On 3-dimensional Riemannian manifolds satisfying a certain condition on the curvature tensor

By

Hitoshi TAKAGI and Kouei SEKIGAWA

(Received July 20, 1968)

1. Introduction

If a Riemannian manifold M is locally symmetric, then its curvature tensor R satisfies

(*)
$$R(X, Y) \cdot R = 0$$
 for all tangent vectors X and Y ,

where the endomorphism R(X, Y) operates on R as a derivation of tensor algebra at each point of M.

Conversely, does this algebraic condition (*) on the curvature tensor field R imply that M is locally symmetric (i. e. $\nabla R = 0$)?

One must exclude the 2-dimentional case, as was already observed by E. Cartan, 1. K. Nomizu has conjectured that the answer is affirmative in the case where M is irreducible and complete and dim. $M \ge 3$. There are some partial or related results in this direction.

The main purpose of the present paper is to deal with the same problem about 3-dimensional Riemannian manifolds.

2. Reduction of condition (*) and some results

Let M be a 3-dimensional connected Riemannian manifold, then it is well known that the curvature tensor R of M is written in the form

(2.1)
$$R(X, Y) = AX \wedge Y + X \wedge AY - \frac{1}{2} \text{ (trace } A)X \wedge Y$$

where A is a field of symmetric endomorphism which corresponds to the Ricci tensor field S, that is, g(AX, Y) = S(X, Y), g being the Riemannian metric and $X \wedge Y$ denotes the endomorphism which maps Z upon g(Z, Y)X - g(Z, X)Y.

At a point $x \in M$, let $\{e_1, e_2, e_3\}$ be an orthogonal basis of the tangent space $T_x(M)$ such that $Ae_i = \lambda_i e_i$, i = 1, 2, 3.

Then, the equation (2.1) implies

$$(2.2) R(e_i, e_j) = (\lambda_i + \lambda_j - \frac{1}{2} \sum_{k=1}^{3} \lambda_k) e_i \wedge e_j.$$

By computing

$$(R(e_i, e_j) \cdot R)(e_k, e_l) = [R(e_i, e_j), R(e_k, e_l)] - R(R(e_i, e_j)e_k, e_l)$$

- $R(e_k, R(e_i, e_j)e_l),$

we find that it is zero except possibly in the case where k=i and l+i, j (i+j). For this case we have

$$(2.3) (R(e_i, e_j) \cdot R)(e_i, e_l) = (\lambda_j - \lambda_i)(\lambda_j + \lambda_i - \frac{1}{2} \sum_{k=1}^{3} \lambda_k)e_j \wedge e_l.$$

Thus, we see that the condition (*) is equivalent to

(2.4)
$$(\lambda_j - \lambda_i)(2(\lambda_j + \lambda_i) - \sum_{k=1}^{3} \lambda_k) = 0, \quad \text{for } i \neq j.$$

Then, we have the following

THEOREM. Let M be a 3-dimensional connected Riemannian manifold whose curvature tensor R satisfies the condition (*). If the rank of the Ricci form is 3 at some point of M, then M is a space of constant curvature.

PROOF. We assume that the rank of the Ricci form is 3 at a point $x_0 \in M$. Then, if $\lambda_1 = \lambda_2$, $\lambda_2 \neq \lambda_3$, then from (2. 4), we get

$$2(\lambda_1+\lambda_3)-(2\lambda_1+\lambda_3)=0.$$

Thus, we get $\lambda_3 = 0$. This is a contradiction.

Similarly, if $\lambda_1 + \lambda_2$, $\lambda_2 + \lambda_3$, $\lambda_3 + \lambda_1$, then from (2.4), we get

$$2(\lambda_1+\lambda_2)-\sum_{k=1}^3\lambda_k=0$$

and

$$2(\lambda_2 + \lambda_3) - \sum_{k=1}^{3} \lambda_k = 0.$$

Thus, we get $\lambda_1 = \lambda_3$. This is a contradiction. Therefore, we can conclude that $\lambda_1 = \lambda_2 = \lambda_3$ at x_0 .

