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Note on Kaplansky’s Commutative Rings
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Let L be a torsion-free abelian (additive) group, and let S be a sub-
semigroup of L. Assume that S 5 0. Then S is called a grading monoid
(or a g-monoid) ([8]). Many technical terms in multiplicative ideal theo-
ries for commutative rings R may be defined analogously for g-monoids
S. For example, a non-empty subset I of a g-monoid S is called an ideal
of Sif S+ 1 CI. Anideal P of S is called a prime ideal of S, if P # S
and if z + y € P (for z,y € S) implies £ € P or y € P. An element z of
S is called a unit of S, if z+ y = O for some element y € S. An element z
of S is called a prime element of S, if S+ z is a prime ideal of S. If every
non-unit element of S is expressible as a finite sum of prime elements of
S, S is called a unique factorization semigroup (or a UFS). Let z,y be
elements of S. We say that = divides y, if y =z + s forsome s € S. S
is called a Noetherian semigroup, if each ideal I of S can be expressible
as I = U;(S + a;) for a finite number of elements ay,---a, of S. ---.
Many propositions in multiplicative ideal theories for commutative rings
R are known to hold for g-monoids S (cf. [1], [2] and [6]). Of course,
every technical term for commutative rings R can not be necessarily de-
fined for g-monoids S, and every proposition for R can not be necessarily
formulated for S. However, the second author conjectures that almost all
propositions in multiplicative ideal theories for R hold for S.

The aim of this paper is to prove propositions in Kaplansky’s Com-
mutative Rings ([4]) for g-monoids. We will prove for g-monoids S all the
propositions in [4, Ch.1 and Ch.2] that can be formulated for S. We will
give consecutive numbers for all of our propositions. The case that the
proof of some proposition is straightforward, we will omit it’s proof.

If an ideal I is properly contained in S, then I is called a proper ideal
of S. If, for a proper ideal M, there are no ideals properly between M
and S, then M is called a maximal ideal of S.

Let I be an ideal of a g-monoid S, and z,z;,---,z, € S. Then we set
(1, Zn) = U1 (S + ;) and (I,z) = TU (S + z). If I = (a) for some
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a € 5, then I is called a principal ideal of S.

1. Let Y be an additively closed set in a g-monoid .S, and I an ideal of
S maximal with respect to the exclusion of Y. Then I is a prime ideal of S.

Let Y be an additively closed set in a g-monoid S. Then Y is called
saturated, if s; + s3 € Y (for 51,2 € S) implies s;,s, € Y.

2. Let S be a g-monoid and Y a non-empty subset of S. Then the
following conditions are equivalent.

(1) Y is a saturated additively closed set.

(2) S—Y = U P, the union ranging over all prime ideals disjoint from
T.

Let a,b € S. We say that a and b are associated elements of S, if a—b
is a unit of S.

3. Let S be a g-monoid, and p1,---,pp, q1,- -+, gm be prime elements
of S. f pr+ -+ pa=q+ -+ gm, then n = m and p; and ¢; are
associated up to a permutation.

Proof. We prove by induction on n. Suppose that n > 1 and the
result is true for n — 1. There exists k € N such that ¢, € (p,). Hence
gr = s+ p, for s € S. Then s is a unit. We have py + -+ + pp_; =
S+tq+- -+ g1+ g1+ -+ gm. By the hypothesis, n — 1 =m — 1,
and p; and ¢; are associated up to a permutation.

4. Let S be a g-monoid, and Y the union of units and all elements in

S expressible as a finite sum of prime elements. Then Y is a, saturated
additively closed set.

Proposition 5. Let S be a g-monoid. Then the following conditions
are equivalent.

(1) S is a UFS.
(2) Every prime ideal of S contains a prime element.
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Proof. (2)=—= (1): Let T be the union of units and all elements of S
expressible as a sum of prime elements. Then T is saturated by 4. Sup-
pose that T'# S. Take ¢ € S — T. Then (c¢) is disjoint from T'. Expand
(¢) to a prime ideal P disjoint from 7. By the hypothesis, P contains
a prime element; a contradiction. Hence S = T', and therefore S is a UFS.

Let I be an ideal of S. We say that [ is finitely generated, if I =
(ai,---,ay) for a finite number of elements ay,---,a, € I.

If a non-empty set A satisfies the following conditions, then A is called
an S-module.

(i) s € S,a € A implies s+ a € A.

(i) 0+ a=a.

(iii) s1+ (s2 + a) = (s1+ s2) + a (for s1,s2 € S).

An S-module A is called finitely generated over S, if we can write
A =U~L,(S + z;) for a finite number of elements z,---,z, € A.

Let A be an S-module, z,a; € A, and (z:a1)s = {s € S |s+a; €
S+ z}.

Proposition 6. Let A be an S-module, and z € A. Assume that
I = (z : a1)s is maximal among all {(z : a1)s | a1 € A with a; € S + z}.
Then I is a prime ideal.

Proof. Assume that s1,s, € S and s; +s2 € I. If s; € I, then
s1+a1 €S+2x. Now I = (z:a1)s C (z: 81+ a1)s. By the hypothesis,
(z:a1)s = (x:s1+a1)s. Since 51+ s3 € I, we have s; +s3+a; € S+ z,
and hence s; € I. Therefore I is a prime ideal.

7. Let I be an ideal of a g-monoid S. Assume that I is not finitely
generated, and is maximal among all ideals of S that are not finitely gen-
erated. Then I is a prime ideal.

Proof. Suppose that a + b € I with neither a nor b in I. Then

the ideal (/,a) is finitely generated. Write (I,a) = (i1,---,%n,a) (for
i, ,in € [)and J={y€ S|y+ae€l} ThenJ DIandbe J.
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Hence J is finitely generated. Write J = (ji1,-- -, jm) (for j1,- -, jm € J).
We prove that I = (i1, -+ ,in,71+ a,- -+, jm + a). Take z € I. Then we
have z = iy + s1 or 2 = a + s; since z lies in (I,a). If z = i + s;, then
z € (i1, in, 1 + @, -+, jm + a). If 2 = a + s;, then we can write s, =
Ji+szsinces; € J. Then z=a+ji+s3 € (1, yin, 1+ Gy -, m + ).
It follows that I is finitely generated; a contradiction. Therefore I is a
prime ideal.

By the above 7, we have the following,

Proposition 8. If every prime ideal of a g-monoid 3 is finitely gen-
erated, then S is a Noetherian semigroup.

9. Let A C P, C P3 C --- be a chain of prime ideals of a g-monoid
S, then {J; P is a prime ideal of S. Let P, D P, D Py O --- be a chain of
prime ideals of S such that N; P; # @. Then N; P, is a prime ideal of S.

Let A D P, D --- be a chain of prime ideal of S. Then it is not
necessarily true that "; P, # 0.

10. Let I be an ideal of a g-monoid S, and P a prime ideal containing
I. Then P can be shrunk to a prime ideal minimal among all prime ideals
containing I.

Proposition 11. Let P C Q be distinct prime ideals of a g-monoid
S. Then there exist distinct prime ideals P;,Q, with P C Pci1cqQ
such that there are no prime ideals properly between P, and Q;.

