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Note on Kaplansky’s Commutative Rings

Tomohiro TANABE and Ry\^uki MATSUDA *

Let $L$ be a torsion-free abelian (additive) group, and let $S$ be a sub-
semigroup of $L$ . Assume that $S\ni O$ . Then $S$ is called a grading monoid
(or a g-monoid) ([8]). Many technical terms in multiplicative ideal theo-
ries for commutative rings $R$ may be defined analogously for g-monoids
$S$ . For example, a non-empty subset $I$ of a g-monoid $S$ is called an ideal
of $S$ if $S+I\subset I$ . An ideal $P$ of $S$ is called a prime ideal of $S$ , if $P\neq S$

and if $x+y\in P$ (for $x,$ $y\in S$) implies $x\in P$ or $y\in P$ . An element $x$ of
$S$ is called a unit of $S$ , if $x+y=0$ for some element $y\in S$ . An element $x$

of $S$ is called a prime element of $S$ , if $S+x$ is a prime ideal of $S$ . If every
non-unit element of $S$ is expressible as a finite sum of prime elements of
$S,$ $S$ is call$eA$ a unique factorization semigroup (or a UFS). Let $x,y$ be
elements of $S$ . We say that $x$ divides $y$ , if $y=x+s$ for some $s\in S$ . $S$

is called a Noetherian semigroup, if each ideal $I$ of $S$ can be expressible
as $I=\bigcup_{i=1}^{n}(S+a_{i})$ for a finite number of elements $a_{1},$ $\cdots a_{n}$ of $S$ .
Many propositions in multiplicative ideal theories for commutative rings
$R$ are known to hold for g-monoids $S$ (cf. [1], [2] and [6]). Of course,
every technical term for commutative rings $R$ can not be necessarily de
fined for g-monoids $S$ , and every proposition for $R$ can not be necessarily
formulated for $S$ . However, the second author conjectures that almost all
propositions in multiplicative ideal theories for $R$ hold for $S$ .

The aim of this paper is to prove propositions in Kaplansky’s Com-
mutative $Rings([4])-$ for g-monoids. We will prove for g-monoids $S$ all the
propositions in [4, Ch.1 and Ch.2] that can be formulated for $S$ . We will
give consecutive numbers for all of our propositions. The case that the
proof of some proposition is straightforward, we will omit it’s proof.

If an ideal $I$ is properly contained in $S$ , then $I$ is called a proper ideal
of $S$ . If, for a proper ideal $M$ , there are no ideals properly between $M$

and $S$ , then $M$ is called a maximal ideal of $S$ .
Let $I$ be an ideal of a g-monoid $S$ , and $x,x_{1},$ $\cdots,$

$x_{n}\in S$ . Then we set
$(x_{1}, \cdots , x_{n})=\bigcup_{i=1}^{n}(S+x_{i})$ and (I, $x$) $=I\cup(S+x)$ . If $I=(a)$ for some
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$a\in S$ , then $I$ is called a principal ideal of $S$ .

1. Let $Y$ be an additively closed set in a g-monoid $S$ , and $I$ an ideal of
$S$ maximal with respect to the exclusion of Y. Then $I$ is a prime ideal of $S$ .

Let $Y$ be an additively closed set in a g-monoid $S$ . Then $Y$ is called
saturated, if $s_{1}+s_{2}\in Y$ (for $s_{1},$ $s_{2}\in S$) implies $s_{1,2}s\in Y$ .

2. Let $S$ be a g-monoid and $Y$ a non-empty subset of $\dot{S}$ . Then the
following conditions are equivalent.

(1) $Y$ is a saturated additively closed set.
(2) $S-Y=\cup P_{\lambda}$ , the union ranging over all prime ideals disjoint from

$T$ .

Let $a,b\in S$ . We say that $a$ and $b$ are associated elements of $S$ , if $a-b$
is a unit of $S$ .

3. Let $S$ be a g-monoid, and $p_{1},$ $\cdots$ , $p_{n},$ $q_{1},$ $\cdots,$ $q_{m}$ be prime elements
of $S$ . If $p_{1}+\cdots+p_{n}=q_{1}+\cdots+q_{m}$ , then $n=m$ and $p_{i}$ and $q_{i}$ are
associated up to a permutation.

Proof. We prove by induction on $n$ . Suppose that $n>1$ and the
result is true for $n-1$ . There exists $k\in N$ such that $q_{k}\in(p_{n})$ . Hence
$q_{k}=s+p_{\mathfrak{n}}$ for $s\in S$ . Then $s$ is a unit. We have $p_{1}+\cdots+p_{n-1}=$

$s+q_{1}+\cdots+q_{k-1}+q_{k+1}+\cdots+q_{m}$ . By the hypothesis, $n-1=m-1$ ,
and $p_{i}$ and $q_{i}$ are associated up to a permutation.

4. Let $S$ be a g-monoid, and $Y$ the union of units and all elements in
$S$ expressible as a finite sum of prime elements. Then $Y$ is a saturated
additively closed set.

Proposition 5. Let $S$ be a g-monoid. Then the following conditions
are equivalent.

(1) $S$ is a UFS.
(2) Every prime ideal of $S$ contains a prime element.
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Proof. (2) $\Rightarrow(1)$ : Let $T$ be the union of units and all elements of $S$

expressible as a sum of prime elements. Then $T$ is saturated by 4. Sup-
pose that $T\neq S$ . Take $c\in S-T$ . Then $(c)$ is disjoint from $T$ . Expand
$(c)$ to a prime ideal $P$ disjoint from $T$ . By the hypothesis, $P$ contains
a prime element; a contradiction. Hence $S=T$ , and therefore $S$ is a UFS.

Let $I$ be an ideal of $S$ . We say that $I$ is finitely generated, if $I=$

$(a_{1}, \cdots,a_{n})$ for a finite number of elements $a_{1},$ $\cdots,a_{n}\in I$ .
If a non-empty set $A$ satisfies the following conditions, then $A$ is called

an S-module.
(i) $s\in S,$ $a\in A$ implies $s+a\in A$ .
(ii) $0+a=a$ .
(iii) $s_{1}+(s_{2}+a)=(s_{1}+s_{2})+a$ (for $s_{1},$ $s_{2}\in S$).
An S-module $A$ is called finitely generated over $S$ , if we can write

$A=\bigcup_{i=1}^{n}(S+x_{i})$ for a finite number of elements $x_{1},$ $\cdots,x_{n}\in A$ .
Let $A$ be an S-module, $x,$ $a_{1}\in A$ , and $(x : a_{1})_{S}=\{s\in S|s+a_{1}\in$

$S+x\}$ .

Proposition 6. Let $A$ be an S-module, and $x\in A$ . Assume that
$I=(x:a_{1})_{S}$ is maximal among all { $(x:a_{1})_{S}|a_{1}\in A$ with $a_{1}\not\in S+x$}.
Then $I$ is a prime ideal.

Proof. Assume that $s_{1},$ $s_{2}\in S$ and $s_{1}+s_{2}\in I$ . If $s_{1}\not\in I$ , then
$s_{1}+a_{1}\not\in S+x$ . Now $I=(x:a_{1})_{S}\subset(x:s_{1}+a_{1})_{S}$ . By the hypothesis,
$(x:a_{1})_{S}=(x:s_{1}+a_{1})_{S}$ . Since $s_{1}+s_{2}\in I$ , we have $s_{1}+s_{2}+a_{1}\in S+x$ ,
and hence $s_{2}\in I$ . Therefore $I$ is a prime ideal.

7. Let $I$ be an ideal of a g-monoid $S$ . Assume that $I$ is not finitely
generated, and is maximal among all ideals of $S$ that are not Pnitely gen-
erated. Then $I$ is a prime ideal.

Proof. Suppose that $a+b\in I$ with neither $a$ nor $b$ in $I$ . Then
the ideal (I, a) is finitely generated. Write (I, $a$) $=(i_{1}, \cdots, i_{n}, a)$ (for
$i_{1},$

$\cdots,$ $i_{n}\in I$ ) and $J=\{y\in S|y+a\in I\}$ . Then $J\supset I$ and $b\in J$ .
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Hence $J$ is finitely generated. Write $J=(j_{1}, \cdots,j_{m})$ (for $j_{1},$ $\cdots,j_{m}\in J$).
We prove that $I=$ $(i_{1}, \cdots , i_{n},j_{1}+a, \cdots,j_{m}+a)$ . Take $z\in I$ . Then we
have $z=i_{k}+s_{1}$ or $z=a+s_{2}$ since $z$ lies in (I, $a$). If $z=i_{k}+s_{1}$ , then
$z\in(i_{1}, \cdots, i_{n},j_{1}+a, \cdots,j_{m}+a)$ . If $z=a+s_{2}$ , then we can write $s_{2}=$

$j_{l}+s_{3}$ since $s_{2}\in J$ . Then $z=a+j_{l}+s_{3}\in(i_{1}, \cdots,i_{n},j_{1}+a, \cdots,j_{m}+a)$ .
It follows that $I$ is finitely generated; a contradiction. Therefore $I$ is a
prime ideal.

By the above 7, we have the following,

Proposition 8. If every prime ideal of a g-monoid $S$ is finitely gen-
erated, then $S$ is a Noetherian semigroup.

9. Let $ P_{1}\subset P_{2}\subset P_{3}\subset\cdots$ be a chain of prime ideals of a g-monoid
$S,$ then $\bigcup_{i}P_{i}$ is a prime ideal of $S$ . Let $ P_{1}\supset P_{2}\supset P_{3}\supset\cdots$ be a chain of
prime ideals of $Ss$uch that $\bigcap_{i}P_{i}\neq\emptyset.$ Then $\bigcap_{i}P_{1}$ is a prime ideal of $S$ .

Let $ P_{1}\supset P_{2}\supset\cdots$ be a chain of prime ideal of $S$ . Then it is not
necessarily true that $\bigcap_{i}P_{i}\neq\emptyset$ .

10. Let $I$ be an ideal of a g-monoid $S$ , and $P$ a prime ideal containing
I. Then $P$ can be shrunk to a prime ideal minimal among all prime ideals
containing $I$ .

Proposition 11. Let $P\subset Q$ be distinct prime ideals of a g-monoid
$S$ . Then there exist distinct prime ideals $P_{1},$ $Q_{1}$ with $P\subset P_{1}\subset Q_{1}\subset Q$

such that there are no prime ideals properly between $P_{1}$ and $Q_{1}$ .

Proof. Insert a maximal chain $\{P_{1}\}$ of prime ideals between $P$ and
$Q$ . Take any element $x\in Q-P$ . Define $Q_{1}$ to be the intersection of all
$P_{i}$ containing $x$ , and $P_{1}$ the union of all $P_{1}$ not containing $x.$ By 9, $P_{1}$

and $Q_{1}$ are prime ideals, and $P\subset P_{1}\subset Q_{1}\subset Q$ . By the maximality of
$\{P_{i}\}$ , no prime ideals can lie properly between $P_{1}$ and $Q_{1}$ .