Now, let $W = \{x \in M : \text{the rank of } S \text{ is } 3 \text{ at } x\}$, which is an open set. Let W_0 be the connected component of x_0 in W. Then, we can easily see that $\lambda_1 = \lambda_2 = \lambda_3 \equiv \lambda(+0)$ on W_0 and hence λ is constant on W_0 . We now show that W_0 is actually equal to M. Let x be a point of $W_0 - W_0$. By the continuity argument for the characteristic polynomial of A, we see that the the rank of S is equal to S at S. Thus, S is open and closed so that S is equal to S at S is open and hence, by virtue of S is a space of constant curvature S and hence, by virtue of S is a space of constant curvature S and S is equal to S at S and hence, by virtue of S is a space of constant curvature S and S is equal to S and hence, by virtue of S is a space of constant curvature S and S is equal to S and hence, by virtue of S is a space of constant curvature S is an S is equal to S and hence, by virtue of S is equal to S is a space of constant curvature S is an S and hence, by virtue of S is equal to S is a space of constant curvature S is an S is an S in S is an S is an S in S in S in S in S is an S in S in

In the next place, we assume that the rank of A (or S) is 2 at some pont, say $x_0 \in M$. In this case, if $\lambda_3 = 0$ at x_0 , then we see that $\lambda_1 = \lambda_2 \neq 0$.

We shall now state a few examples of non-symmetric and irreducible Riemannian manifolds satisfying the condition (*).

Let M be a 2-dimensional Riemannian manifold with metric g, I an open interval of a real line R with natural metric dt^2 and $\overline{M}=M\times I$. The tangent space $T_p(\overline{M})$ at a point $\overline{p}\in \overline{M}(\overline{p}=(p,t),\ p\in M$ and $t\in I)$ is considered as the direct sum $T_p(M)+T_t(I)$, where $T_p(M)$ and $T_t(I)$ are the tangent spaces at $p\in M$ and $t\in I$ respectively. That is, any $X\in T_p(M)$ is uniquely decomposed as

$$\overline{X} = X + X_I$$
, $X \in T_p(M)$, $X_I \in T_t(I)$.

Now, we shall define the following Riemannian metric \overline{g} on \overline{M} ;

$$\overline{g}(\overline{X}, \overline{Y}) = e^{-2\lambda}g(X, Y) + e^{-2\mu}dt(X_I)dt(Y_I),$$

where λ and μ are some functions of $t \in I$.

If we denote by $\{X, Y\}$ an orthonormal basis of vector fields on a neighborhood $U \subset M$, then $\left(\overline{X} = e^{\lambda}X, \overline{Y} = e^{\lambda}Y, \overline{Z} = e^{\mu} - \frac{\partial}{\partial t}\right)$ is an orthonormal basis of vector fields on $U \times I \subset M$.

Between the Riemannian connections ∇ and $\overline{\nabla}$ corresponding to g and \overline{g} , the following relations are valid;

$$\overline{\nabla x} \overline{X} = e^{\lambda} g(Y, \nabla x X) \overline{Y} + \lambda' e^{\mu} \overline{Z} = e^{\lambda} \nabla x X + \lambda' e^{2\mu} \frac{\partial}{\partial t}$$

$$\overline{\nabla y} \overline{Y} = e^{\lambda} g(X, \nabla_Y Y) \overline{Y} + \lambda' e^{\mu} \overline{Z} = e^{\lambda} \nabla_Y Y + \lambda' e^{2\mu} \frac{\partial}{\partial t}$$

$$\overline{\nabla x} \overline{Y} = e^{\lambda} g(X, \nabla_X Y) \overline{X} = e^{2\lambda} \nabla_X Y$$

$$\overline{\nabla y} \overline{X} = e^{\lambda} g(Y, \nabla_Y X) \overline{Y} = e^{2\lambda} \nabla_Y X$$

$$\overline{\nabla x} \overline{Z} = -\lambda' e^{\mu} \overline{X} = -\lambda' e^{\lambda + \mu} X$$

$$\overline{\nabla y} \overline{Z} = -\lambda' e^{\mu} \overline{Y} = -\lambda' e^{\lambda + \mu} Y$$

$$\overline{\nabla z} \overline{X} = 0$$

$$\overline{\nabla z} \overline{X} = 0$$

$$\overline{\nabla z} \overline{Y} = 0$$

$$\overline{\nabla z} \overline{Z} = 0$$
and
$$[\overline{Z}, \overline{X}] = \lambda' e^{\mu} \overline{X} = \lambda' e^{\lambda + \mu} X$$

$$[\overline{Z}, \overline{Y}] = \lambda' e^{\mu} \overline{Y} = \lambda' e^{\lambda + \mu} Y$$

$$[\overline{X}, \overline{Y}] = e^{\lambda} \{ g(X, \nabla_X Y) \overline{X} - g(Y, \nabla_Y X) \overline{Y} \} = e^{2\lambda} [X, Y].$$