Proof. Insert a maximal chain {P;} of prime ideals between P and
Q. Take any element z € Q — P. Define Q; to be the intersection of all
F; containing z, and P, the union of all P, not containing z. By 9, P,
and @, are prime ideals, and P C P, C @1 C Q. By the maximality of
{F.:}, no prime ideals can lie properly between P, and Q;.

Let S C T be g-monoids. An element a € T is called integral over S,
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if there exists n € N such that na € S. T is called integral over S if all
its elements are integral over S.

Proposition 12. Let S C T be g-monoids and u € T. Then the
following conditions are equivalent.

(1) u is integral over S.

(2) There exists a finitely generated S-submodule A of T such that
u+ A C A

Proof. (1)== (2): By the hypothesis, nu € S for some n € N. Set
A=SU(S+v)U---U(S+(n—1u). Thenu+ A C A.

(2)= (1): Let A = UL,(S + a;). We may assume that u + a; =
s1+a,u+a; =8 +az,---,ut+a_1=s8_1+aqandu+a = s+ ax
for the elements s; of S and for 1 < £k < Il < n. Then we have
(I —k+1)u = sg + Sg41+ - -- + s1. Thus u is integral over S.

13. Let S C I" be g-monoids. Then the set of all elements of I" that
are integral over S is a subsemigroup of I'.

We define Zg as Zg = {n € Z | n > 0}. Let S C T be g-monoids and
Uy, -+, Uy € T. Then the subset S + Zgu; + - - - + Zou, of T is denoted
by Sfui,---,us). Sfui,---,u,] is a subsemigroup of 7.

14. Let S be a g-monoid, and u an element of a g-monoid containing
S. Then —u is integral over S if and only if —u € S[u].

15. Let S be a g-monoid that is contained in a torsion-free abelian
(additive) group G. If G is integral over S, then S is a group.

Let S C T be g-monoids. If T = S|z, - - ,z,] forsome z,,---,z, € T,
then T is called a finitely generated g-monoid over S.

Proposition 16. Let S C T be g-monoids. Then the following

conditions are equivalent.
(1) T is a finitely generated S-module.
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(2) As a g-monoid, T is finitely generated over S and is integral over S.

Proof. (1)== (2): Let T = UL,(S + z;) for a finite number of
elements zy,---,2, € T. Then T = S[z,,---,z,]. By Proposition 12, T
is integral over S.

(2= (1): Let T = S[z1,---,z,] for a finite number of elements
Z1,---,Zn € T. Then we can take k; € N such that k;z; € S. Then
T = Uo<m;<k; (S + mazy + - - - + mpzy).

Let S be a g-monoid and q(S) = {s1 — sz | 81,52 € S}. We call q(S5)
the quotient group of S.

Proposition 17. Let S be a g-monoid with quotient group G. The
following conditions are equivalent.

(1) G is a finitely generated g-monoid over S.

(2) As a g-monoid, G can be generated over S by one element.

Proof. (1)== (2): Assume that G = S[u;,---,u,] and u; = a; — b;
(for a;,b; € S,1 <i<n). Put by+---+b, = c. Take any element f € G.
Then, for s € S and ky,---,k, € Zg, we have

f——-s+k1u1+---+k,,u,.———s+k1a1+---+k,.a,,—klbl—---—k,,b,,.

For a sufficiently large k € Zg, we have

f=stkiar+---tknan+(k—k1)bi+- - -+ (k—kn)bp—k(by+- - -+b,) =
81 — kc € S[—(| (for s, € S).

Hence G = S[—(|.

Let S be a g-monoid. If S satisfies either of the conditions in Propo-
sition 17, then § is called a G-semigroup.

18. Let S be a g-monoid with quotient group G. For an element
u € S the following conditions are equivalent.

(1) Any prime ideal of S contains u.

(2) Any ideal of S contains nu for some n € N.

3) G = S[—u].
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Proof. (1)== (2): Let I be an ideal of S. Suppose that I contains
no multiples of u. By 1, I can be expanded to a prime ideal P disjoint
from T = {nu | n € N}; a contradiction.

(2)=> (3): Take any element b € S. We can write nu = s + b (for
s € S,n € N) since nu € (b). Then —b = s —nu € S[—u]. Hence
G = S[—u].

(3)= (1): Let P be a prime ideal of S. Take any element b € P.
We can write —b = s —nu (for s € S;n € N). Then nu = s+ b € P.
Therefore u € P.

Let S be a g-monoid with quotient group G. If T' is a g-monoid lying
between S and G, then T is called an oversemigroup of S.

19. Let S be a G-semigroup and T an oversemigroup of S. Then T
is a G-semigroup.

Let S be a g-monoid, X an indeterminate and S[X] = {s+nX |s €
S,n € Zo}. We call S[X] the polynomial semigroup of X over S.

20. If a g-monoid S is a group, then S[X] is a G-semigroup.

Let S C T be g-monoids and u € T. Then u is called algebraic over
S, if there exists s € S and n € N such that s+ nu € S. If u is not
algebraic over S, u is called transcendental over S. T is called algebraic
over S if all its elements are algebraic over S.

Proposition 21. Let S C T be g-monoids. Assume that T is alge-
braic over S and finitely generated as a g-monoid over S. Then S is a
G-semigroup if and only if T is a G-semigroup.

Proof. Let G, G; be quotient groups of S, T respectively. Assume that
S is a G-semigroup, say G = S[—u]| (for u € S). Let f € T[—u]. Then we
cantaken € N, g € Gsuchthatnf = g. Then —f = (n—1)f—g € T[—u].
Hence T'[—u] is a group, and hence T is a G-semigroup. Assume that T
is a G-semigroup, G; = T[—v| (for v € T) and T = S[wy, - -, wy] (for
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w; € T). Since T is algebraic over S, we have a+mv = s and s;+mw; € S
for some a,s € S and m,m; € N. Let S; = S[—s, —sy,---, —Sk|. Then
Gy = Si[-v,wn,---,wy]. Since —v,wy, -, wy are integral over S;, G, is
integral over S;. By 15, S; is a group. Hence G = S;, and therefore S is
a G-semigroup.

Proposition 22. Let S C T be g-monoids and u € T. If S[u] is a
G-semigroup, then S is a G-semigroup.

Proof. Let G,G’ be quotient groups of S, S[u] respectively. Since
Slu] is a G-semigroup, G’ = S[u, —v] for v € S[u]. Let —v = g + ku for
9 € G and k € Z. Then G’ = S[u, g, ku].

() Assume that u is transcendental over S. Take any element g, €
G. We have g1 = s + myu + nag + ngku = s + (n1 + ngk)u + nypg (for
n1,N2,n3 € Zg). By the hypothesis, n; + nzgk = 0. Therefore G = Slg].

(i) Assume that u is algebraic over S. Then S is a G-semigroup by
Proposition 21.

23. Let S C T be g-monoids and u € T. Assume that S [u] is a
G-semigroup. Then u is not necessarily algebraic over S.

For example, assume that S is a group and X an indeterminate. Then
X is transcendental over S, but S[X] is a G-semigroup.