Let $S\subset T$ be g-monoids. An element $\alpha\in T$ is called integral over $S$ ,
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if there exists $\uparrow x\in N$ such that $n\alpha\in S$ . $T$ is called integral over $S$ if all
its elements are integral over $S$ .

Proposition 12. Let $S\subset T$ be g-monoids and $u\in T$ . Then the
following conditions are equivalent.

(1) $u$ is integral over $S$ .
(2) There exists a finitely generated S-submodule $A$ of $T$ such that

$u+A\subset A$ .

Proof. (1) $\Rightarrow(2)$ : By the hypothesis, $nu\in S$ for $s$ome $n\in N$ . Set
$A=S\cup(S+u)\cup\cdots\cup(S+(n-1)u)$ . Then $u+A\subset A$ .

(2) $\Rightarrow(1)$ : Let $A=\bigcup_{i=1}^{n}(S+a_{t})$ . We may assume that $u+a_{1}=$

$s_{1}+a_{2},u+a_{2}=s_{2}+a_{3},$ $\cdots$ , $u+a_{I-1}=s_{l-1}+a_{I}$ and $u+a_{l}=s_{l}+a_{k}$

for the elements $S$: of $S$ and for 1 $\leq k\leq l\leq n$ . Then we have
$(l-k+1)u=s_{k}+s_{k+1}+\cdots+s_{l}$ . Thus $u$ is integral over $S$ .

13. Let $ S\subset\Gamma$ be g-monoids. Then the set of all elements of $\Gamma$ that
are integral over $S$ is a subsemigroup of F.

We define $Z_{0}$ as $Z_{0}=\{n\in Z|n\geq 0\}$ . Let $S\subset T$ be g-monoids and
$u_{1},$ $\cdots,$ $u_{n}\in T$ . Then the subset $S+Z_{0}u_{1}+\cdots+Z_{0}u_{\mathfrak{n}}$ of $T$ is denoted
by $S[u_{1}, \cdots, u_{n}]$ . $S[u_{1}, \cdots,u_{n}]$ is a subsemigroup of $T$ .

14. Let $S$ be a g-monoid, and $u$ an element of a g-monoid containing
S. $Then-u$ is integral over $S$ if and only $if-u\in S[u]$ .

15. Let $S$ be a g-monoid that is contained in a torsion-free abelian
(additive) group $G$ . If $G$ is integral over $S$ , then $S$ is a group.

Let $S\subset T$ be g-monoids. If $T=S[x_{1}, \cdots,x_{n}]$ for some $x_{1},$ $\cdots,x_{n}\in T$ ,
then $T$ is called a finitely generated g-monoid over $S$ .

Proposition 16. Let $S\subset T$ be g-monoids. Then the following
conditions are equivalent.

(1) $T$ is a finitely generated S-module.
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(2) As a g-monoid, $T$ is finitely generated over $S$ and is integral over $S$ .

Proof. (1) $\Rightarrow(2)$ : Let $T=\bigcup_{i=1}^{n}(S+x_{i})$ for a finite number of
elements $x_{1},$ $\cdots,x_{n}\in T$ . Then $T=S[x_{1}, \cdots,x_{\mathfrak{n}}]$ . By Proposition 12, $T$

is integral over $S$ .
(2) $\Rightarrow(1)$ : Let $T=S[x_{1}, \cdots,x_{n}]$ for a finite number of elements

$x_{1},$ $\cdots,x_{n}\in T$ . Then we can take $k\in N$ such that $kx_{i}\in S$ . Then
$T=\bigcup_{0\leq m.<k}.(S+m_{1}x_{1}+\cdots+m_{n}x_{n})$ .

Let $S$ be a g-monoid and $q(S)=\{s_{1}-s_{2}|s_{1},s_{2}\in S\}$ . We call $q(S)$

the quotient group of $S$ .

Proposition 17. Let $S$ be a g-monoid with quotient group $G$ . The
following conditions are equivalent.

(1) $G$ is a finitely generated g-monoid over $S$ .
(2) As a g-monoid, $G$ can be generated over $S$ by one element.

Proof. (1) $\Rightarrow(2)$ : Assume that $G=S[u_{1}, \cdots,u_{n}]$ and $u_{i}=a_{i}-b_{i}$

(for $a_{i},$ $b_{i}\in S,$ $1\leq i\leq n$). Put $b_{1}+\cdots+b_{\mathfrak{n}}=c$. Take any element $f\in G$ .
Then, for $s\in S$ and $k_{1},$

$\cdots,$
$k_{n}\in Z_{0}$ , we have

$f=s+k_{1}u_{1}+\cdots+k_{n}u_{n}=s+k_{1}a_{1}+\cdots+k_{n}a_{\mathfrak{n}}-k_{1}b_{1}-\cdots-k_{\mathfrak{n}}b_{n}$ .
For a sufficiently large $k\in Z_{0}$ , we have
$f=s+k_{1}a_{1}+\cdots+k_{\mathfrak{n}}a_{\mathfrak{n}}+(k-k_{1})b_{1}+\cdots+(k-k_{n})b_{\mathfrak{n}}-k(b_{1}+\cdots+b_{\mathfrak{n}})=$

$s_{1}-kc\in S[-c]$ (for $s_{1}\in S$).
Hence $G=S[-c]$ .

Let $S$ be a g-monoid. If $S$ satisfies either of the conditions in $Propc\succ$

sition 17, then $S$ is called a C-semigroup.

18. Let $S$ be a g-monoid with quotient group $G$ . For an element
$u\in S$ the following conditions are equivalent.

(1) Any prime ideal of $S$ contains $u$ .
(2) Any ideal of $S$ contains $nu$ for some $n\in N$ .
(3) $G=S[-u]$ .
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Proof. (1) $\Rightarrow(2)$ : Let $I$ be an ideal of $S$ . Suppose that $I$ contains
no multiples of $u$ . By 1, $I$ can be expanded to a prime ideal $P$ disjoint
from $T=\{nu|n\in N\}$ ; a contradiction.

(2) $\Rightarrow(3)$ : Take any element $b\in S$ . We can write $nu=s+b$ (for
$s\in S,$ $7l\in N$) since $7tu\in(b)$ . Then $-b=s-- nu$ $\in S[-u]$ . Hence
$G=S[-u]$ .

(3) $\Rightarrow(1)$ : Let $P$ be a prime ideal of $S$ . Take any element $b\in P$ .
We can $write-b=s-- nu$ (for $s\in S,n\in N$). Then $nu=s+b\in P$ .
Therefore $u\in P$ .

Let $S$ be a g-monoid with quotient group $G$ . If $T$ is a g-monoid lying
between $S$ and $G$ , then $T$ is called an oversemigroup of $S$ .

19. Let $S$ be a G-semigroup and $T$ an oversemigroup of $S$ . Then $T$

is a G-semigroup.

Let $S$ be a g-monoid, $X$ an indeterminate and $ S[X]=\{s+nX|s\in$

$S,n\in Z_{0}\}$ . We call $S[X]$ the polynomial semigroup of $X$ over $S$ .

20. If a g-monoid $S$ is a group, then $S[X]$ is a G-semigroup.

Let $S\subset T$ be g-monoids and $u\in T$ . Then $u$ is called algebraic over
$S$ , if there exists $s\in S$ and $n\in N$ such that $s+nu\in S$ . If $u$ is not
algebraic over $S,$ $u$ is called transcendental over S. $T$ is called algebraic
over $S$ if all its elements are algebraic over $S$ .

Proposition 21. Let $S\subset T$ be g-monoids. Assume that $T$ is $alg\oplus$

braic over $S$ and finitely generated as a g-monoid over $S$ . Then $S$ is a
$C$-semigroup if and only if $T$ is a G-semigroup.

Proof. Let $G,$ $G_{1}$ be quotient groups of $S,$ $T$ respectively. Assume that
$S$ is a G-semigroup, say $G=S[-u]$ (for $u\in S$). Let $f\in T[-u]$ . Then we
can take $n\in N,g\in Gs$uch that $nf=g$ . $Then-f=(n-1)f-g\in T[-u]$ .
Hence $T[-u]$ is a group, and hence $T$ is a G-semigroup. Assume that $T$

is a C-semigroup, $G_{1}=T[-v]$ (for $v\in T$) and $T=S[w_{1}, \cdots, w_{k}]$ (for
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$tt)i\in T)$ . Since $T$ is algebraic over $S$ , we have $a+mv=s$ and $s_{i}+m_{i}w_{i}\in S$

for some $a,$ $s\in S$ and $m,$ $m_{i}\in N$ . Let $S_{1}=S[-s, -s_{1}, \cdots, -sk]$ . Then
$G_{1}=S_{1}[-v,w_{1}, \cdots,w_{k}]$ . $Since-v,w_{1},$ $\cdots,w_{k}$ are integral over $S_{1},$ $G_{1}$ is
integral over $S_{1}$ . By 15, $S_{1}$ is a group. Hence $G=S_{1}$ , and therefore $S$ is
a $C,semigroup$ .

Proposition 22. Let $S\subset T$ be g-monoids and $u\in T$ . If $S[u]$ is a
$C-semigroup$ , then $S$ is a G-semigroup.

Proof. Let $G,$ $G^{\prime}$ be quotient groups of $S,$ $S[u]$ respectively. Since
$S[u]$ is a G-semigroup, $G^{\prime}=S[u, -v]$ for $v\in S[u]$ . $Let-v=g+ku$ for
$g\in G$ and $k\in Z$ . Then $G^{\prime}=S[u,g, ku]$ .

(i) A$ss$ume that $u$ is transcendental over $S$ . Take any element $ g_{1}\in$

$G$ . We have $g_{1}=s+n_{1}u+n_{2}g+n_{3}ku=s+(n_{1}+n_{3}k)u+n_{2}g$ (for
$n_{1},$ $n_{2},$ $n_{3}\in Z_{0}$ ). By the hypothesis, $n_{1}+n_{3}k=0$ . Therefore $G=S[g]$ .

(ii) Assume that $u$ is algebraic over $S$ . Then $S$ is a G-semigroup by
Proposition 21.

23. Let $S\subset T$ be g-monoids and $u\in T$. Assume that $S[u]$ is a
$C-s$emigroup. Then $u$ is not necessarily algebraic over $S$ .

For example, assume that $S$ is a group and $X$ an indeterminate. Then
$X$ is $tra\iota lscendental$ over $S$ , but $S[X]$ is a G-semigroup.

