C(T) by the Fourier transform.
For the sake of convenience, we consider the following example:

Example 1.1. If G = Cx, Z, then for some w € C\ {0}, &(z) = w'z for z € C,t € Z.
If w =1, then C*(G) = Co(Cx T). When w ¢ T, by Green’s result [Grl, Corollary 15],

Co(C\{0}) xZ=C((C\{0})/Z)® K = C(T?*) ® K.
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If w=e?* € T\ {1}, then Cy(C\ {0}) X4 Z = Co(R) ® (C(T) x4 Z), where C(T) x4 Z
is the rotation algebra C(T) xg Z by the angle 278 (cf.[AP], [EE]).
We now investigate general cases in the following. Taking a suitable basis of C* for

the Jordan decomposition of 3, and assuming it as a canonical basis of C*, we may
assume that a; is equal to the diagonal sum as follows: for §; € C (1 < j <),

Bk 0
Bi 0 L
a; = | @7, - ® | Bhmmt1 '
0 ' ) i
i 0 1 B

on the direct sum decomposition C* = (@7,C%) & (@)= s1C™ ). Then for t € Z, we
have that

_ at t_t—l
ﬂ; O ﬂk 'B'k
&= | om, ® | Okomit S
. .
0 B . écltc

Note that there exists a quotient map from C*(G) to Co(C? x T) for some 0 < g < n,
where C? x T is homeomorphic to G;, and C? is homeomorphic to the subspace of C*
fixed under &. If some B; or B are 1, then g > 1. By (F1) and (F2), we obtain that

st(C*(G)) > sr(Co(G4) = dime Gy,
cst(Co(Gh)) < [(dim Gy +1)/2] + 1 = dime Gy + 1.

We consider the restrictions of & to the G-invariant subspaces

C* & (&7,(C\ {0})™) @ (@hormsa (C™ \ {0n; }))
for0<m'<m,0<n}<nj,m+1<UV <! and0 < nj < ng, where C* means the

direct sum of C"% for 1 < j < m such that §; = 1. Moreover, we need to consider the
following decomposition: for m+1 < k < I’,

C™% \ {0n,} = ((C\ {0}) x {0, _1}) U (C x (C* "1\ {0, 1}))

In addition, we decompose C~1\ {0n; 1} into the disjoint union of the &-invariant
subspaces Cik =1 x (C \ {0}) x {0 —1-j1 } (1 < G, < np). We let

X, = @ (&7, (C\ (0D @ (Shepii¥e)
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an & invariant subspace obtained as above, where

v { (C\{0}) x {0n;_1} or
k= "
G2 x (C\ {0]) x {Ong-1osg )
If B = 1 for some m + 1 < k < I, the subspace (C \ {0}) x {0, -1} is fixed under 4.
Thus in this case we assume that Y = C7:~! x (C\ {0}) x {0n; _1_j; } for some jj, in

what follows.
We now note that

B; 0 21 B;'zl

0 B_: z"; Bj Zn;

for (21,--- ,2n;) € (C\ {0})™, and

%k
B g , ( usl \ ( f \
A ' Biws, -1 + B wjy
Yii | = Btw;
7 0 T
0 B : :
\o/ | ; )

for (wy,---,w;,0,---,0) € Cix—1 x (C\ {0}) x {0n; —1—j; }. By direct calculation, the
action & on X, is one of the following three cases (cf.[Sd4]):

Free and wandering case
Free and nonwandering case
Nonfree case

where the first case is that §; or Bx ¢ T for some j, k, or j/ > 2 for some j', the
second one is that all B;, B € T and one of them is an irrational number in R (mod 2r)
identified with T, and the third one is that all 3;, B are rational numbers. We consider
the crossed product Cy(X,) % Z in each case.