24. Let S be a g-monoid and N a maximal ideal of .S (X]. f Sis a
group, then NNS = @. If S is not a group, then NN S #0.

Proof. If S is a group, then N = § + NX. Hence NN S = .
If S is not a group, then we can take a maximal ideal M of S. Then
N = M U (S + NX), and therefore N N S # 0.

Let T be an additively closed set in a g-monoid S. We define St as

Sr ={s—~t|se€SteT}) LetIbe anideal of S. We write I for
I + St. Let P be a prime ideal of S. We write Sp for Sg_p.
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25. Let T be an additively closed set in a g-monoid S. Then there is
a one-to-one order-preserving correspondence between prime ideals of St
and prime ideals of S disjoint from 7'.

25 implies the following,

26. Let P be a prime ideal of a g-monoid S. Then there is a one-
to-one order-preserving correspondence between prime ideals of Sp and
prime ideals of S contained in P.

25 implies the following too,

27. Let S be a g-monoid with quotient group G, and X an indeter-
minate. Then there is a one-to-one correspondence between prime ideals
of S[X] disjoint from S and prime ideals of G[X].

Proposition 28. Let S be a g-monoid. Then there cannot exist in
S[X] a chain of three distinct prime ideals with the same contracted ideal

in S.

Proof. Suppose that there exists in S[X] a chain of three distinct
prime ideals @1 & Q2 G Q3 with the same contraction P in S. Take
fE€Qy— Q1. Then f = s+ nX fors € S,n € Zg. If nX & Q-, then
f € @ for s € P; a contradiction. Hence X € @Q;. Take g € Q3 — Q3,
sayg=8+n'Xfors’€e S;n' €Zy. If ”y =0,theng=8 € PC Q;; a
contradiction. Therefore n’ > 1. Then g = s'+n'X € Q»; a contradiction.

Let P= P 2 --- 2 P, be a chain of prime ideals of a g-monoid S.
Then n — 1 is called the length of the chain. Let k be the supremum
of lengths of all chains of prime ideals of S. Then k + 1 is called the
dimention of S, and is denoted by dim(S). Let ! be the supremum of
lengths of all chains of prime ideals P = P, 2 --- 2 P,. Thenl+1is
called the height of P, and is denoted by ht(P).

Let I be an ideal of S. Then we write I* for I + S[X].
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29. Let S be a g-monoid and @ a prime ideal of S[X]. If QNS = @,
then @ = (X).

Proof. Take any f € Q, say f = s+ nX (for s € S,n € Z,). If
n = 0, then f = s € §; a contradiction. Hence n > 1, and therefore
J € (X), that is, Q@ C (X). Since s € Q, we have nX € Q, that is,
X € Q. Therefore Q = (X).

By 29, for every prime ideal P of S of height 1, P* has height 1.

Assume that, for every prime ideals P 2 N in S with no prime ideals
properly between P and N, there cannot exist a prime ideal @ of S[X]
such that P* 2 @ 2 N*. Then S is called a strong S-semigroup.

Proposition 30. Let S be a strong S-semigroup, P a prime ideal of
height n in S, and @ a prime ideal of S[X] that contracts to P in S and
contains P* properly. Then ht(P*) = n and ht(Q) = n + 1.

Proof. Let P= P, 2 ... 2 P, be a chain of prime ideals of S. Then
we have the chain of prime ideals @ 2 P} 2 --- 2 P} in S[X]. It follows
that ht(P*) > n and ht(Q) > n + 1. We prove that ht(P*) < n and
ht(®) < n+ 1 by induction on n.

(i) n = 1: We have ht(P*) = 1. Assume that ht(Q) > 2. Then we
can take a chain of prime ideals @ = @1 2 Q2 2 Q3. By 29, Q. NS = P.
By 28, Q; = P*, and hence ht(P*) > 1; a contradiction. Therefore
ht(Q) = 2.

(i) Suppose that n > 1 and the result is true for n — 1. Assume
that ht(P*) > n. Then there exists a prime ideal Q, of S[X] such that
P* 2 Qn and ht(Q.) = n. By 29, we have Q, N S # 0. Let P, be the
contraction of @, to S. P, is properly contained in P. Let ht(P,) = m.
Then m < n. If Q, 2 P;, then ht(Q,) = m+ 1 by the induction hypoth-
esis. Hence there are no prime ideals properly between P and FP,, and
then S is not a strong S-semigroup; a contradiction. Therefore Qn = Pr.
Continuing this work we can make a chain of prime ideals of lengthn —1
descending from P,; a contradiction. Therefore ht(P*) = n. Assume that
ht(Q) > n+ 1. Then there exists a prime ideal Qn+1 such that Q 2 Qns1
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and ht(Qni1) = n+ 1. Let Qni1 NS = Ppyq and ht(FPoyy) = m. By
the hypothesis, n > m. If Qni1 2 Py, then ht(Qni1) = m + 1, that
is, n = m; a contradiction. Hence Qn41 = P;,;. Thenn+1=m; a
contradiction. Therefore ht(Q) =n + 1.

31. Let S € T C I’ be g-monoids and u an element of I'. Suppose that
u is integral over T and that T is integral over S. Then u is integral over S.

Let S C T be g-monoids. We may list four properties that might hold
for a pair S,T.

Lying over (LO): For any prime ideal P of S there exists a prime ideal
Qof T with@QnNS =P. ‘

Going up (GU): (i) (LO) holds, and (ii) Given prime ideals P, C P
of S and Qg of T with Qo NS = F,, there exists a prime ideals Q of T
satisfying Qo C Q and QNS = P.

Going down (GD): Given prime ideals P D Py of S and Q of T' with
Q NS = P, there exists a prime ideal Qo of T satisfying @ D Qo and
Qo N S =P 0-

Incomparable (INC): (i) If @ is a prime ideal of T, then QNS # 0,
and (ii) Two different prime ideals of T" with the same contracted ideal
of S cannot be comparable.

32. The following two conditions are equivalent for g-monoids S C T

(a) (GU) holds.

(b) (LO) holds. And if P is a prime ideal of S, J is the complement
of Pin S, and @ is an ideal of 7" maximal with respect to the exclusion
of J, then QNS = P.

Proof. (a)== (b): Let @ be maximal with respect to the exclusion
of J. By 1, @ is a prime ideal of T. We have to prove QNS = P. Q
lies over the prime ideal @ NS of S, and (GU) permits us to expand @
to a prime ideal @, of T lying over P. By the maximality of ), we have
Q= Q1.

(b)== (a): Let Py C P be prime ideals of S. Suppose that a prime
ideal Qg of T contracts to F in S. Then Q) is disjoint from J. Expand
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it to (), maximal with respect to the exclusion of J. By the hypothesis,
QNS = P, proving (GU).

33. The following conditions are equivalent for g-monoids S C T*

(a) (INC) holds. .

(b) For any prime ideal @ of T, we have QNS # 0. And if P is a
prime ideal of S, and @ is a prime ideal of T contracting to P in S, then
@ is maximal with respect to the exclusion of J, the complement of P in S.

Proof. (a)== (b): Let @, be a prime ideal of T disjoint from J. If
@1 properly contains Q, then @; NS = P; a contradiction. Therefore Q
is maximal with respect to the exclusion of J.