24. Let $S$ be a g-monoid and $N$ a maximal ideal of $S[X]$ . If $S$ is a
group, then $ N\cap S=\emptyset$ . If $S$ is not a group, then $ N\cap S\neq\emptyset$ .

Proof. If $S$ is a group, then $N=S+NX$ . Hence $ N\cap S=\emptyset$ .
If $S$ is not a group, then we can take a maximal ideal $M$ of $S$ . Then
$N=M\cup(S+NX)$ , and therefore $ N\cap S\neq\emptyset$ .

Let $T$ be an additively closed set in a g-monoid $S$ . We define $S_{T}$ as
$S_{T}=\{s-t|s\in S, t\in T\}$ . Let $I$ be an ideal of $S$ . We write $I_{T}$ for
$I+S_{T}$ . Let $P$ be a prime ideal of $S$ . We write $S_{P}$ for $S_{S-P}$ .
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25. Let $T$ be an additively closed set in a g-monoid $S$ . Then there is
a one-to-one order-preserving correspondence between prime ideals of $S_{T}$

and prime ideals of $S$ disjoint from $T$ .

25 implies the following,

26. Let $P$ be a prime ideal of a g-monoid $S$ . Then there is a $on\in\succ$

to-one order-preserving correspondence between prime ideals of $S_{P}$ and
prime ideals of $S$ contained in $P$ .

25 implies the following too,

27. Let $S$ be a g-monoid with quotient group $G$ , and $X$ an indeter-
minate. Then there is a one-to-one correspondence between prime ideals
of $S[X]$ disjoint from $S$ and prime ideals of $G[X]$ .

Proposition 28. Let $S$ be a g-monoid. Then there cannot exist in
$S[X]$ a chain of three distinct prime ideals with the same contracted ideal
in $S$ .

Proof. Suppose that there exists in $S[X]$ a chain of three distinct
prime ideals $Q_{1}\subsetneqq Q_{2}\subsetneqq Q_{3}$ with the same contraction $P$ in $S$ . Take
$f\in Q_{2}-Q_{1}$ . Then $f=s+nX$ for $s\in S,n\in Z_{0}$ . If $nX\not\in Q_{2}$ , then
$f\in Q_{1}$ for $s\in P$ ; a contradiction. Hence $X\in Q_{2}$ . Take $g\in Q_{3}-Q_{2}$ ,
say $g=s^{\prime}+n^{\prime}X$ for $s^{\prime}\in S,n^{\prime}\in Z_{0}$ . If $n^{\prime}=0$ , then $g=s‘\in P\subset Q_{1}$ ; a
contradiction. Therefore $n^{\prime}\geq 1$ . Then $g=s^{\prime}+n^{\prime}X\in Q_{2}$ ; a contradiction.

Let $P=P_{1}\supsetneqq\cdots\supsetneqq P_{n}$ be a chain of prime ideals of a g-monoid $S$ .
Then $n-1$ is called the length of the chain. Let $k$ be the supremum
of lengths of all chains of prime ideals of $S$ . Then $k+1$ is called the
dimention of $S$ , and is denoted by $\dim(S)$ . Let $l$ be the supremum of
lengths of all chains of prime ideals $P=P_{1}\supsetneqq\cdots\supsetneqq P_{n}$ . Then $l+1$ is
called the height of $P$ , and is denoted by $ht(P)$ .

Let $I$ be an ideal of $S$ . Then we write $I^{*}$ for $I+S[X]$ .
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29. Let $S$ be a g-monoid and $Q$ a prime ideal of $S[X]$ . If $ Q\cap S=\emptyset$ ,
then $Q=(X)$ .

Proof. Take any $f\in Q$ , say $f=s+nX$ (for $s\in S,n\in Zo$). If
$n=0$ , then $f=s\in S$ ; a contradiction. Hence $n\geq 1$ , and therefore
$f\in(X)$ , that is, $Q\subset(X)$ . Since $s\not\in Q$ , we have $nX\in Q$ , that is,
$X\in Q$ . Therefore $Q=(X)$ .

By 29, for every prime ideal $P$ of $S$ of height 1, $P^{*}$ has height 1.
A$ss$ume that, for every prime ideals $P\supsetneqq N$ in $S$ with no prime ideals

properly between $P$ and $N$ , there cannot exist a prime ideal $Q$ of $S[X]$

such that $P^{*}\supsetneqq Q\supsetneqq N^{*}$ . Then $S$ is called a strong S-semigroup.

Proposition 30. Let $S$ be a strong S-semigroup, $P$ a prime ideal of
height $n$ in $S$ , and $Q$ a prime ideal of $S[X]$ that contracts to $P$ in $S$ and
contains $P^{*}$ properly. Then $ht(P^{*})=n$ and $ht(Q)=n+1$ .

Proof. Let $P=P_{1}\supsetneqq\cdots\supsetneqq P_{n}$ be a chain of prime ideals of $S$ . Then
we have the chain of prime ideals $Q\supsetneqq P_{1}^{*}\supsetneqq\cdots\supsetneqq P_{n}^{*}in$ $S[X]$ . It follows
that $ht(P^{*})\geq n$ and $ht(Q)\geq n+1$ . We prove that $ht(P^{*})\leq n$ and
$ht(Q)\leq n+1$ by induction on $n$ .

(i) $n=1$ : We have $ht(P^{*})=1$ . Assume that $ht(Q)>2$ . Then we
can take a chain of prime ideals $Q=Q_{1}\supsetneqq Q_{2}\supsetneqq Q_{3}$ . By 29, $Q_{2}\cap S=P$ .
By 28, $Q_{2}=P^{*}$ , and hence $ht(P^{*})>1$ ; a contradiction. Therefore
$ht(Q)=2$ .

(ii) Suppose that $n>1$ and the result $is$ true for $n-1$ . Assume
that $ht(P$“

$)$ $>r\iota$ . Then there exists a prime ideal $Q_{\mathfrak{n}}$ of $S[X]$ such that
$P^{*}\supsetneqq Q_{n}$ and $ht(Q_{n})=n$ . By 29, we have $ Q_{n}\cap S\neq\emptyset$ . Let $P_{\mathfrak{n}}$ be the
contraction of $Q_{n}$ to S. $P_{n}$ is properly contained in $P$ . Let $ht(P_{\mathfrak{n}})=m$ .
Then $m<n$ . If $Q_{n}\supsetneqq P_{n}^{*}$ , then $ht(Q_{n})=m+1$ by the induction hypoth-
esis. Hence there are no prime ideals properly between $P$ and $P_{n}$ , and
then $S$ is not a strong S-semigroup; a contradiction. Therefore $Q_{\mathfrak{n}}=P_{\mathfrak{n}}^{*}$ .
Continuing this work we can make a chain of prime ideals of length $n-1$
descending from $P_{n}$ ; a contradiction. Therefore $ht(P^{*})=n$ . Assume that
$ht(Q)>r|,$ $+1$ . Then there exists a prime ideal $Q_{\mathfrak{n}+1}$ such that $Q\supsetneqq Q_{\mathfrak{n}+1}$
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and $ht(Q_{n+1})=n+1$ . Let $Q_{n+1}\cap S=P_{n+1}$ and $ht(P_{n+1})=m$ . By
the hypothesis, $n>m$ . If $Q_{n+1}\supsetneqq P_{n+1}^{*}$ , then $ht(Q_{n+1})=m+1$ , that
is, $n=m$ ; a contradiction. Hence $Q_{n+1}=P_{n+1}^{*}$ . Then $n+1=m$ ; a
contradiction. Therefore $ht(Q)=n+1$ .

31. Let $ S\subset T\subset\Gamma$ be g-monoids and $u$ an element of $\Gamma$ . Suppose that
$u$ is integral over $T$ and that $T$ is integral over $S$ . Then $u$ is integral over $S$ .

Let $S\subset T$ be g-monoids. We may list four properties that might hold
for a pair $S,T$ .

Lying over (LO): For any prime ideal $P$ of $S$ there exists a prime ideal
$Q$ of $T$ with $Q\cap S=P$ .

Going up (GU): (i) (LO) holds, and (ii) Given prime ideals $P_{0}\subset P$

of $S$ and $Q_{0}$ of $T$ with $Q_{0}\cap S=P_{0}$ , there exists a prime ideals $Q$ of $T$

satisfying $Q_{0}\subset Q$ and $Q\cap S=P$ .
Going down (GD): Given prime ideals $P\supset P_{0}$ of $S$ and $Q$ of $T$ with

$Q\cap S=P$ , there exists a prime ideal $Q_{0}$ of $T$ satisfying $Q\supset Q_{0}$ and
$Q_{0}\cap S=P_{0}$ .

Incomparable (INC): (i) If $Q$ is a prime ideal of $T$ , then $ Q\cap S\neq\emptyset$ ,
and (ii) Two different prime ideals of $T$ with the same contracted ideal
of $S$ cannot be comparable.

32. The following two conditions are equivalent for g-monoids $S\subset T$ :
(a) (GU) holds.
(b) (LO) holds. And if $P$ is a prime ideal of $S,$ $J$ is the complement

of $P$ in $S$ , and $Q$ is an ideal of $T$ maximal with respect to the exclusion
of $J$ , then $Q\cap S=P$ .

Proof. $(a)\Rightarrow(b)$ : Let $Q$ be maximal with respect to the exclusion
of $J$ . By 1, $Q$ is a prime ideal of $T$ . We have to prove $Q\cap S=P.$ $Q$

lies over the prime ideal $Q\cap S$ of $S$ , and (GU) permits us to expand $Q$

to a prime ideal $Q_{1}$ of $T$ lying over $P$ . By the maximality of $Q$ , we have
$Q=Q_{1}$ .

$(b)\Rightarrow(a)$ : Let $P_{0}\subset P$ be prime ideals of $S$ . Suppose that a prime
ideal $Q_{0}$ of $T$ contracts to $P_{0}$ in $S$ . Then $Q_{0}$ is disjoint from $J$ . Expand
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it to $Q$ , maximal with respect to the exclusion of $J$ . By the hypothesis,
$Q\cap S=P$ , proving (GU).

33. The following conditions are equivalent for g-monoids $S\subset T$ :
(a) (INC) holds.
(b) For any prime ideal $Q$ of $T$ , we have $ Q\cap S\neq\emptyset$ . And if $P$ is a

prime ideal of $S$ , and $Q$ is a prime ideal of $T$ contracting to $P$ in $S$ , then
$Q$ is maximal with respect to the exclusion of $J$ , the complement of $P$ in $S$ .

Proof. $(a)\Rightarrow(b)$ : Let $Q_{1}$ be a prime ideal of $T$ disjoint from $J$. If
$Q_{1}$ properly contains $Q$ , then $Q_{1}\cap S=P$ ; a contradiction. Therefore $Q$

is maximal with respect to the exclusion of $J$ .
$(b)\Rightarrow(a)$ : Let $P$ be a prime ideal of $S$ , and let $Q$ be a prime ideal

of $T$ that contracts to $P$ in $S$ . Suppose that there exists a prime ideal $Q^{\prime}$

of $T$ such that $Q^{\prime}\cap S=P$ . By the hypothesis, $Q$ and $Q^{\prime}$ are incomparable.