If the action of Z on X, is free and wandering, we have by [Gr1, Corollary 15] that

Co(X,) XZ = Co(X,/Z) ® K
We note that X, contains an G-invariant closed subspace which is a copy of C \ {0},

and its orbit space by & is homeomorphic to T2. Hence we have sr(Co(X,/Z)) > 2.
Therefore, sr(Co(X,/Z) @ K) = 2.
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We next consider the free and nonwandering case. Then

X, =€ & (@,(C\ {0D)™) @ (@41 ((C\ {0}) x {0n, 1))

where the restriction of & to each direct factor C\ {0} of X is a rotation, and one of
these restrictions is an irrational rotation. Thus we have that for some u; > 1,

Co(X,) X Z = Co(C% x R*) ® (C(T**) x Z).

Moreover, by [EL2] (cf.[EE]), C(T**) % Z is an inductive limit of finite direct sums of

matrix algebras over C(T) with their matrix sizes going to infinity. Therefore, by (F3)

and [Rfl, Theorem 5.1], we obtain that sr(Cp(X,) % Z) < 2 and csr(Co(X,) % Z) < 2.
If u; > 2, then we have a quotient as follows:

Co(X,) x Z — C([0,1]*) ® (C(T**) % Z) — 0.

By [NOP, Proposition 5.3], we obtain that sr(Co(X,) % Z) > sr(C([0, 1?) ® (C(T**) %
zZ)) > 2.

If u, = 1, we suppose that sr(Co(X;) ¥ Z) = 1. Then sr(C([0,1]) ® (C(T) x Z)) = 1.
Then the K;-group of C([0,1]) ® (C(T) x Z) must be trivial by [NOP, Proposition 5.2].
However, this is impossible since the K-groups of C(T) x Z are Z? so that the K;-group
of C([0,1]) ® (C(T) x Z) is also Z? by Kiinneth formula (cf.[Wo, 9.3.3]). Therefore,
sr(Co(X,) ¥ Z) > 2.

Finally, we consider the nonfree case. Then

X, = 0 & (OF1(C\ {01)") @ (S +1((€\ {0}) x {0 —1})
where the restriction of & to each direct factor C\ {0} of X, is a rational rotation. Then
Co(X,) X Z = Co(R?9*%) @ (C(T**) x Z)
for some u, > 1. Moreover, we have that for a p > 2,
0 — Co(R) ® (C(T*) xZp) = C(T*) X Z — C(T*) xZp — 0

with C(T%+) % Z,, a homogeneous C*—algebré (cf.[EL1], [Dv, VIIL9] for some cases with
C(T%) x Z, = M,(C(T**))). By (F1), (F2) and (F3),
2 < sr(Mp(Co(R?H4:+1 5 T ))) = {[(2(g0 + us) +1)/2)/p} +1 <
st(Co(X,) X Z) < st(My(Co(R290+4:+1 x T¥#))) V csr(Mp(Co(R*° 4+ x T**)))

< {[(2(g0 + us) + 1)/2]/p} + 1 = {(g0 + us)/pP} + 1,
cst(Co(X,) % Z) < csr(Mp(Co(R29H¢a+1 x T4 ))) V esr(Mp(Co(R?° 4+ x T**)))

< {[(2(go + us) +2)/2]/p} + 1 = {(g0 + us + 1)/p} + 1.

Summing up the above argument we obtain that
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Theorem 1.2. Let G = C® X, Z be a semi-direct product of C* by Z. Then there exists
a finite composition series {J,}5_; of C*(G) such that
Co(C? x T) = Co(G1), 9 >0 s=r,

Js/Ts-1 %’{ Co(Xs/Z)®K or
{ Co(R?*°+%) ® (C(T*) »e, Z)
where us_1 > u,, dim X,_; > dim X, and the action ©; of Z is a multi-rotation.