(b)== (a): Let P be a prime ideal of S, and let Q be a prime ideal
of T' that contracts to P in S. Suppose that there exists a prime ideal Q'
of T' such that Q'NS = P. By the hypothesis, Q and Q’ are incomparable.

Proposition 34. Let S C T be g-monoids with T integral over S.
Then the pair S, T satisfies (INC) and (GU).

Proof. (GU): Let P be a prime ideal of S, J the exclusion of P in S,
and @ an ideal of T' maximal with respect to the exclusion of J. Then
(P+T)NS = P. Suppose that @ NS # P. Then there exists u € P
such that u € QN S. The ideal (Q,u) is properly larger than Q. Take
J € (Q,u)NJ. We can write j = t 4 u for t € T. There exists m € N
such that mt € S. Then mj = mt + mu € P, and hence J € P; a
contradiction. Therefore @ NS = P. By 32, (GU) holds.

(INC): Let P be a prime ideal of S, Q a prime ideal of T contracting
to Pin S and J =S — P. We show that Q is maximal with respect to
the exclusion of .J. Suppose on the contrary that Q is properly contained
in an ideal I with I NJ void. Pick v € I — Q. There exists n € N such
that nv € S. Since INJ = @, nv lies in P. Then v € Q; a contradiction.
By 33, (INC) holds.

35. Assume that g-monoids S C T satisfy (INC). Let P, Q be prime
ideals of S, T respectively with @ NS = P. Then ht(Q) < ht(P).
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Let S be a g-monoid and P a prime ideal of S. Let m be the supre-
mum of lengths of all chains of prime ideals P = P; & --- G P,. Then m
is called the depth of P, and is denoted by depth(P).

36. Assume that g-monoids S C T satisfy (GU). Let P be a prime
ideal of S of height n < co. Then there exists in 7" a prime ideal @ lying
over P and having height > n. If, further, (INC) holds, then ht(Q) = n.

37. Assume that g-monoids S C T satisfy (GU) and (INC). Let @ be
a prime ideal of T'and P = Q NS. Then depth(P) = depth(Q).

37 implies the following,

38. Assume that g-monoids S C T satisfy (GU) and (INC). Then the
dimension of T' equals to the dimention of S.

Let a,b be elements in a g-monoid S. An element z € S is called a
common diviser of a and b, if z divides a and b. An element = € S is called
a greatest common diviser of a and b, if z is a common diviser of a and
b, and (z) C (y) for any common diviser y of a and b. The greatest com-
mon diviser of a and b is denoted by GCD(a, b). A g-monoid S is called a
GCD-semigroup if any two elements in S have a greatest common divisor.

Proposition 39. Let S be a GCD-semigroup. Then,

(1) GCD(a + b,a + ¢) = a+GCD(b, ¢).

(2) GCD(a, b) = d implies GCD(a — d,b —d) = 0.

(3) GCD(a, b) = GCD(a,c) = 0 implies GCD(a,b + c) = 0.

Proof. (1) Let GCD(a+b,a+c¢) = z. Then a divides z, say x = a+y.
Then y divides b and c. If z divides b and ¢, then a + 2 divides a + b and
a+c. Thus a+ 2z divides £ = a+ y, and hence 2 divides y. It follows that
GCD(b, c) = y, and GCD(a + b,a + ¢) = a+ GCD(b, ¢).

(3) Suppose that t divides a and b+ c. Then t divides a+ b and b+ c.
Hence t divides GCD(a + b, b+ c), which is b by (1). Therefore ¢ divides
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a and b, and hence t = 0.
Proposition 40. A GCD-semigroup S is integrally closed.

Proof. Suppose that u € q(S) and that nu € S for some n € N.
We can write u = s; — s; for 81,82 € S. Let GCD(s;,s2) = r. Then
we have GCD(s; — 1,82 —r) = 0 by (2) of Proposition 39. Therefore we
may assume that GCD(sy,82) = 0. Now ns; = s+ (n — 1)sy + 5. It
follows that s; is a unit because GCD(nsy, s2) = 0 by (3) of Proposition
39. Hence u € S, and therefore S is integrally closed.

41. If S is integrally closed and if T an additively closed set in S,
then Sr is integrally closed. :

42. Let S; be a family of g-monoids all contained in one large g-
monoid. Suppose that each S; is integrally closed and NS; # 8. Then
N S: is integrally closed.

Let S be a g-monoid, A an S-module and I an ideal in S with

I+A# A Set Z(A/(I+ A)) = {s€ S |s+a €I+ A for some
a€ A—(I+ A)}.

43. Let S be a g-monoid and I a proper ideal of S. Then Z(S/I) is a
prime ideal.

Proof. Assume that s; + s, € Z(S/I) for s;,s5 € S. Then we can
take y & I satisfying s; +s; +y € I. If s1 € Z(S/I), then s, +y € I.
Hence s; € Z(S/I), and therefore Z(S/1) is a prime ideal.

Theorem 44. Let S be a g-monoid. Then S = N{Sp | P ranges over
all Z(S/1) for all proper principal ideals I of S}.

Proof. Take u € NSp,say u = s —tfors,t € S. Let I = (¢ : s)s.

If I =S, thens € (t). Thenue S IfI+# S, thens ¢ (t). Let P =
Z(S/(t)). We can write u =85 —t =s, — ¢t; for s; € S,t1 € S— P. Then
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s+t =81+t € (t). Hence t; € P for s & (t); a contradiction. Therefore
S = ﬂ Sp.

Theorem 45. The following conditions are equivalent for S.

(1) S is integrally closed.

(2) Let I be any proper principal ideal of S and P = Z(S/I). Then
Sp is integrally closed.

Proof. (2)= (1): By 42, N{Sp | P ranges over all Z(S/I) for
all proper principal ideals I of S} is integrally closed. By Theorem 44,
S =N Sp. Therefore S is integrally closed.

Let S C T be g-monoids and let I be an ideal of S. Then I is called
tosurvivein Tif I+ T #T.

Proposition 46. Let S C T be g-monoids, v a unit in 7" and I a
proper ideal of S. Then I survives either in S[u] or in S[—u].

Proof. Suppose the contrary. Then we have I + S[u] = S[u] and
I + S[—wu] = S[—u], and hence ; + nyu = 0 and t; — nyu = 0 (for 73,13 €
I,n1,n3 € Zg). Then we have nyi; + ningu = 0 and ny22 — ningu = 0. It
follows that ngi; + n1i2 = 0. Hence I = S; a contradiction.

Let GG be a torsion-free abelian group, and I' a totally ordered abelian
group. A homomorphism v of G to I' is called a valuation on G. The
subsemigroup {z € G | v(z) > 0} of G is called the valuation semigroup
of G associated with v. Let T be an oversemigroup of S. If T is a val-
uation semigroup of q(S), then T is called a valuation oversemigroup of S.

47 ([5, Lemma 10]). S is a valuation semigroup if and only if & € S
or —a € S for each a € q(S).