Proposition 34. Let $S\subset T$ be g-monoids with $T$ integral over $S$ .
Then the pair $S,$ $T$ satisfies (INC) and (GU).

Proof. (GU): Let $P$ be a prime ideal of $S,$ $J$ the exclusion of $P$ in $S$ ,
and $Q$ an ideal of $T$ maximal with respect to the exclusion of $J$ . Then
$(P+T)\cap S=P$ . Suppose that $Q\cap S\neq P$ . Then there exists $u\in P$

$s$uch that $u\not\in Q\cap S$ . The ideal $(Q,u)$ is properly larger than $Q$ . Take
$j\in(Q, u)\cap J$ . We can write $j=t+u$ for $t\in T$ . There exists $m\in N$

such that $mt\in S$ . Then $mj=mt+mu\in P$, and hence $j\in P$; a
contradiction. Therefore $Q\cap S=P$ . By 32, (GU) holds.

(INC): Let $P$ be a prime ideal of $S,$ $Q$ a prime ideal of $T$ contracting
to $P$ in $S$ and $J=S-P$ . We show that $Q$ is maximal with respect to
the exclusion of $J$ . Suppose on the contrary that $Q$ is properly contained
in an ideal $I$ with $I\cap J$ void. Pick $v\in I-Q$ . There exists $n\in N$ such
that $7|,v\in S$ . Since $I\cap J=\emptyset,$ $nv$ lies in $P$ . Then $v\in Q$ ; a contradiction.
By 33, (INC) holds.

35. Assume that g-monoids $S\subset T$ satisfy (INC). Let $P,$ $Q$ be prime
ideals of $S,$ $T$ respectively with $Q\cap S=P$ . Then $ht(Q)\leq ht(P)$ .
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Let $S$ be a g-monoid and $P$ a prime ideal of $S$ . Let $m$ be the supre-
mum of lengths of all chains of prime ideals $P=P_{1}\subsetneqq\cdots\subsetneqq P_{n}$ . Then $m$

is called the depth of $P$ , and is denoted by depth $(P)$ .

36. Assume that g-monoids $S\subset T$ satisfy (GU). Let $P$ be a prime
ideal of $S$ of height $ n<\infty$ . Then there exists in $T$ a prime ideal $Q$ lying
over $P$ and having height $\geq n$ . If, further, (INC) holds, then $ht(Q)=n$ .

37. Assume that g-monoid$sS\subset T$ satisfy (GU) and (INC). Let $Q$ be
a prime ideal of $T$ and $P=Q\cap S$ . Then depth$(P)=depth(Q)$ .

37 implies the following,

38. Assume that g-monoids $S\subset T$ satisfy (GU) and (INC). Then the
dimension of $T$ equals to the dimention of $S$ .

Let $a,$
$b$ be elements in a g-monoid $S$ . An element $z\in S$ is called a

common diviser of $a$ and $b$ , if $z$ divides $a$ and $b$ . An element $x\in S$ is called
a greatest common diviser of $a$ and $b$ , if $x$ is a common diviser of $a$ and
$b$ , and $(x)\subset(y)$ for any common diviser $y$ of $a$ and $b$ . The greatest com-
mon diviser of $a$ and $b$ is denoted by $GCD(a, b)$ . A g-monoid $S$ is called a
GCD-semigroup if any two elements in $S$ have a greatest common divisor.

Proposition 39. Let $S$ be a GCD-semigroup. Then,
(1) $GCD(a+b, a+c)=a+GCD(b, c)$ .
(2) $GCD(a, b)=d$ implies $GCD(a-d, b-d)=0$ .
(3) $GCD(a, b)=GCD(a, c)=0$ implies $GCD(a, b+c)=0$ .

Proof. (1) Let $GCD(a+b, a+c)=x$ . Then $a$ divides $x$ , say $x=a+y$ .
Then $y$ divides $b$ and $c$ . If $z$ divides $b$ and $c$ , then $a+z$ divides $a+b$ and
$a+c$ . Thus $a+z$ divides $x=a+y$ , and hence $z$ divides $y$ . It follows that
$GCD(b, c)=y$ , and $GCD(a+b, a+c)=a+GCD(b, c)$ .

(3) Suppose that $t$ divides $a$ and $b+c$ . Then $t$ divides $a+b$ and $b+c$ .
Hence $t$ divides $GCD(a+b, b+c)$ , which is $b$ by (1). Therefore $t$ divides
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$a$ and $b$ , and hence $t=0$ .

Proposition 40. A GCD-semigroup $S$ is integrally closed.

Proof. Suppose that $u\in q(S)$ and that $nu\in S$ for some $ n\in$ N.
We can write $u=s_{1}-s_{2}$ for $s_{1},s_{2}\in S$ . Let $GCD(s_{1},s_{2})=r$ . Then
we have $GCD(s_{1}-r,s_{2}-r)=0$ by (2) of Proposition 39. Therefore we
may assume that $GCD(s_{1},s_{2})=0$ . Now $ns_{1}=s+(n-1)s2+S2$ . It
follows that $s_{2}$ is a unit because $GCD(ns_{1},s_{2})=0$ by (3) of Proposition
39. Hence $u\in S$ , and therefore $S$ is integrally closed.

41. If $S$ is integrally closod and if $T$ an additively closed set in $S$ ,
then $S_{T}$ is integraly closed.

42. Let $S_{i}$ be a family of g-monoids all contained in one large $g-$

monoid. Suppose that each $S_{i}$ is integrally closed $and\cap S_{i}\neq\emptyset$ . Then
$\cap S_{i}$ is integrally closed.

Let $S$ be a g-monoid, $A$ an S-module and $I$ an ideal in $S$ with
$I+A\neq A$ . Set $Z(A/(I+A))=\{s\in S|s+a\in I+A$ for some
$a\in A-(I+A)\}$ .

43. Let $S$ be a g-monoid and $I$ a proper ideal of $S$ . Then $Z(S/I)$ is a
prime ideal.

Proof. Assume that $s_{1}+s_{2}\in Z(S/I)$ for $s_{1},$ $s_{2}\in S$ . Then we can
take $y\not\in I$ satisfying $s_{1}+s_{2}+y\in I$ . If $s_{1}\not\in Z(S/I)$ , then $s_{2}+y\in I$ .
Hence $s_{2}\in Z(S/I)$ , and therefore $Z(S/I)$ is a prime ideal.

Theorem 44. Let $S$ be a g-monoid. Then $S=\cap\{S_{P}|P$ ranges over
all $Z(S/I)$ for all proper principal ideals $I$ of $S$}.

Proof. Take $u\in\cap S_{P}$ , say $u=s-t$ for $s,$ $t\in S$ . Let $I=$ $(t : s)_{S}$ .
If $I=S$ , then $s\in(t)$ . Then $u\in S$ . If $I\neq S$ , then $s\not\in(t)$ . Let $P=$
$Z(S/(t))$ . We can write $u=s-t=s_{1}-t_{1}$ for $s_{1}\in S,t_{1}\in S-P$ . Then
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$s+t_{1}=s_{1}+t\in(t)$ . Hence $t_{1}\in P$ for $s\not\in(t)$ ; a contradiction. Therefore
$S=\cap S_{P}$ .

Theorem 45. The following conditions are equivalent for $S$ .
(1) $S$ is integrally closed.
(2) Let $I$ be any proper principal ideal of $S$ and $P=Z(S/I)$ . Then

$S_{P}$ is integrally closed.

Proof. (2) $\Rightarrow(1)$ : By 42, $\cap\{S_{P}|P$ ranges over all $Z(S/I)$ for
all proper principal ideals $I$ of $S$} is integrally closed. By Theorem 44,
$S=\cap S_{P}$ . Therefore $S$ is integrally closed.

Let $S\subset T$ be g-monoids and let $I$ be an ideal of $S$ . Then $I$ is called
to survive in $T$ if $I+T\neq T$ .

Proposition 46. Let $S\subset T$ be g-monoids, $u$ a unit in $T$ and $I$ a
proper ideal of $S$ . Then $I$ survives either in $S[u]$ or in $S[-u]$ .

Proof. Suppose the contrary. Then we have $I+S[u]=S[u]$ and
$I+S[-u]=S[-u]$ , and hence $i_{1}+n_{1}u=0$ and $i_{2}-n_{2}u=0$ (for $i_{1},$ $ i_{2}\in$

$I,$ $n_{1},$ $n_{2}\in Z_{0}$ ). Then we have $n_{2}i_{1}+n_{1}n_{2}u=0$ and $n_{1}i_{2}-n_{1}n_{2}u=0$ . It
follows that $n_{2}i_{1}+n_{1}i_{2}=0$ . Hence $I=S$ ; a contradiction.

Let $G$ be a torsion-free abelian group, and $\Gamma$ a totally ordered abelian
group. A homomorphism $v$ of $G$ to $\Gamma$ is called a valuation on $G$ . The
subsemigroup $\{x\in G|v(x)\geq 0\}$ of $G$ is called the valuation semigroup
of $G$ associated with $v$ . Let $T$ be an oversemigroup of $S$ . If $T$ is a val-
uation semigroup of $q(S)$ , then $T$ is called a valuation oversemigroup of $S$ .

47 ([5, Lemma 10]). $S$ is a valuation semigroup if and only if $\alpha\in S$

$or-\alpha\in S$ for each $\alpha\in q(S)$ .

Proposition 48. Let $G$ be a group, $S$ a subsemigroup of $G$ and $I$ a
proper ideal of $S$ . Then there exists a valuation semigroup $V$ of $G$ such
that $I$ survives in $V$ .
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Proof. Consider all pairs $(S_{\alpha}, I_{a})$ , where $S_{\alpha}$ is a semigroup between
$S$ and $G$ , and $I_{\alpha}$ is a proper ideal of $S_{\alpha}$ with $I\subset I_{a}$ . If $S_{\alpha}\supset S_{\beta}$ and
$I_{a}\supset I_{\beta}$ , we set $(S_{\alpha}, I_{a})\geq(S_{\beta}, I_{\beta})$ . Zom’s lemma is applicable to yield
a maximal pair (V, $J$). We prove that if $u\in G$ then either $uor-u$ lies
in $V$ . Suppose the contrary. By Proposition 46, $J$ survives in $V[u]$ or in
$V[-u]$ ; a contradiction to the maximality of the pair (V, $J$). Therefore $V$

is a valuation semigroup of $G$ by 47.