1<s<r

Moreover, applying (F1) to the above composition series inductively we obtain that
Theorem 1.3. In the situation of Theorem 1.2, we have that
2V dime G1 V max({(go + us)/ps} + 1) <
st(C*(G)) < (1 + dime G1) V max({(go + us + 1)/ps} +1),

esr(C*(G)) < (1 + dimg G1) V max({(go + s +1)/ps} + 1)
where p, means the period of ©, when it is a rational rotation.
Remark. By [Eh, Theorem 2.2], we have that csr(C*(G)) > 2. Hence if all the periods
ps of the rational rotations 6, are large enough, we can obtain that
st(C*(G)) = 2V dimc Gy, if dim G, even,
{ 2Vvdimc G; < st(C*(G)) < 1+dimc Gy, if dimG, odd,
cst(C*(@)) =2, ifdimcGy=1or2,
{ 2 < csr(C*(G)) < (1 + dimc G;),  otherwise.
Compare Theorem 1.2 and 1.3 with [Sd2], [Sd4] and [ST2].
In particular, we have the following:
Corollary 1.4. Let G = C* %, Z be a semi-direct product of C* by Z. We suppose
that C*(G) has no finite dimensional irreducible representations ezcept 1-dimensional

ones, that is, any restriction of a to the a-tnvariant subspaces as above s not a rational
rotation. Then we have the rank formulas as in the above remark.

Remark. By Lie’s theorem (cf.[OV, Theorem 5 in §4]), any connected solvable (real or
complex) Lie group has either one or infinite dimensional irreducible representations.

Example 1.5. The discrete Mautner group M is defined by C x, Z with oy(2) = ez
for 2 € C, t € Z. Note €™ =1 for t € Z. Then C*(M) has the following structure
from Example 1.1:
0 — Co(R) @ (C(T) ¢ Z) - C*(M) - C(T) - 0

where C(T) xg Z is as in Example 1.1 with 6 = 1/27. Then we have sr(C*(M)) =2 >
1 = dimg M, and csr(C*(M)) = 2.

Next let G = C? x4 Z with a;(21, 22) = (e!"¢2;, €™ 23). Then by the same calculation
as before Theorem 1.2, we have sr(C*(G)) = 3, csr(C*(G)) < 4 and dim¢c G, = 1.

If G = C? x4 Z with ay(21, 22, 23) = (€21, €™ 22, €™t 23), then we have sr(C*(G)) = 3
or 4, csr(C*(QR)) < 4 and dim¢ G, = 1.
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Example 1.6. Let G* = C? x,» Z with (21, 22) = (€21, e 2z) fort € Z, 21,29 € C
and A € R\ {0}. Then C*(G*) has a finite composition series {J;}j_, such that

{ J4/33 = C*(G*)/33 = C(T), 3T3/J2 = Co(R) ® (C(T) x6 Z),
32/31 = C()(R) ® (C(T) X g Z), 31 = Co(RZ) ® (C(Tz) AHo Z)

where C(T) xg Z and C(T) x ¢ Z are defined as in Example 1.1 with § = 1/27, and ©
means the multi-rotation by the multi-angle (6, A@). Then we have that

st(C*(G*)) = 2 = csr(C*(G?)) > 1 = dimc G-

Remark. From Theorem 1.2 and [Sd4] we see that the tensor products C*(G) ® K,
C*(G')®K for G = C* x4 Z, G' = C* x4 R have the almost same structure. But it is
not true that C*(G) is stably isomorphic to C*(G"), since Gy has T as a direct product
subspace while C;"l is homeomorphic to R* for some k > 1. However, some subquotients
of these group C*-algebras are stably isomorphic.

§2. THE CASE OF SEMI-DIRECT PRODUCTS OF R" BY Z

In this last section, we apply Theorem 1.2 to the cases of semi-direct products H =
R" xg Z. By the same way as in [Sd4], we put G = C" x4 Z with ay(z + 1y) =
Be(z) + iB¢(y) for z,y € R* t € Z. Then C*(H) is a quotient C*-algebra of C*(G).
Keeping the notation of Theorem 1.2, we have the following:

Theorem 2.1. Let H = R® x5 Z be a semi-direct product of R" by Z. Then there
erists a finite composition series {£5}5_, of C*(H) such that

Co(Hy) = Co(R* x T), h >0 s=r,

1<s<r
CO(‘/s)®%s

where Y, is a closed subset of X,/Z, and V, is a closed subset of R290+%s gnd B, is
equal to (C(T**) xeg, Z) or its quotient C*-algebra.