Proposition 48. Let G be a group, S a subsemigroup of G and I a

proper ideal of S. Then there exists a valuation semigroup V of G such
that I survives in V.
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Proof. Consider all pairs (Sa, In), where S, is a semigroup between
S and G, and I, is a proper ideal of S, with I C I,. If S, D Sz and
I D I, we set (Sa,Ia) > (Sp,Ip). Zorn’s lemma is applicable to yield
a maximal pair (V,J). We prove that if u € G then either u or —u lies
in V. Suppose the contrary. By Proposition 46, J survives in V[u] or in
V[—u]; a contradiction to the maximality of the pair (V, J). Therefore V
is a valuation semigroup of G by 47.

Proposition 49. Let S be an integrally closed semigroup with quo-
tient group G. Then S = NV, where the Vs are valuation oversemigroups
of S.

Proof. Take y € NVa. Suppose that y ¢ S, write y = —u. By
14, —u & Slu], that is, u + S[u] # S[u]. Then we can enlarge S[u] to a
valuation oversemigroup V' of S in such a way that u + S[u] survives in
V by Proposition 48. Then y € V; a contradiction.

Let S be a g-monoid with quotient group G, and I a non-empty subset
of G. We say that I is a fractional ideal of S if

) S+1cl.

(ii) There exists s € S such that s+ I C S.

For a fractional ideal I of S, let I~! be the set of all z € G with
z+1 C S. Then I is a fractional ideal of S. We say that I is invertible
if I+171=38.

Proposition 50. Any invertible fractional ideal I of a g-monoid S is
principal.

Proof. By the hypothesis, we have I + I=! = S. Then we can take
a€l,belI'suchthata+b=0. Ifz€l,thenz=z+a+bc (a).
Hence I = (a).

51. Let I be an invertible ideal of a g-monoid S and T an additively
closed set in S. Then It is an invertible ideal of Sr.
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Proposition 52. Let S be a g-monoid. Then the following conditions
are equivalent.

(1) S is a valuation semigroup.

(2) Every finitely generated ideal of S is principal.

Proof. (2)== (1): Take any elements a;,a2 € S. Let I = (a;,as).
By the hypothesis, we can write I = (a) for a € S. Then a; = 81 + a
and a; = s; + a for 51,53 € S. We may assume that a € (a;). Write
a = s + a; for s§ € S. Then a; = s; + s} + a1, and we have s; + s} = 0.
Therefore a; divides a;. By 47, S is a valuation semigroup.

By Proposition 52, we have the following,

53. If S is a valuation semigroup, then for every prime ideal P of S,
Sp is a valuation semigroup.

Proposition 54. Let S be a valuation semigroup, and V a valuation
oversemigroup of S. Then V = Sp for some prime ideal P of S.

Proof. Let N be a maximal ideal of V and set P = NN S. We have
Sp C V. By 53, Sp is a valuation semigroup. Suppose that V # Sp.
Then we can take v € V — Sp. We have —v € Sp, say —v = a — s’ (for
a€S,s"e€eS—P) Ifag P, then s —a = v € Sp; a contradiction. If
a € P, then a € N. Hence a + v = s’ € P; a contradiction. Therefore
V = Sp.

Proposition 55. Let G be a group and X an indeterminate. Let V
be a valuation semigroup of q(G[X]) with V # q(G[X]). If V contains G
properly, then V = G[X] or V = G[-X].

Proof. Either X or —X lies in V. If X € V, then V = G[X]. If
X ¢V, then V = G[-X].

56. Let S be an integrally closed semigroup with quotient group G,
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and let u be an element of G. Assume that u; + nu = 0 for a unit u; of
Sandn € N. Thenu € S.

57. Any g-monoid S is a strong S-semigroup.

Proof. Let P 2 Q be prime ideals of S. Suppose that there are
no prime ideals properly between P and Q. Let P* 2 N ;Dﬁ Q* be prime
ideals of S[X]. Take f € N—Q*, say f = a+nX. Since X ¢ P*, we have
a€ N. Thena € NNS = Q, and hence f = a+nX € Q*; a contradiction.

58. Let S be a g-monoid and 1, J be ideals of S[X]. Set I, = {s €
S|s+nXel}land J,={s'€S|s+nX € J} (for n € Zy). Then,

(1) If I C J, then I, C J, (for n=0,1,2,--.).

2)IfIcJand I, =J, (forn=0,1,2,--.), then I = J.

Theorem 59. If S is a Noetherian semigroup, then so is S[X].

Proof. Let Iy C I, C --- be ideals of S[X] and I,'j = {a €S |
a+jX € L;}(3,j € Zo). Then each I;; is an ideal of S. By the hypothesis,

there exists m € Zg such that Iy = Iimyr)j = - - - for any j. By 58, we
have Iy C I C --- C I, = I;my1 = - -+, and hence S[X] is a Noetherian
semigroup.

60. Let A be an S-module, and A;, A2 be submodules of A satisfying
A = A UA,. If A and A; satisfy the ascending chain condition on
S-submodules, then so does A.

Proof. Let D, C D, C --- be an ascending chain of submodules in
A. If each D; is contained in A; or in A, then the chain must stop. If
there exists 4 such that D; ¢ M; and D; ¢ A,, then we may assume that
DiNA; #0and DiNAz # 0. Then DiNA; C DoNA; C --- forms an as-
cending chain of submodules in A;. Since A, satisfies the ascending chain
condition, there exists m € N such that D,,NA4; = D,,,1 NA; = --
Similarly we can take n € N such that D, N A, = D, 1NA; =.... Let
[ = max(m,n). Then D, C--- C Dy = Dy;y = ---. Therefore A satisfies
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the ascending chain condition on submodules.

61. Let S be a Noetherian semigroup, and A a finitely generated S-
module. Then A satisfies the ascending chain condition on S-submodules.

Proof. By 60, it suffices to prove in the case of A = S + a for a € A.
Let A; C Ay C --- be submodules of A and M; = {s € S| s+ a € A;}.
Then A; = M; + a for each 7. By the hypothesis, we can take m € N
such that My C M, C---CMp =My =---. Hence Ay C A, C--- C
Am = Ami1 = - - -, and therefore A satisfies the ascending chain condition.

Let I be an ideal of a g-monoid S. We define nl as nl = {z;+- - -+z, |
T; € I}

62. Let S be a Noetherian semigroup, I an ideal of S, A a finitely
generated S-module, and B a submodule of A. Let C be a submodule
of A which contains I + B and is maximal with respect to the property
CNB=1I1+ B. Then nl + A C C for some n.

Proof. Since [ is finitely generated, it suffices to prove that, for any
z in I, there exists m € N with mz + A C C. Define D, to be the
submodule of A consisting of all a € A with rz + a € C. The submod-
ules D, form an ascending chain of submodules. By 60, it must become
stable, say at = m. We prove that ((mz+ A)UC)NB =1 + B. Let
t € (mz+ A)UC)N B. Then we havet e mz + Aorte C. If t € C,
thent € I + B. If t € mz + A, then we can write t = mz + a for a € A.
Then (m+1)z+a € C,forz+tez+BcCcI+BcC. We have
mz +a € C, that is, t € C since D,, = Dpy1. Thust e CNB =1+ B.
Hence ((mz + A) UC) N B = I + B. By the maximality of C, we have
mzx+ ACC.