Proposition 49. Let $S$ be an integrally closed semigroup with $quc\succ$

tient group $G$ . Then $S=\cap V_{a}$ where the $V_{a}^{\prime}s$ are valuation oversemigroups
of $S$ .

Proof. Take $y\in\cap V_{\alpha}$ . Suppose that $y\not\in S$ , write $y=-u$ . By
14, $-u\not\in S[u]$ , that is, $u+S[u]\neq S[u]$ . Then we can enlarge $S[u]$ to a
valuation oversemigroup $V$ of $S$ in such a way that $u+S[u]$ survives in
$V$ by Proposition 48. Then $y\not\in V$ ; a contradiction.

Let $S$ be a g-monoid with quotient group $G$ , and $I$ a non-empty subset
of $G$ . We say that $I$ is a fractional ideal of $S$ if

(i) $S+I\subset I$ .
(ii) There exists $s\in S$ such that $s+I\subset S$ .
For a fractional ideal $I$ of $S$ , let $I^{-1}$ be the set of all $x\in G$ with

$x+I\subset S$ . Then $I^{-1}$ is a fractional ideal of $S$ . We say that $I$ is invertible
if $I+I^{-1}=S$ .

Proposition 50. Any invertible fractional ideal $I$ of a g-monoid $S$ is
principal.

Proof. By the hypothesis, we have $I+I^{-1}=S$ . Then we can take
$a\in I,$ $b\in I^{-1}$ such that $a+b=0$ . If $x\in I$ , then $x=x+a+b\in(a)$ .
Hence $I=(a)$ .

51. Let $I$ be an invertible ideal of a g-monoid $S$ and $T$ an additively
$c1\mathfrak{c})s\propto 1$ set in $S$ . Then $I_{T}$ is an invertible ideal of $S_{T}$ .
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Proposition 52. Let $S$ be a g-monoid. Then the following conditions
are equivalent.

(1) $S$ is a valuation semigroup.
(2) Every finitely generated ideal of $S$ is principal.

Proof. (2) $\Rightarrow(1)$ : Take any elements $a_{1},$ $a_{2}\in S$ . Let $I=(a_{1}, a_{2})$ .
By the hypothesis, we can write $I=(a)$ for $a\in S$ . Then $a_{1}=s_{1}+a$

and $a_{2}=s_{2}+a$ for $s_{1},s_{2}\in S$ . We may assume that $a\in(a_{1})$ . Write
$a=s_{1}^{\prime}+a_{1}$ for $s_{1}^{\prime}\in S$ . Then $a_{1}=s_{1}+s_{1}^{\prime}+a_{1}$ , and we have $s_{1}+s_{1}^{\prime}=0$ .
Therefore $a_{1}$ divides $a_{2}$ . By 47, $S$ is a valuation semigroup.

By Proposition 52, we have the following,

53. If $S$ is a valuation semigroup, then for every prime ideal $P$ of $S$ ,
$S_{P}$ is a valuation semigroup.

Proposition 54. Let $S$ be a valuation semigroup, and $V$ a valuation
oversemigroup of $S$ . Then $V=S_{P}$ for some prime ideal $P$ of $S$ .

Proof. Let $N$ be a maximal ideal of $V$ and set $P=N\cap S$ . We have
$S_{P}\subset V$ . By 53, $S_{P}$ is a valuation semigroup. Suppose that $V\neq S_{P}$ .
Then we can take $v\in V-S_{P}$ . We have $-v\in S_{P},$ $say-v=a-s^{\prime}$ (for
$a\in S,$ $s^{\prime}\in S-P$). If $a\not\in P$ , then $s^{\prime}-a=v\in S_{P}$ ; a contradiction. If
$a\in P$ , then $a\in N$ . Hence $a+v=s^{\prime}\in P$ ; a contradiction. Therefore
$V=S_{P}$ .

Proposition 55. Let $G$ be a group and $X$ an indeterminate. Let $V$

be a valuation $s$emigroup of $q(G[X])$ with $V\neq q(G[X])$ . If $V$ contains $G$

properly, then $V=G[X]$ or $V=G[-X]$ .

Proof. Either $X$ or -X lies in $V$ . If $X\in V$ , then $V=G[X]$ . If
$X\not\in V$ , then $V=G[-X]$ .

56. Let $S$ be an integrally closed semigroup with quotient group $G$ ,
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and let $u$ be an element of $G$ . Assume that $u_{1}+nu=0$ for a unit $u_{1}$ of
$S$ and $n\in N$ . Then $u\in S$ .

57. Any g-monoid $S$ is a strong S-semigroup.

Proof. Let $P\supsetneqq Q$ be prime ideals of $S$ . Suppose that there are
IIO prime ideals properly between $P$ and $Q$ . Let $P^{*}\supsetneqq N\supsetneqq Q^{*}$ be prime
ideals of $S[X]$ . Take $f\in N-Q^{*}$ , say $f=a+nX$ . Since $X\not\in P^{*}$ , we have
$a\in N$ . Then $a\in N\cap S=Q$ , and hence $f=a+nX\in Q^{*};$ a contradiction.

58. Let $S$ be a g-monoid and $I,$ $J$ be ideals of $S[X]$ . Set $ I_{n}=\{s\in$

$S|s+nX\in I\}$ and $J_{n}=\{s^{\prime}\in S|s^{\prime}+nX\in J\}$ (for $n\in Z_{0}$). Then,
(1) If $I\subset J$ , then $I_{n}\subset J_{n}$ (for $n=0,1,2,$ $\cdots$).
(2) If $I\subset J$ and $I_{n}=J_{\mathfrak{n}}$ (for $n=0,1,2,$ $\cdots$ ), then $I=J$ .

Theorem 59. If $S$ is a Noetherian semigroup, then so is $S[X]$ .

Proof. Let $ I_{0}\subset I_{1}\subset\cdots$ be ideals of $S[X]$ and $I_{ij}=\{a\in S|$

$a+jX\in I_{i}\}(i,j\in Z_{0})$ . Then each $I_{ij}$ is an ideal of $S$ . By the hypothesis,
there exists $m\in Z_{0}$ such that $ I_{mj}=I_{(m+1)j}=\cdots$ for any $j$ . By 58, we
have $ I_{0}\subset I_{1}\subset\cdots\subset I_{m}=I_{m+1}=\cdots$ , and hence $S[X]$ is a Noetherian
semigroup.

60. Let $A$ be an S-module, and $A_{1},$ $A_{2}$ be submodules of $A$ satisfying
$A=A_{1}\cup A_{2}$ . If $A_{1}$ and $A_{2}$ satisfy the ascending chain condition on
S-submodules, then so does $A$ .

Proof. Let $ D_{1}\subset D_{2}\subset\cdots$ be an ascending chain of submodules in
$A$ . If each $D_{i}$ is contained in $A_{1}$ or in $A_{2}$ , then the chain must stop. If
there exists $i$ such that $D_{i}\not\subset M_{1}$ and $D_{i}\not\subset A_{2}$ , then we may assume that
$ D_{1}\cap A_{1}\neq\emptyset$ and $ D_{1}\cap A_{2}\neq\emptyset$ . Then $ D_{1}\cap A_{1}\subset D_{2}\cap A_{1}\subset\cdots$ forms an as-
cending chain of submodules in $A_{1}$ . Since $A_{1}$ satisfies the ascending chain
condition, there exists $m\in N$ such that $ D_{m}\cap A_{1}=D_{m+1}\cap A_{1}=\cdots$

Similarly we can take $n\in N$ such that $ D_{n}\cap A_{2}=D_{\mathfrak{n}+1}\cap A_{2}=\cdots$ . Let
$l=\max(m, n)$ . Then $ D_{1}\subset\cdots\subset D_{l}=D_{l+1}=\cdots$ . Therefore $A$ satisfies
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the ascending chain condition on submodules.

61. Let $S$ be a Noetherian semigroup, and $A$ a finitely generated $S-$

module. Then $A$ satisfies the ascending chain condition on S-submodules.

Proof. By 60, it suffices to prove in the case of $A=S+a$ for $a\in A$ .
Let $ A_{1}\subset A_{2}\subset\cdots$ be submodules of $A$ and $M_{i}=\{s\in S|s+a\in A_{i}\}$ .
Then $A_{i}=M_{i}+a$ for each $i$ . By the hypothesis, we can take $m\in N$

such that $ M_{1}\subset M_{2}\subset\cdots\subset M_{m}=M_{m+1}=\cdots$ . Hence $ A_{1}\subset A_{2}\subset\cdots\subset$

$ A_{m}=A_{m+1}=\cdots$ , and therefore $A$ satisfies the ascending chain condition.

Let $I$ be an ideal of a g-monoid $S$ . We define $nI$ as $nI=\{x_{1}+\cdots+x_{\mathfrak{n}}|$

$x_{i}\in I\}$ .

62. Let $S$ be a Noetherian semigroup, $I$ an ideal of $S,$ $A$ a finitely
generated S-module, and $B$ a submodule of $A$ . Let $C$ be a submodule
of $A$ which contains $I+B$ and is maximal with respect to the property
$C\cap B=I+B$ . Then $nI+A\subset C$ for some $n$ .

Proof. Since $I$ is finitely generated, it suffices to prove that, for any
$x$ in $I$ , there exists $m\in N$ with $mx+A\subset C$ . Define $D_{r}$ to be the
submodule of $A$ consisting of all $a\in A$ with $rx+a\in C$ . The submod-
ules $D_{r}$ form an ascending chain of submodules. By 60, it must become
stable, say at $r=m$ . We prove that $((mx+A)\cup C)\cap B=I+B$ . Let
$t\in((mx+A)\cup C)\cap B$ . Then we have $t\in mx+A$ or $t\in C$ . If $t\in C$ ,
then $t\in I+B$ . If $t\in mx+A$ , then we can write $t=mx+a$ for $a\in A$ .
Then $(m+1)x+a\in C$ , for $x+t\in x+B\subset I+B\subset C$ . We have
$mx+a\in C$ , that is, $t\in C$ since $D_{m}=D_{m+1}$ . Thus $t\in C\cap B=I+B$ .
Hence $((mx+A)\cup C)\cap B=I+B$ . By the maximality of $C$ , we have
$mx+A\subset C$ .

Proposition 63. Let $S$ be a Noetherian semigroup, $I$ an ideal of $S$

and $A$ a finitely generated S-module. Suppose that $ B=\bigcap_{n=1}^{\infty}(nI+A)\neq\emptyset$ .
Then $I+B=B$ .
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Proof. Among all submodules of $A$ containing $I+B$ , pick $C$ maximal
with respect to the property $C\cap B=I+B$ . By 62, we have $nI+A\subset C$

for some $n$ . Since $B\subset nI+A,$ $B$ is contained in $C$ . Therefore $B=I+B$ .