Using these equations, we get the following relations between the curvature tensors \overline{R} and R corresponding to $\overline{\nabla}$ and ∇ ;

$$\begin{split} \overline{R}(\overline{Y},\overline{X})\overline{X} &= e^{3\lambda}R(Y,X)X - \lambda'^2 e^{\lambda + 2\mu}Y \\ \overline{R}(\overline{X},\overline{Z})\overline{X} &= -e^{3\mu}(\lambda'' + \lambda'\mu' - \lambda'^2) - \frac{\partial}{\partial t} \\ \overline{R}(\overline{Y},\overline{Z})\overline{X} &= 0 \\ \overline{R}(\overline{X},\overline{Y})\overline{Z} &= 0 \\ \overline{R}(\overline{X},\overline{Z})\overline{Z} &= e^{\lambda + 2\mu}(\lambda'' + \lambda'\mu' - \lambda'^2)X. \end{split}$$

Now, let us assume the condition

$$(2.6) \lambda'' + \lambda' \mu' - \lambda^2 = 0.$$

then the rank of the Ricci form \overline{S} of \overline{M} is 2 or 0 at every point of \overline{M} . In fact, we can see that

$$\overline{S}(\overline{X}, \overline{X}) = \overline{S}(\overline{Y}, \overline{Y}) = \overline{g}(\overline{R}(\overline{Y}, \overline{X})\overline{X}, \overline{Y})
= e^{2\lambda}(e^{\lambda}g(R(Y, X)X, Y) - \lambda'^{2}e^{2\mu})
\overline{S}(\overline{X}, \overline{Y}) = \overline{S}(\overline{X}, \overline{Z}) = \overline{S}(\overline{Y}, \overline{Z}) = \overline{S}(\overline{Z}, \overline{Z}) = 0,$$

that is,

(2.7)
$$\overline{S} = \begin{pmatrix} e^{2\lambda} (Ke^{2\lambda} - \lambda'^2 e^{2\mu}) & 0 & 0 \\ 0 & e^{2\lambda} (Ke^{2\lambda} - \lambda'^2 e^{2\mu}) & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

where K is the Gaussian curvature of M.

To find out the pairs of functions λ , μ which satisfy the differential equation (2. 6), we assume that μ is given. Then by Bernoulli's formula, we get $\frac{1}{\lambda'} = -e^{\mu} \int e^{-\mu} dt$. Using the last equation, we can choose the pairs

(I)
$$\begin{cases} \lambda = t \\ \mu = t \end{cases}$$
 $(t \in I = R)$, (II)
$$\begin{cases} \lambda = -\log t \\ \mu = 0 \end{cases}$$
 $(t \in I = R_+)$

and etc. $(R_+:$ a positive half line)

Therefore, we see that the Riemannian manifolds \overline{M} with the metric \overline{g} corresponding to the pairs of functions λ , μ like (I), (II) are irreducible by (2.5) and these curvature tensors satisfy the condition (*). And moreover, they are not symmetric, because any 3-dimensional symmetric Riemannian manifold whose Ricci tensor has the rank equal to 2 or 0 is reducible.

But, as is easily seen, they are not complete. Therefore, with respect to Nomizu's conjecture, the assumption of completeness is essential.

Remark 1. In the case (I), we assumed that $K \not\equiv 1$.

Remark 2. For 3-dimentional Riemannian manifolds, the condition $R(X, Y) \cdot R = 0$ is

equivalent to the condition $R(X, Y) \cdot S = 0$.

NIIGATA UNIVERSITY

References

- 1. E. Cartan: Leçons sur la géométrie des espaces de Riemann, 2 ème édition, Gauthier-Villars, Paris, 1964.
- 2. S. Kobayazhi and K. Nomizu: Foundations of Differential Geometry, Vol. I, Interscience Publishers, New York, 1963.
- 3. A. Lichinerowicz: Géométrie des groupes de transformations, Dunod, Paris, 1958.
- 4. K. Momizu: On hypersurfaces satisfying a certain condition on the curvature tensor, Tohoku Math. Jour., 20 (1968), 46-59.
- 5. K. Nomizu and K. Yano: Some results related to the equivalence problem in Riemannian geometry, Proc. United States-Japan Sem. Diff. Geom., Kyoto, 1965.