Proposition 63. Let S be a Noetherian semigroup, I an ideal of S
and A a finitely generated S-module. Suppose that B = N, (nI+A) # 0.
Then I + B = B.
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Proof. Among all submodules of A containing I + B, pick C' maximal
with respect to the property CNB = I+ B. By 62, we havenl+ AC C
for some n. Since B C nl+ A, B is contained in C. Therefore B = I + B.

Let S be a g-monoid and A an S-module. If s; + z = s; + z implies
s1 = 8o for 81,82 € S and x € A, then A is called a cancellative S-module.

64. Let S be a g-monoid, I an ideal of S, A a finitely generated can-
cellative S-module, and z an element of S satisfying x + A C I+ A. Then
mx € I for some m € N.

Proof. Write A = UL,(S + a;) for a; € A. We may assume that
z+a, =t1+az,z+az =i2+as, -+, T+am = iy, +a; (foriy,ip, -+, im €1
and m < n). Then we have mzr =%, +t2 + -+ + &y, € I.

64 implies the following,

65. Let S be a g-monoid, I an ideal of S, and A a finitely generated
cancellative S-module satisfying / + A = A. Then I = S.

Proposition 66. Let S be a Noetherian semigroup, I a proper ideal of
S, and A a finitely generated cancellative S-module. Then N, (nf+A) =
0.

Proof. Suppose the contrary. Write B = N,(nI + A). Then
B = I + B by Proposition 63. By 65, I = S; a contradiction.

By 65, we have the following,

Theorem 67. Let S be a g-monoid with maximal ideal M, and let
A be a finitely generated cancellative S-module. Then M + A G A

68. Let S be a g-monoid with maximal ideal M, A a finitely gen-

erated cancellative S-module, and B an S-submodule of A satisfying
ACBU(M+ A). Then A= B.
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Proof. Let A = UiL;(S + a;). We may assume that a; € S + a;
for i # j. Suppose that A # B. We can take a; € B. Then we have
a; =z + dj for 2 € M. It follows that O € M; a contradiction.

69. Let S be a Noetherian semigroup and z a non-unit of S. Then
Z(S/(x)) is not necessarily of the form (z : s)g for s € S.

For example, let S = Zo®Zo and z = (1,1). Then Z(S/(x)) is a max-
imal ideal of S, and we cannot take s € S satisfying Z(S/(z)) = (z : s)s.

70. Let I, P, - - -, P, be ideals of a g-monoid S satisfying I C P,U-.-U
F,. Assume that P,--., P, are prime ideals. Then I is not necessarily
contained in some P,.

For example, let S = Z, ® Zo, M = ((1,0),(0,1)), A, = ((1,0)) and
P, = ((0, 1)) Then M Cc PLUP,and M ¢ P,M¢ P

71. Let S be a g-monoid, I an ideal of S, and T an additively closed
set in S. If I is an ideal of Sz, then (I' N S)r = I'.

By 71, we have the following,

72. Let S be a Noetherian semigroup and T an additively closed set
in S. Then Sr is a Noetherian semigroup.

Let I be an ideal of S. Set I = {s € S | ns € I for some n € N}.
We call VT the radical of I. Let J be an ideal of S such that J = /J.
Then .J is called a radical ideal of S.

Proposition 73. Let S & q(S) be a g-monoid satisfying the ascend-
ing chain condition on radical ideals. Then any radical ideal of S is the
intersection of a finite number of prime ideals.

Proof. Suppose the contrary. Let {Jy | A € A} be the set of all radi-
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cal ideals that cannot be expressed as the intersection of a finite number
of prime ideals. Then we can take a radical ideal I maximal among Jj’s.
Since I is not a prime ideal, we can pick a,b € S satisfyinga & I,b & I
and a+b € I. Set J = ,/(I,a) and K = ,/(I,b). By the maximality
of I, J and K are intersections of a finite number of prime ideals. We
prove that I = JN K. Take x € JN K. Assume that z ¢ I. Then we
can take m,n € N such that mz € (a) and nz € (b). By the hypothesis,
(m+n)x € I. It follows that z € I; a contradiction. Hence I = JNK and
therefore I is expressible as the intersection of a finite number of prime
ideals; a contradiction.

73 implies the following,

74. Let S be a g-monoid satisfying the ascending chain condition on
radical ideals, and let I be an ideal of S. Then there are only a finite
number of prime ideals minimal over I.

Let S be a g-monoid, and the A; be S-modules such that A = A, ?t
Ay 2 --- 2 An. Then n — 1 is called the length of the chain. If the

supremum of lengths of all chains of S-submodules of A is finite, then A
is called to have finite length.

Proposition 75. Let S be a g-monoid. Then the following three
conditions are equivalent.

(1) S is a group. »

(2) Any finitely generated S-module has finite length.

(3) S as an S-module has finite length.

Proof. (1)= (2): Let A = U}_,(S + z;) be a finitely generated
S-module. Let A; be any S-submodule of A. We may assume that
T1, -, Zi € Ay and Tiyq,---,Zn & A;. It suffices to prove that A, =

;:I(S + z;). Take a; € A;, say a; = s + zj. Then z; = a; — s € A,;.
Hence A; = U}_,(S + z;).

(3)= (1): Assume that S is not a group, and let M be a maximal

ideal of S. Take z € M. Then we can make the chain S-+z 2 S+2z :;2 ce e
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a contradiction.

Let a be an element of S which is not a unit. Assume that a = b+ ¢
(for b,c € S) implies that either b or c is a unit of S. Then a is called an
irreducible element of S.

Proposition 76. The following conditions are equivalent for a g-
monoid S with maximal ideal M.

(1) S is a Noetherian semigroup of dimention = 1.

(2) Let I be any ideal of S. Then there exists n € N such that the
length of any chain of ideals between S and I is less than n.

Proof. (1)= (2): There exist irreducible elements z,,---,z) such
that M = (21,---,2x). We may assume that ] C M. Let M = I, 2
“e - 2 I, 2 Iy = I be a chain of ideals of length m. There exists a natural
number h such that hzx; € I for every i. Set I = h*. Each ideal I; is
generated by a finite number of elements a,,- - -, an, and each element a;
is of the form niz; + - -+ + ngzx up to a unit of S for n; > 0. We note
that hzx; € I for every i. It follows that m < I.

(2)== (1): Suppose that dim(S) > 2. Then we can take a chain
S 2 P 2 P of prime ideals. Take z € P; — P,. Then we can make
a chain S 2 (R,z) 2 (P,2z) 2 --- 2 P»; a contradiction. Hence
dim(S) = 1. Let M be a maximal ideal in S,y € M and I = (y). We
show that M is finitely generated. If M 2 I, we can take y; € M — I
and make Iy = (y,y1). If M 2 I, we can take yo € M — I; and make

I = (y,91,%2). Continuing this work, we have our result. By Proposition
8, S is a Noetherian semigroup.

77. Let S be a 1-dimentional g-monoid, and let a and ¢ be elements

of S. Let J be the set of s in .S satisfying s + na € (c) for some n. Then
(J,a) = S.

Proof. If a or c is a unit, the assertion holds. Assume that a and
¢ are non-units. Let M be a maximal ideal of S and I = (¢). We have
VI = M since dim(S) = 1. Then there exists n € N such that na € I.
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Hence (J,a) = S.