Let $S$ be a g-monoid and $A$ an S-module. If $s_{1}+x=s_{2}+x$ implies
$s_{1}=s_{2}$ for $s_{1},$ $s_{2}\in S$ and $x\in A$ , then $A$ is called a cancellative S-module.

64. Let $S$ be a g-monoid, $I$ an ideal of $S,$ $A$ a finitely generated can-
cellative S-module, and $x$ an element of $S$ satisfying $x+A\subset I+A$ . Then
$mx\in I$ for some $m\in N$ .

Proof. Write $A=\bigcup_{=1}^{\mathfrak{n}}(S+a_{1})$ for $a_{i}\in A$ . We may assume that
$x+a_{1}=i_{1}+a_{2},x+a_{2}=i_{2}+a_{3},$ $\cdots,x+a_{m}=i_{m}+a_{1}$ (for $i_{1},i_{2},$ $\cdots,i_{m}\in I$

and $m\leq n$). Then we have $mx=i_{1}+i_{2}+\cdots+i_{m}\in I$ .

64 implies the following,

65. Let $S$ be a g-monoid, $I$ an ideal of $S$, and $A$ a finitely generated
cancellative S-module satisfying $I+A=A$ . Then $I=S$ .

Proposition 66. Let $S$ be a Noetherian semigroup, $I$ a proper ideal of
$\emptyset S.$

’ and $A$ a finitely generated cancellative S-module. Then $\bigcap_{n=1}^{\infty}(nI+A)=$

Proof. Suppose the contrary. Write $B=\bigcap_{n=1}^{\infty}(nI+A)$ . Then
$B=I+B$ by Proposition 63. By 65, $I=S$ ; a contradiction.

By 65, we have the following,

Theorem 67. Let $S$ be a g-monoid with maximal ideal $M$ , and let
$A$ be a finitely generated cancellative S-module. Then $M+A\subsetneqq A$ .

68. Let $S$ be a g-monoid with maximal ideal $M,$ $A$ a finitely gen-
erated cancellative S-module, and $B$ an S-submodule of $A$ satisfying
$A\subset B\cup(M+A)$ . Then $A=B$ .
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Proof. Let $A=\bigcup_{i=1}^{n}(S+a_{i})$ . We may assume that $a_{j}\not\in S+a_{i}$

for $i\neq j$ . Suppose that $A\neq B$ . We can take $a_{j}\not\in B$ . Then we have
$a_{j}=x+a_{j}$ for $x\in M$ . It follows that $O\in M$ ; a contradiction.

69. Let $S$ be a Noetherian semigroup and $x$ a non-unit of $S$ . Then
$Z(S/(x))$ is not necessarily of the form $(x:s)s$ for $s\in S$ .

For example, let $S=Z_{0}\oplus Z_{0}$ and $x=(1,1)$ . Then $Z(S/(x))$ is a max-
imal ideal of $S$ , and we cannot take $s\in S$ satisfying $Z(S/(x))=(x:s)_{S}$ .

70. Let $I,$ $P_{1},$
$\cdots,$

$P_{r}$ be ideals of a g-monoid $S$ satisfying $ I\subset P_{1}\cup\cdots\cup$

$P_{r}$ . Assume that $P_{1},$
$\cdots,$

$P_{r}$ are prime ideals. Then $I$ is not necessarily
contained in some $P_{i}$ .

For example, let $S=Z_{o}\oplus Z_{0},$ $M=((1,0),$ $(0,1)),$ $P_{1}=((1,0))$ and
$P_{2}=((0,1))$ . Then $M\subset P_{1}\cup P_{2}$ and $M\not\subset P_{1},$ $M\not\subset P_{2}$ .

71. Let $S$ be a g-monoid, $I$ an ideal of $S$ , and $T$ an additively closed
set in $S$ . If $I^{\prime}$ is an ideal of $S_{T}$ , then $(I’ \cap S)_{T}=I^{\prime}$ .

By 71, we have the following,

72. Let $S$ be a Noetherian semigroup and $T$ an additively closed set
in $S$ . Then $S_{T}$ is a Noetherian semigroup.

Let $I$ be an ideal of $S$ . Set $\sqrt{I}=$ {$s\in S|ns\in I$ for some $n\in N$}.
We call $\sqrt{I}$ the radical of $I$ . Let $J$ be an ideal of $S$ such that $J=\sqrt{J}$.
Then $J$ is called a radical ideal of $S$ .

Proposition 73. Let $S\subsetneqq q(S)$ be a g-monoid satisfying the ascend-
ing chain condition on radical ideals. Then any radical ideal of $S$ is the
intersection of a finite number of prime ideals.

Proof. Suppose the contrary. Let $\{J_{\lambda}|\lambda\in\Lambda\}$ be the set of all radi-
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cal ideals that cannot be expressed as the intersection of a finite number
of prime ideals. Then we can take a radical ideal $I$ maximal among $J_{\lambda}’ s$ .
Since $I$ is not a prime ideal, we can pick $a,$ $b\in S$ satisfying $a\not\in I,$ $b\not\in I$

and $a+b\in I$ . Set $J=\sqrt{(I,a)}$ and $K=\sqrt{(I,b)}$ . By the maximality
of $I,$ $J$ and $K$ are intersections of a finite number of prime ideals. We
prove that $I=J\cap K$ . Take $x\in J\cap K$ . Assume that $x\not\in I$ . Then we
can take $m,n\in N$ such that $mx\in(a)$ and $nx\in(b)$ . By the hypothesis,
$(m+n)x\in I$ . It follows that $x\in I$ ; a contradiction. Hence $I=J\cap K$ and
therefore $I$ is expressible as the intersection of a finite number of prime
ideals; a contradiction.

73 implies the following,

74. Let $S$ be a g-monoid satisfying the ascending chain condition on
radical ideals, and let $I$ be an ideal of $S$ . Then there are only a finite
number of prime ideals minimal over $I$ .

Let $S$ be a g-monoid, and the $A_{i}$ be S-modules such that $ A=A_{1}\supsetneqq$

$A_{2}\supsetneqq\cdots\supsetneqq A_{n}$ . Then $n-1$ is called the length of the chain. If the
supremum of lengths of all chains of S-submodules of $A$ is finite, then $A$

is called to have finite length.

Proposition 75. Let $S$ be a g-monoid. Then the following three
conditions are equivalent.

(1) $S$ is a group.
(2) Any finitely generated S-module has finite length.
(3) $S$ as an S-module has finite length.

Proof. (1) $\Rightarrow(2)$ : Let $A=\bigcup_{j=1}^{n}(S+x_{j})$ be a finitely generated
S-module. Let $A_{1}$ be any S-submodule of $A$ . We may assume that
$x\cdots,$ $x\in A_{1}$ and $x_{i+1},$ $\cdots,x_{n}\not\in A_{1}$ . It suffices to prove that $A_{1}=$

$\bigcup_{j=1}^{i}(S+x_{j})$ . Take $a_{1}\in A_{1}$ , say $a_{1}=s+x_{j}$ . Then $x_{j}=a_{1}-s\in A_{1}$ .
Hence $A_{1}=\bigcup_{j=1}^{i}(S+x_{j})$ .

(3) $\Rightarrow(1)$ : Assume that $S$ is not a group, and let $M$ be a maximal
ideal of $S$ . Take $x\in M$ . Then we can make the chain $ S+x\supsetneqq S+2x\supsetneqq\cdots$ ;
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a colltradiction.

Let $a$ be an element of $S$ which is not a unit. Assume that $a=b+c$
(for $b,$ $c\in S$) implies that either $b$ or $c$ is a unit of $S$ . Then $a$ is called an
irreducible element of $S$ .

Proposition 76. The following conditions are equivalent for a $g-$

monoid $S$ with maXimal ideal $M$ .
(1) $S$ is a Noetherian semigroup of dimention $=1$ .
(2) Let $I$ be any ideal of $S$ . Then there exists $n\in N$ such that the

length of any chain of ideals between $S$ and $I$ is less than $n$ .

Proof. (1) $\Rightarrow(2)$ : There exist irreducible elements $x_{1},$ $\cdots,$ $x_{k}$ such
that $M=$ $(x_{1}, \cdots , x_{k})$ . We may assume that $I\subset M$ . Let $ M=I_{m}\supsetneqq$

$...\supsetneqq I_{1}\supsetneqq I_{0}=I$ be a chain of ideals of length $m$ . There exists a natural
number $h$ such that $hx_{i}\in I$ for every $i$ . Set $l=h^{k}$ . Each ideal $I_{i}$ is
generated by a finite number of elements $a_{1},$ $\cdots,$ $a_{n}$ , and each element $a_{j}$

is of the form $n_{1}x_{1}+\cdots+n_{k}x_{k}$ up to a unit of $S$ for $n_{i}\geq 0$ . We note
that $hx_{i}\in I$ for every $i$ . It follows that $m\leq l$ .

(2) $\Rightarrow(1)$ : Suppose that $\dim(S)\geq 2$ . Then we can take a chain
$S\supsetneqq P_{1}\supsetneqq P_{2}$ of prime ideals. Take $x\in P_{1}-P_{2}$ . Then we can make
a chain $S\supsetneqq(P_{2},x)\supsetneqq(P_{2},2x)\supsetneqq\cdots\supsetneqq P_{2}$ ; a contradiction. Hence
$\dim(S)=1$ . Let $M$ be a maximal ideal in $S,$ $y\in M$ and $I=(y)$ . We
$s$how that $M$ is finitely generated. If $M\supset I$ we can take $y_{1}\in M-I$

$\neq$ ’

and make $I_{1}=(y, y_{1})$ . If $M\supsetneqq I_{1}$ , we can take $y_{2}\in M-I_{1}$ and make
$I_{2}=(y, y_{1}, y_{2})$ . Continuing this work, we have our result. By Proposition
8, $S$ is a Noetherian semigroup.

77. Let $S$ be a l-dimentional g-monoid, and let $a$ and $c$ be elements
of $S$ . Let $J$ be the set of $s$ in $Ss$atisfying $s+na\in(c)$ for some $n$ . Then
$(J, a)=S$ .

Proof. If $a$ or $c$ is a unit, the assertion holds. Assume that $a$ and
$c$ are non-units. Let $M$ be a maximal ideal of $S$ and $I=(c)$ . We have
$\sqrt{I}=M$ since $\dim(S)=1$ . Then there exists $n\in N$ such that $na\in I$ .
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Hence $(J, a)=S$ .

78 ([7]). Let $S$ be a l-dimentional Noetherian semigroup with quo-
tient group $G$ , and $T$ any oversemigroup of $S$ . Then $T$ is again Noetherian
$aJ\iota d\dim(T)\leq 1$ .