Remark. The above remark is true in the case of R* g Z and R™ xg R.
Moreover, we obtain that

Theorem 2.2. In the situation of Theorem 2.1, we have that

dimc Hy vV max({[(vs + us +1)/2]/ps} +1) <
sr(C*(H)) < (1 + dimg Hy) vV max({[(vs + us + 2)/2]/ps} + 1),
2 < csr(C*(H)) < (1 + dimg H;) V max({{(vs + us + 2)/2]/ps} + 1)

where vy = dim V;, and p; means the period of ©s when O, is a rational rotation.
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Example 2.3. Let K = R xg Z with 8;(z) = ez for z € R, t € Z, which is regarded
as a closed normal subgroup of the proper az + b group. Then we have that

0 — @%(C(T) ®K) —— C*(K) —2— C(T) —— 0.
Then we obtain that sr(C*(K)) = 1 or 2, and csr(C*(K)) = 2 > 1 = dimc K;. On the
other hand, since C*(K) = Co(R) x5 Z, we have sr(Co(R) x5 Z) < sr(Co(R)) +1 = 2 by

[Rf1, Theorem 7.1]. Moreover, we have the 6-term exact sequence (cf.[Wo]) of K-groups
for the above sequence:

Z? — 5 Ko(C*(K)) -2 Z

d l

Z +% K, (C*(K)) «=— Z?

On the other hand, the Pimsner-Voiculescu sequence (cf.[Bl]) for C*(K) is given by

0 > 0 y Ko(C*(K))
- Ky (C*(K)) « Z < Y

since Ko(Co(R)) 22 0 and K;(Co(R)) = Z. It follows that Ko(C*(K)) is assumed to be a
subgroup of Z. Now, if the index map 9 is zero, i, must be injective so that Ko(C*(K))
contains Z2? as a subgroup, which is the contradiction. Therefore, 8 is nonzero. Then
Nagy or Nistor’s result ([Ny], [Ns2]) implies that sr(C*(K)) > 2.

Example 2.4. Let H = R? xgZ with B;(z,y) = (z+ty,y) for 7,y € R, t € Z, which is
regarded as a closed normal subgroup of the Heisenberg Lie group. Then we have that

0 — Co((R\ {0}) xR) x3Z — C*(H) = Co(RxT) =0

with Co((R\ {0}) x R) x Z & Co((R\ {0}) x T) ® K, where fi(z',y’) = (z', tz' +y') for
z',y’ € R. Then we obtain that sr(C*(H)) = 2 = dim¢ H,, and csr(C*(H)) = 2.
Acknowledgment. The author would like to thank Professor S. Kawakami for stimulating

comments and bringing my attention to the paper [Bg], and thank the referee for some
corrections and reading the manuscript carefully.

REFERENCES

[AP] J. Anderson and W. Paschke, The rotation algebra, Houston J. Math. 15 (1989), 1-26.
[Bg] L. Baggett, Representations of the Mautner group, I, Pacific J. Math. 77 (1978), 7-22.
[B]] B. Blackadar, K-theory for Operator Algebras, Second Edition, Cambridge, 1998.

[Dv] K.R. Davidson, C*-algebras by Ezample, Fields Institute Monographs, AMS, 1996.

— 142 —



(Dx]
(ER]

(EE]
[EL1)

[EL2]

[Gr1]
[Gr2]
[Ng]
[NOP]
[Ny]
[Nsi]
[Ns2]

[OV]
(Pd]

[Pe]
[Rf1]
[Rf2]
[Rs)
(Sh]
[Sd1]
(Sd2)]
(Sd3)

[Sd4]
[ST1)

[ST2]

(We]
[Wo]

J. Dixmier, C*-algebras, North-Holland, 1962.

N. Elhage Hassan, Rangs stables de certaines eztensions, J. London Math. Soc. 52 (1995),
605-624.

G.A. Elliott and D.E. Evans, The structure of the irrational rotation C*-algebra, Ann. Math.
(1993), 477-501.