78 ([7]). Let S be a 1-dimentional Noetherian semigroup with quo-
tient group G, and T' any oversemigroup of S. Then T is again Noetherian
and dim(T’) < 1.

79. Let S be a Noetherian semigroup and I a proper ideal of S.
Suppose that there exists = € I such that I C Z(S/(z)). Then it is not
necessarily true that I-1 2 S.

For example, let S = Zy & Zo and z = (1,1). The prime ideals of S
are (y),(2) and M = (y,2) (for y = (1,0),2z = (0,1)). We have z € M
and M C Z(S/(z)), but M~' = S.

80. Let S be an integrally closed Noetherian semigroup, and M a
maximal ideal of S. Suppose that M C Z(S/(z)) for some z € M. Then
M is not necessarily principal.

For example, let S = Z¢ @ Z¢ and M the maximal ideal of S. Sis
an integrally closed Noetherian semigroup. Assume that M is a principal
ideal, say M = (z). Put y = (1,0). Then P = (y) is a prime ideal and
P ;C,: M. We can write y = s + z (for s € S). Since y is a prime element,
s € P. Writes =s'+y (for s’ € S). Then y = s’ + y + z, that is,
s'+z = 0. Hence 0 € M; a contradiction. Therefore M is not a principal
ideal. Let z = (1,1). Then M = Z(S/(2)).

Let GG be a torsion-free abelian group. A homomorphism of G onto Z
is called a discrete valuation (of rank 1) on G. The valuation semigroup

of a discrete valuation (of rank 1) is called a discrete valuation semigroup
(of rank 1) (or DVS).

Proposition 81. Let S be a g-monoid which is not a group. Then
the following conditions are equivalent.

(1) Every ideal of S is principal.

(2) S is Noetherian, integrally closed and of dimension 1.
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(3) Sis a DVS.

Proof. (1)== (2): By Proposition 52, S is a valuation semigroup.
Hence S is integrally closed.
(2)= (3): By [2].

82. Let S be a DVS and M a maximal ideal of S. Then any ideal of
S is of the form nM uniquely (for n € N).

Theorem 83. Let S be a DVS with quotient group G, and L D G a
torsion-free abelian group with (L : G) < oo. Then the integral closure
T of Sin L is a DVS.

Proof. By the structure theorem of abelian groups, we can take sub-
groups Lo, L1, -+, Lm of G with G = Lo C L; C --- C Ly, = L such that
each L;,1/L; is a cyclic group of prime order. Let T1 be the integral clo-
sure of S in L; ,(L; : G) = p and v the valuation on G with the valuation
semigroup S. Then pl lies in G for any | € L;. Let w: Ly — Z}D be the
map defined by w(l) = %'v(pl). Then w is a valuation on L;. Let T be
the valuation semigroup of w. It is enough to show that T} = T]. Take
t € TY. Then v(pt) > 0 since w(t) > 0. Hence pt € S and therefore ¢t € Tj.
Take | € Ty, then nl € S for some n € N. It follows that w(nl) > 0, and
hence w(l) > 0. We have proved Theorem 83.

84. Let T be a valuation semigroup with quotient group G, let G be
any non-zero subgroup of G, and set S = TN G. Then S is a valuation
semigroup with quotient group G. The value group of S is in a natural
way a subgroup of that of T. If T is a DVS, so is S.

Proposition 85. Let S be a valuation semigroup with quotient group
G. Let L D G be a torsion-free abelian group which is algebraic over G,

and T the integral closure of S in L. Then T is a valuation semigroup.

Proof. Take u € L. There exists n € N such that nu = s; — s for
$1,82 € S. Then s, divides s or s; divides s;. If s; divides sz, then



s = s+ s1 for s € S. It follows that nu + s + s; = s,, and hence
n(—u) = s € S. Therefore —u € T If s, divides s;, then s; = s’ + s, for
s’ € S. It follows that nu = s’ € S. Hence u € T. By 47, T is a valuation
semigroup.

86. Let S be a Noetherian semigroup and P a prime ideal of S. As-
sume that z € P C Z(S/(x)). Then it is not necessarily true that either
ht(P) =1 or Sp is a DVS.

For example, set S = Zo @ Z¢. Let P be the maximal ideal of S and
let z = (1,1). Then z € P C Z(S/(z)). But ht(P) # 1 and Sp is not a
DVS.

87. If S is an integrally closed Noetherian semigroup, then S = N Sp,
where P ranges over the prime ideals of height 1.

Proof. By [2, Proposition 2].

88. Let a g-monoid S be the intersection V; N V; of valuation over-
semigroups V1, V, of S. If V; and V5 are not comparable, then S is not a
valuation semigroup.

Proof. Suppose that S is a valuation semigroup. By Proposition
94, we have V; = Sp, and V, = Sp, for some prime ideals P, P,. Then
PpLD Por P CP. If P C P, then Sp, D Sp,; a contradiction. If
P, O P, then Sp, C Sp,; a contradiction. Therefore S is not a valuation
semigroup.

89 (A counter example for ([3, (22.8)])). Let W1, -+, V, be valuation
semigroups on a group G such that V; ¢ Vj fori # j, and let S = N V..
‘Then it is not necessarily true that the center of each valuation semigroup
Vi on S is a maximal ideal of S.

For example, let H be a torsion-free abelian group, and G = H @ Z.
Let <; be the usual order on Z. Define a mapping v : G — Z by
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v((h,n)) = n, and let V be the valuation semigroup of v. Put I' = Z
and let <, be the reverse order on Z. Define a mapping w : G — I’
by w((h,n)) = n, and let W be the valuation semigroup of w. Then
S=VNW=H® {0} and SNQ = 0 for the maximal ideal @ of V.

90. Let a g-monoid S be the intersection Vj N--- NV, where the V;’s
are valuation oversemigroups of S. Then it is not necessarily true that
each Vj is expressible as the form Sp, for some prime ideal F; of S.

For example, let S be a 2-dimensional integrally closed Noetherian
semigroup. Let M be the maximal ideal of S. Suppose that Pi,---, P,
be all the prime ideals of height 1 in S. Then V; = Sp, is a discrete
valuation oversemigroup of S, and S = (; Vi by 87. On the other hand,
there exists a valuation oversemigroup W of S such that Q NS = M for
the maximal ideals Q of W ([5, Lemma 9]). Then S=WnWVin---NV,.
If W =8, then W is a DVS. Hence dim(W) = 1; a contradiction.

91. Let a, b be non-units in a 1-dimentional g-monoid S. Then na is
divisible by b for some n € N.

Proof. Let M be the maximal ideal of S, and I = (b). Then VI = M,
for dim(S) = 1. There exists n € N such that na € I. Hence na =s+b
(for s € S).

Proposition 92. Let S be a g-monoid satisfying S = T1 N T3, where
the T’s are oversemigroups of S. Let @i, Q2 be maximal ideals of T3, 7>
respectively, and set P; = Q; N'S. Assume further that P, and P, are
incomparable, and each T; is 1-dimensional. Then T; = Sp, for ¢ =1, 2.