79. Let $S$ be a Noetherian semigroup and $I$ a.proper ideal of $S$ .
Suppose that there exists $x\in I$ such that $I\subset Z(S/(x))$ . Then it is not
necessarily true that $I^{-1}\supsetneqq S$ .

For example, let $S=Z_{0}\oplus Z_{0}$ and $x=(1,1)$ . The prime ideals of $S$

are $(y),$ $(z)$ and $M=(y, z)$ (for $y=(1,0),$ $z=(0,1)$ ). We have $x\in M$

and $M\subset Z(S/(x))$ , but $M^{-1}=S$ .

80. Let $S$ be an integrally closed Noetherian semigroup, and $M$ a
maximal ideal of $S$ . Suppose that $M\subset Z(S/(x))$ for some $x\in M$ . Then
$M$ is not necessarily principal.

For example, let $S=Z_{0}\oplus Z_{0}$ and $M$ the maximal ideal of S. $S$ is
an integrally closed Noetherian semigIoup. Assume that $M$ is $a$ principal
ideal, say $M=(x)$ . Put $y=(1,0)$ . Then $P=(y)$ is a prime ideal and
$P\subsetneqq M$ . We can write $y=s+x$ (for $s\in S$). Since $y$ is a prime element,
$s\in P$ . Write $s=s^{\prime}+y$ (for $s^{\prime}\in S$). Then $y=s^{\prime}+y+x$ , that is,
$s^{\prime}+x=0$ . Hence $O\in M$ ; a contradiction. Therefore $M$ is not a principal
ideal. Let $z=(1,1)$ . Then $M=Z(S/(z))$ .

Let $G$ be a torsion-free abelian group. A homomorphism of $G$ onto $Z$

is called a discrete valuation (of rank 1) on $G$ . The valuation semigroup
of a discrete valuation (of rank 1) is called a discrete valuation semigroup
(of rank 1) (or DVS).

Proposition 81. Let $S$ be a g-monoid which is not a group. Then
the following conditions are equivalent.

(1) Every ideal of $S$ is principal.
(2) $S$ is Noetherian, integrally closed and of dimension 1.
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(3) $S$ is a DVS.

Proof. (1) $\Rightarrow(2)$ : By Proposition 52, $S$ is a valuation semigroup.

Hence $S$ is integrally closed.
(2) $\Rightarrow(3)$ : By [2].

82. Let $S$ be a DVS and $M$ a maximal ideal of $S$ . Then any ideal of
$S$ is of the form $nM$ uniquely (for $n\in N$).

Theorem 83. Let $S$ be a DVS with quotient group $G$ , and $L\supset G$ a
torsion-free abelian group with $(L : G)<\infty$ . Then the integral closure
$T$ of $S$ in $L$ is a DVS.

Proof. By the structure theorem of abelian groups, we can take sub-
groups $L_{0},$ $L_{1},$

$\cdots,$
$L_{m}$ of $G$ with $G=L_{0}\subset L_{1}\subset\cdots\subset L_{m}=L$ such that

each $L_{i+1}/L_{i}$ is a cyclic group of prime order. Let $T_{1}$ be the integral clo-
sure of $S$ in $L_{1}$ $(L_{1} : G)=p$ and $v$ the valuation on $G$ with the valuation
semigroup $S$ . Then $pl$ lies in $G$ for any $l\in L_{1}$ . Let $w:L_{1}\rightarrow Z\frac{1}{p}$ be the
map defined by $w(l)=\frac{1}{p}v(pl)$ . Then $w$ is a valuation on $L_{1}$ . Let $T_{1}^{\prime}$ be
the valuation $s$emigroup of $w$ . It is enough to show that $T_{1}=T_{1}^{\prime}$ . Take
$t\in T_{1}^{\prime}$ . Then $v(pt)\geq 0$ since $w(t)\geq 0$ . Hence $pt\in S$ and therefore $t\in T_{1}$ .
Take $l\in T_{1}$ , then $nl\in S$ for some $n\in N$ . It follows that $w(nl)\geq 0$ , and
hence $u$) $(l)\geq 0$ . We have proved $Th\infty rem83$ .

84. Let $T$ be a valuation semigroup with quotient group $G_{1}$ , let $G$ be
any non-zero $s$ubgroup of $G_{1}$ , and set $S=T\cap G$ . Then $S$ is a valuation
semigroup with quotient group $G$ . The value group of $S$ is in a natural
way a subgroup of that of $T$ . If $T$ is a DVS, so is $S$ .

Proposition 85. Let $S$ be a valuation semigroup with quotient group
$G$ . Let $L\supset G$ be a torsion-free abelian group which is algebraic over $G$ ,
and $T$ the integral closure of $S$ in $L$ . Then $T$ is a valuation semigroup.

Proof. Take $u\in L$ . There exists $n\in N$ such that $nu=s_{1}-s_{2}$ for
$s_{1},$ $s_{2}\in S$ . Then $s_{1}$ divides $s_{2}$ or $s_{2}$ divides $s_{1}$ . If $s_{1}$ divides $s_{2}$ , then
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$s_{2}=s+s_{1}$ for $s\in S$ . It follows that $nu+s+s_{1}=s_{1}$ , and hence
$7l(-u)=s\in S$ . $Therefore-u\in T$ . If $s_{2}$ divides $s_{1}$ , then $s_{1}=s^{\prime}+s_{2}$ for
$s^{\prime}\in S$ . It follows that $nu=s^{\prime}\in S$ . Hence $u\in T$ . By 47, $T$ is a valuation
semigroup.

86. Let $S$ be a Noetherian semigroup and $P$ $a$ prime ideal of $S$ . As-
sume that $x\in P\subset Z(S/(x))$ . Then it is not necessarily true that either
$ht(P)=1$ or $S_{P}$ is $a$ DVS.

For example, set $S=Z_{0}\oplus Z_{0}$ . Let $P$ be the maximal ideal of $S$ and
let $x=(1,1)$ . Then $x\in P\subset Z(S/(x))$ . But $ht(P)\neq 1$ and $S_{P}$ is not $a$

DVS.

87. If $S$ is an integrally closed Noetherian semigroup, then $S=\cap S_{P}$ ,
where $P$ ranges over the prime ideals of height 1.

Proof. By [2, Proposition 2].

88. Let a g-monoid $S$ be the intersection $V_{1}\cap V_{2}$ of valuation over-
semigroups $V_{1},$ $V_{2}$ of $S$ . If $V_{1}$ and $V_{2}$ are not comparable, then $S$ is not a
valuation semigroup.

Proof. Suppose that $S$ is a valuation semigroup. By Proposition
54, we have $V_{1}=S_{P_{1}}$ and $V_{2}=S_{P_{2}}$ for some prime ideals $P_{1},$ $P_{2}$ . Then
$P_{1}\supset P_{2}$ or $P_{1}\subset P_{2}$ . If $P_{1}\subset P_{2}$ , then $S_{P_{1}}\supset S_{P_{2}}$ ; a contradiction. If
$P_{1}\supset P_{2}$ , then $S_{P_{1}}\subset S_{P_{2}}$ ; a contradiction. Therefore $S$ is not a valuation
semigroup.

89 (A counter example for ([3, (22.8)])). Let $V_{1},$
$\cdots,$

$V$ be valuation
semigroups on a group $Gs$uch that $V_{i}\not\subset V_{j}$ for $i\neq j$ , and let $S=\cap V_{i}$ .
Then it is not necessarily true that the center of each valuation semigroup
$V_{i}$ on $S$ is a maximal ideal of $S$ .

For example, let $H$ be $a$ torsion-free abelian group, and $G=H\oplus Z$ .
Let $<_{1}$ be the usual order on Z. Define a mapping $v$ : $G\rightarrow Z$ by
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$v((h, 7t))=n$ , and let $V$ be the valuation semigroup of $v$ . Put $\Gamma=Z$

$aIld$ let $<2$ be the reverse order on Z. Define a mapping $w$ : $ G\rightarrow\Gamma$

by $v$ ) $((h,r\},))=n$ , and let $W$ be the valuation semigroup of $w$ . Then
$S=V\cap W=H\oplus\{0\}$ and $ S\cap Q=\emptyset$ for the maximal ideal $Q$ of $V$ .

90. Let a g-monoid $S$ be the intersection $V_{1}\cap\cdots\cap V_{n}$ , where the $V_{i}’ s$

are valuation oversemigroups of $S$ . Then it is not necessarily true that
each $V_{i}$ is expressible as the form $S_{P}$. for some prime ideal $P_{i}$ of $S$ .

For example, let $S$ be a 2-dimensional integrally closed Noetherian
semigroup. Let $M$ be the maximal ideal of $S$ . Suppose that $P_{1},$

$\cdots,$
$P_{n}$

be all the prime ideals of height 1 in $S$ . Then $V_{1}=S_{P}$. is a discrete
valuation oversemigroup of $S$ , and $S=\bigcap_{i}V_{i}$ by 87. On the other hand,
there exists a valuation oversemigroup $W$ of $S$ such that $Q\cap S=M$ for
the maximal ideals $Q$ of $W$ ([5, Lemma 9]). Then $S=W\cap V_{1}\cap\cdots\cap V_{n}$ .
If $W=S$ , then $W$ is a DVS. Hence $\dim(W)=1$ ; a contradiction.

91. Let $a,$
$b$ be non-units in a l-dimentional g-monoid $S$ . Then $na$ is

divisible by $b$ for some $n\in N$ .

Proof. Let $M$ be the maximal ideal of $S$ , and $I=(b)$ . Then $\sqrt{I}=M$ ,
for $\dim(S)=1$ . There exists $n\in N$ such that $na\in I$ . Hence $na=s+b$
(for $s\in S$).

Proposition 92. Let $S$ be a g-monoid satisfying $S=T_{1}\cap T_{2}$ , where
the $T’ s$ are oversemigroups of $S$ . Let $Q_{1},$ $Q_{2}$ be maximal ideaJs of $T_{1},T_{2}$

respectively, and set $P_{i}=Q_{i}\cap S$ . Assume further that $P_{1}$ and $P_{2}$ are
incomparable, and each $T_{i}$ is l-dimensional. Then $T_{i}=S_{P}$. for $i=1,2$ .

Proof. We take an element $t$ that lies in $P_{2}$ but not in $P_{1}$ . Let $x\in T_{1}$ ,
and write $x=y-z$ (for $y,$ $z\in T_{2}$ ). If $z$ is a unit in $T_{2}$ , then $x\in S$ , that
is, $x\in S_{P_{1}}$ . If $z$ is non-unit in $T_{2}$ , then there exists $n\in N$ such that $z$

divides $7?,t$ by 91. Write $nt=z+z_{1}$ (for $z_{1}\in T_{2}$ ), then $x+nt=y+z_{1}$ .
Since $nt+x\in T_{1}$ , we have $nt+x\in S$ , that is, $x\in S_{P_{1}}$ . Take $a\in S_{P_{1}}$ ,
say $a=s-p$ (for $s\in S,p\in S-P_{1}$ ). Then $p\not\in Q_{1}$ for $p\not\in P_{1}$ . Hence
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$-p\in T_{1}$ , that is, $a\in T_{1}$ and therefore $T_{1}=S_{P_{1}}$ . Similarly $T_{2}=S_{P_{2}}$ .