G.A. Elliott and Q. Lin, Cut-down method in the inductive limit decomposition of noncommu-
tative tori, J. London Math. Soc. 54 (1996), 121-134.

, Cut-down method in the inductive limit decomposition of noncommutative tori, II:
The degenerate case, Operator Algebras and Their Applications, Fields Ints. Commun. 13
(1997), 91-123.

P. Green, C*-algebras of transformation groups with smooth orbit space, Pacific. J. Math. 72
(1977), 71-97.

, The structure of imprimitivity algebras, J. Funct. Anal. 36 (1980), 88-104.

K. Nagami, Dimension Theory, Academic Press, New York-London, 1970.

M. Nagisa, H. Osaka and N.C. Phillips, Ranks of algebras of continuous C*-algebra valued
functions, Preprint.

G. Nagy, Some remarks of lifting invertible elements from quotient C*-algebras, J. Operator
Theory 21 (1989), 379-386.

V. Nistor, Stable range for tensor products of extensions of K by C(X), J. Operator Theory
16 (1986), 387-396.

, Stable rank for a certain class of type I C*-algebras, J. Operator Theory 17 (1987),
365-373.

A_.L. Onishchik and E.B. Vinberg, Lie Groups and Algebraic Groups, Springer-Verlag, 1990.
G.K. Pedersen, C*-Algebras and their Automorphism Groups, Academic Press, London-New
York-San Francisco, 1979.

D. Poguntke, Simple quotients of group C*-algebras for two step nilpotent groups and connected
Lie groups, Ann. Scient. Ec. Norm. Sup. 16 (1983), 151-172.

M.A. Rieffel, Dimension and stable rank in the K-theory of C*-algebras, Proc. London Math.
Soc. 46 (1983), 301-333. '

, The homotopy groups of the unitary groups of non-commutative tori, J. Operator
Theory 17 (1987), 237-254.

J. Rosenberg, The C*-algebras of some real and p-adic solvable groups, Pacific. J. Math. Soc.
85 (1976), 175-192.

A.J-L. Sheu, A cancellation theorem for projective modules over the group C*-algebras of
certain nilpotent Lie groups, Canad. J. Math. 39 (1987), 365-427.

T. Sudo, Stable rank of the reduced C*-algebras of non-amenable Lie groups of type I, Proc.
Amer. Math. Soc. 125 (1997), 3647-3654. '

, Stable rank of the C*-algebras of amenable Lie groups of type I, Math. Scand. 84
(1999), 231-242.

, Dimension theory of group C*-algebras of connected Lie groups of type I, J. Math.
Soc. Japan 52 (2000), 583-590.

, Structure of group C*-algebras of Lie semi-direct products C* x R, To appear.

T. Sudo and H. Takai, Stable rank of the C*-algebras of nilpotent Lie groups, Internat. J. Math.
6 (1995), 439-446.

, Stable rank of the C*-algebras of solvable Lie groups of type I, J. Operator Theory 38
(1997), 67-86.

X. Wang, The C*-algebras of a class of solvable Lie groups, Pitman Research Notes 199, 1989.
N.E. Wegge-Olsen, K-theory and C*-algebras, Oxford Univ. Press, 1993.

DEPARTMENT OF MATHEMATICAL SCIENCES, FACULTY OF SCIENCE, UNIVERSITY OF THE RYUKYUS,
NIiSHIHARA-CHO, OKINAWA 903-0213, JAPAN.
E-mail address: sudo@math.u-ryukyu.ac.jp

Received March 13, 2001  Revised June 29, 2001

— 143 —