Proof. We take an element ¢ that lies in P, but not in P,. Let z € T3,
and write z = y — z (for y,2 € T3). If z is a unit in 73, then = € S, that
is, x € Sp,. If 2 is non-unit in T3, then there exists n € N such that z
divides nt by 91. Write nt = z + 2, (for z; € T3), then z + nt = y + 2.
Since nt + z € Ty, we have nt + = € S, that is, £ € Sp,. Take a € Sp,,
saya=s—p (fors € S,p € S — P). Then p € Q, for p € P,. Hence
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—p € Th, that is, a € T} and therefore T} = Sp,. Similarly T3 = Sp,.

Let S = NT;, where each T; is an oversemigroup of S. Let N; be the
maximal ideal of T;. We say that this representation is locally finite if
any element of S lies in only a finite number of the N;’s.

Proposition 93. Let a g-monoid S be a locally finite intersection
NT; of 1-dimensional oversemigroups of S. Let Q; be the maximal ideal
of T;, and P, = Q;NS. Let N be a prime ideal in S. Then N O F; for
some 1.

Proof. Assume the contrary. Let = be an element of N and B,---,P,
be the finite number of P;’s containing z. Pick u; in P; but not in N (for
J=1,--+,r). Since T is 1-dimensional, we have n,u,; = tit+z (fort; € T;,
and for n; € N). Let u = nju1+---+n,u, anda = b+ -+t +(r—1)z.
Then u = a + z. By the construction, a € Ty N --- NT,. Let T} &
{Th,---,T;}. Thena =u—z € T}. It follows that a € S, and hence
u € N. Therefore u; € N for some i; a contradiction.

Proposition 94. Suppose in addition to the hypothesis of Proposi-
tion 93, that an additively closed set Y of S with Sy G q(S) = G is given.
Then Sy is a locally finite intersection of the Ty’s that contain Sy.

Proof. Suppose that Sy ¢ T; for each i. Let M; be the maximal
ideal of W;. Take z € G. Let Wi, ---, Wi be the finite number of T:'s
not containing z. Since Sy ¢ T;, we can take ¥i € Y which is a non-unit
inT;. Let I; = (W; —z) N W;. Then I is an ideal of W;. Since W; is
1-dimensional, /I; = W, or = M;. Then there exists n; € N such that
ny; € I; C W; — z. Hence n;y; + x € W;. Then Yn;y; + x lies in each W;
and in other 7;’s. Hence Ynjy; +z € S. Then z € Sy, that is, G = Sy,
a contradiction. Therefore Sy C T; for some i. Let us use the subscript
J for a typical T; containing Sy. To prove Sy = NT; we take z € NT;
and have to prove z € Sy. Let Wi, -, W, be the finite number of T:’s
not containing z. Then there exists yx € Y with —y; ¢ Wi. By 91,
Yk + x € Wi for some ng. Then Y¥ngyr + 2 € S and so z € Sy. The
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representation Sy = (7 is again locally finite.

Let S be a g-monoid and V a valuation oversemigroup of S. If V = Sp
for some prime ideal P, then V is called essential.

95. Let a g-monoid S be a locally finite intersection of 1-dimensional
essential valuation oversemigroups of S, and assume that dim(S) = 1.
Then S is one of the V]'s.

Let P be a prime ideal of a g-monoid S. If P contains no prime ideal
without P, then P is called a minimal prime ideal.

Proposition 96. Let a g-monoid S be a locally finite intersection of
1-dimensional essential valuation oversemigroups of S. Let N be a mini-
mal prime ideal of S. Then Sy is one of the V}’s.

Proof. By Proposition 94, Sy is a locally finite intersection of the
Vi’s that contain Sy. By 95, Sy is one of the V;’s.

Let V be a valuation semigroup. If the value group of V is isomorphic
to a subgroup of the additive group of rational numbers, then V is called
rational.

Proposition 97. Suppose, in addition to the hypothesis of Propo-
sition 93, that each V; is a rational valuation oversemigroup of S. Then
S = NVj, where the intersection is taken over those V;’s that have the
form Sy, N a minimal prime ideal of S.

Proof. If V; has the form Sy, N a maximal ideal of S, let us call
the V; e-type. If V; is not of e-type, let us call the V; i-type. We show
that one i-type component can be deleted. Let W be i-type, @ a maximal
ideal of W and P = QNS. If P is a minimal prime ideal, then Sp is
one of the V;’s by Proposition 96. Let Sp = V;. Then V; C W. Hence
we can delete W. So we may assume that ht(P) > 2. Then there exists
a prime ideal P’ such that P 2 P’. By Proposition 94, P’ > P (for



P = Qr N S,Qx is a maximal ideal of Vi). Take any y € P.. Suppose
that W can not be deleted. Then we can take an element z that lies in
every V; but not in W. Let Uw be a group of units of W and G = q(S).
Since W is rational, we can take m,n € Z such that mz + ng = 0 for
Z,9 € G/Uw. Then z = mz+nyis aunit of W. Sincer € Vy and y € Qy,
we have z € Q. On the other hand, 2 lies in S. Thus 2z is a unit of W
and non-unit of V;. This contradicts the inclusion P, C P. Hence we can
delete W if it is i-type. Suppose that u lies in every e-type V;. We show
that v € S. By the locally finiteness, u lies in all but a finite number of
the V;’s. The components which do not contain u are i-type. Henceu € S.

An ideal in a g-monoid S is called primary, if ] # S and ifz +y € I
implies either z € I or ny € I for some n € N. Let I be a primary ideal
of S. Then VT is the smallest prime ideal containing I. If P = vI , then
I is called a P-primary ideal.

98. Let S be a Noetherian semigroup with maximal ideal M, and let
I be an M-primary ideal. Then there exists n € N such that the length
of any chain of ideals between I and M is less than n.

Proof. There exist irreducible elements z,-- -,z such that M =
(z1,---,z). We may assume that ] C¢ M. Let M = I, 2--- 215 2
Ip = I be a chain of ideals of length m. There exists a natural number h
such that hx; € I for every i. Set I = h*. Each ideal I; is generated by a
finite number of elements a,,- - -, a,, and each element a; is of the form
n1Z1 + -+ - + NkZi up to a unit of S for n; > 0. We note that hz; € I for
every i. It follows that m <.

Theorem 99. Let S be a Notherian semigroup, a a non-unit in S ,
and P a minimal prime ideal over (a). Then ht(P) = 1.

Proof. We may assume that P is a maximal ideal in S. Suppose
that there exists a prime ideal P; which is properly contained in P. Since
P is the only prime ideal which contains (a), (a) is a P-primary ideal.
Evidently P O (a, P) D (a,2P;) D --- and each (a,iP;) contains (a). By
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99, there exists n € N such that (a,nP;) = (a,(n + 1)P;) = ---. Hence
mP, C (a,(m+1)P)NmP, C ((a)NmPy, (m+1)P,) for any m > n. Since
mPy is a P-primary ideal and a ¢ P, we have (a) NmP; = a + mP,.
Then mP; C (a+ mP,(m+ 1)P)) C (P + mP,(m + 1)P). By 68,
mP;, = (m + 1)P;. On the other hand, NiP; = @ by Proposition 66; a
contradiction. Therefore ht(P) = 1.
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