Let $S=\cap T_{i}$ , where each $T_{i}$ is an oversemigroup of $S$ . Let $N_{i}$ be the
maximal ideal of $T_{i}$ . We say that this representation is locally finite if
$aIlyelementofSliesinonlyafinitenumberoftheN_{i}’ s$ .

Proposition 93. Let a g-monoid $S$ be $a$ locally finite intersection
$\cap T_{i}$ of l-dimensional oversemigroups of $S$ . Let $Q_{i}$ be the maximal ideal
of $T_{i}$ , and $P_{i}=Q_{i}\cap S$ . Let $N$ be a prime ideal in $S$ . Then $N\supset P_{i}$ for
some $i$ .

Proof. Assume the contrary. Let $x$ be an element of $N$ and $P_{1},$
$\cdots,$

$P_{r}$

be the finite number of $P_{i}’ s$ containing $x$ . Pick $u_{j}$ in $P_{j}$ but not in $N$ (for
$j=1,$ $\cdots,$ $r$). Since $T_{j}$ is l-dimensional, we have $n_{j}u_{j}=t_{j}+x$ (for $t_{j}\in T_{j}$ ,
and for $n_{j}\in N$). Let $u=n_{1}u_{1}+\cdots+n_{r}u_{r}$ and $a=t_{1}+\cdots+t_{r}+(r-1)x$ .
Then $u=a+x$ . By the construction, $a\in T_{1}\cap\cdots\cap T_{r}$ . Let $ T_{k}\not\in$

$\{T_{1}, \cdots, T_{r}\}$ . Then $a=u-x\in T_{k}$ . It follows that $a\in S$ , and hence
$u\in N$ . Therefore $u_{i}\in N$ for some $i$ ; a contradiction.

Proposition 94. Suppose in addition to the hypothesis of Proposi-
tion 93, that an additively closed set $Y$ of $S$ with $S_{Y}\subsetneqq q(S)=G$ is given.
Then $S_{Y}$ is a locally finite intersection of the $T_{i}’ s$ that contain $S_{Y}$ .

Proof. Suppose that $S_{Y}\not\subset T_{i}$ for each $i$ . Let $M_{i}$ be the maximal
ideal of $W_{i}$ . Take $x\in G$ . Let $W_{1},$

$\cdots,$
$W_{k}$ be the finite number of $T_{i}’ s$

not containing $x$ . Since $S_{Y}\not\subset T_{i}$ , we can take $y_{i}\in Y$ which is a non-unit
in $T_{i}$ . Let $I_{i}=(W_{i}-x)\cap W_{i}$ . Then $I_{i}$ is an ideal of $W_{i}$ . Since $W_{i}$ is
l-dimensional, $\sqrt{I_{1}}=W_{i}$ or $=M_{1}$ . Then there exists $n_{i}\in Ns$uch that
$n_{i}y_{i}\in I_{1}\subset W_{i}-x$ . Hence $n_{i}y:+x\in W_{1}$ . Then $\Sigma n_{j}y_{j}+x$ lies in each $W_{i}$

and in other $T_{j}’ s$ . Hence $\Sigma n_{j}y_{j}+x\in S$ . Then $x\in S_{Y}$ , that is, $G=S_{Y}$ ,
a contradiction. Therefore $S_{Y}\subset T_{i}$ for some $i$ . Let us use the subscript
$j$ for a typical $T_{j}$ containing $S_{Y}$ . To prove $S_{Y}=\cap T_{j}$ we take $x\in\cap T_{j}$

and have to prove $x\in S_{Y}$ . Let $W_{1},$
$\cdots,$

$W_{r}$ be the finite number of $T_{i}’ s$

not containing $x$ . Then there exists $y_{k}\in Y$ with $-y_{k}\not\in W_{k}$ . By 91,
$7l_{ky_{k}}+x\in W_{k}$ for some $n_{k}$ . Then $\Sigma 7l_{k}y_{k}+x\in S$ and so $x\in S_{Y}$ . The
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representation $S_{Y}=\cap T_{j}$ is again locally finite.

Let $S$ be a g-monoid and $V$ a valuation oversemigroup of $S$ . If $V=S_{P}$

for some prime ideal $P$ , then $V$ is called essential.

95. Let a g-monoid $S$ be a locally finite intersection of l-dimensional
essential valuation oversemigroups of $S$ , and assume that $\dim(S)=1$ .
Then $S$ is one of the $V_{i}^{\prime}s$ .

Let $P$ be a prime ideal of a g-monoid $S$ . If $P$ contains no prime ideal
without $P$ , then $P$ is called a minimal prime ideal.

Proposition 96. Let a g-monoid $S$ be a locally finite intersection of
l-dimensional essential valuation oversemigroups of $S$ . Let $N$ be a mini-
mal prlme ideal of $S$ . Then $S_{N}$ is one of the $V_{i}’ s$ .

Proof. By Proposition 94, $S_{N}$ is a locally finite intersection of the
$V_{i}’ s$ that contain $S_{N}$ . By 95, $S_{N}$ is one of the $V_{i}’ s$ .

Let $V$ be a valuation semigroup. If the value group of $V$ is isomorphic
to a subgroup of the additive group of rational numbers, then $V$ is called
rational.

Proposition 97. Suppose, in addition to the hypothesis of PropQ
sition 93, that each $V_{i}$ is a rational valuation oversemigroup of $S$ . Then
$S=\cap V_{j}$ , where the intersection is taken over those $V_{i}’ s$ that have the
form $S_{N},$ $N$ a minimal prime ideal of $S$ .

Proof. If $V_{i}$ has the form $S_{N},$ $N$ a maximal ideal of $S$ , let us call
the $V_{i}$ e-type. If $V_{j}$ is not of etype, let us call the $V_{j}$ i-type. We show
that one i-type component can be deleted. Let $W$ be i-type, $Q$ a maximal
ideal of $W$ and $P=Q\cap S$ . If $P$ is a minimal prime ideal, then $S_{P}$ is
one of the $V_{i}’ s$ by Proposition 96. Let $S_{P}=V_{i}$ . Then $V_{1}\subset W$ . Hence
we can delete $W$ . So we may assume that $ht(P)\geq 2$ . Then there exists
a prime ideal $P^{\prime}$ such that $P\supsetneqq P^{\prime}$ . By Proposition 94, $P^{\prime}\supset P_{k}$ (for
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$P_{k}=Q_{k}\cap S,$ $Q_{k}$ is a maximal ideal of $V_{k}$ ). Take any $y\in P_{k}$ . Suppose
that $W$ can not be deleted. Then we can take an element $x$ that lies in
every $V_{i}$ but not in $W$ . Let $U_{W}$ be a group of units of $W$ and $G=q(S)$ .
Since $W$ is rational, we can take $m,$ $n\in Z$ such that $m\overline{x}+n\overline{y}=\overline{0}$ for
$\overline{x},\overline{y}\in G/U_{W}$ . Then $z=mx+ny$ is a unit of $W$ . Since $x\in V_{k}$ and $y\in Q_{k}$ ,
we have $z\in Q_{k}$ . On the other hand, $z$ lies in $S$. Thus $z$ is a unit of $W$

and non-unit of $V_{k}$ . This contradicts the inclusion $P_{k}\subset P$ . Hence we can
delete $W$ if it is i-type. Suppose that $u$ lies in every e-type $V_{i}$ . We show
that $u\in S$ . By the locally finiteness, $u$ lies in all but a finite number of
the $V_{:}’ s$ . The components which do not contain $u$ are i-type. Hence $u\in S$ .

An ideal inag-monoidS is called primary, ifI $\neq Sandifx+y\in I$

implies either $x\in I$ or $ny\in I$ for some $n\in N$ . Let $I$ be a primary ideal
of $S$ . Then $\sqrt{I}$ is the smallest prime ideal containing $I$ . If $P=\sqrt{I}$, then
$I$ is called $a$ P-primary ideal.

98. Let $S$ be a Noetherian semigroup with maximal ideal $M$ , and let
$I$ be an M-primary ideal. Then there exists $n\in Ns$uch that the length
of any chain of ideals between $I$ and $M$ is less than $n$ .

Proof. There exist irreducible elements $x_{1},$ $\cdots,x_{k}$ such that $M=$
$(x_{1}, \cdots,x_{k})$ . We may assume that $I\subset M$ . Let $ M=I_{m}\supsetneqq\cdots\supsetneqq I_{1}\supsetneqq$

$I_{0}=I$ be a chain of ideals of length $m$ . There exists a natural number $h$

such that $hx_{i}\in I$ for every $i$ . Set $l=h^{k}$ . Each ideal $L$ is generated by a
finite number of elements $a_{1},$ $\cdots,$ $a_{n}$ , and each element $a_{j}$ is of the form
$n_{1}x_{1}+\cdots+n_{k}x_{k}$ up to a unit of $S$ for $n_{i}\geq 0$ . We note that $hx_{i}\in I$ for
every $i$ . It follows that $m\leq l$ .

Theorem 99. Let $S$ be a Notherian $s$emigroup, $a$ a non-unit in $S$ ,
and $P$ a minimal prime ideal over $(a)$ . Then $ht(P)=1$ .

Proof. We may assume that $P$ is a maximal ideal in $S$ . Suppose
that there exists a prime ideal $P_{1}$ which is properly contained in $P$ . Since
$P$ is the only prime ideal which contains $(a),$ $(a)$ is a P-primary ideal.
Evidently $ P\supset(a, P_{1})\supset(a, 2P_{1})\supset\cdots$ and each $(a, iP_{1})$ contains $(a)$ . By
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99, there exists $n\in N$ such that $(a, nP_{1})=(a, (n+1)P_{1})=\cdots$ Hence
$rr\iota P_{1}\subset(a, (m+1)P_{1})\cap mP_{1}\subset((a)\cap mP_{1}, (m+1)P_{1})$ for any $m\geq n$ . Since
$rnP_{1}$ is a $P_{1}$-primary ideal and $a\not\in P_{1}$ , we have $(a)\cap mP_{1}=a+mP_{1}$ .
Then $mP_{1}\subset(a+mP_{1}, (m+1)P_{1})\subset(P+mP_{1}, (m+1)P_{1})$ . By 68,
$mP_{1}=(m+1)P_{1}$ . On the other hand, $\cap iP_{1}=\emptyset$ by Proposition 66; a
contradiction. Therefore $ht(P)=1$ .
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