On hypersurfaces in spaces of constant curvature satisfying a certain condition on the curvature tensor

By

Kouei SEKIGAWA

(Received June 20, 1968)

1. Introduction

If a Riemannian manifold M is locally symmetric, then its curvature tensor R satisfies

(*) $R(X, Y) \cdot R = 0$ for all tangent vectors X and Y,

where the endomorphism R(X, Y) operates on R as a derivation of the tensor algebra at each point of M. Conversely, does this algebraic condition on the curvature tensor field R imply that M is locally symmetric?

We conjecture that the answer is affirmative in the case where M is irreducible and complete and dim $M \ge 3$.

Recently, K. Nomizu [4], has given an affirmative answer in the case where M is a complete hypersurface in a Euclidean space.

In this paper, let \bar{M} be a (n+1)-dimensional connected pseudo-Riemannian manifold with constant curvature c, and the main purpose is to consider the hypersurfaces of \bar{M} satisfying the condition (*).

Now, we give a short summary of those parts of the theory of hypersurfaces which are necessary for what follows.

Let M be a real hypersurface immersed in \tilde{M} and g be the induced pseudo-Riemannian metric from the pseudo-Riemannian metric \tilde{g} of \tilde{M} . And let H be the second fundamental form with respect to this immersion and A be a field of endomorphism which corresponds to H, that is, H(X, Y) = g(AX, Y), where X and Y are tangent vectors to M.

By definition, the directions of the lines of curvature of M are given by the vectors ρ_{m^i} which satisfy

$$(1.1) (H_{ij} - \lambda_m g_{ij}) \rho_m = 0, \text{for } m, i, j = 1, 2, ..., n.$$

where H_{ij} and g_{ij} are the components of H and g, respectively, and λ_m is a principal

normal curvature and is a root of the determinant equation

$$(1.2) |H_{ij}-\lambda g_{ij}|=0.$$

If the principal normal curvature are real and none of the lines of curvature are tangent to null vectors, we call M a proper hypersurface of \tilde{M} and term the immersion a proper immersion respectively. In this paper, we assume that an immersion means always a proper immersion.

The equation of Gauss expresses the curvature tensor R of M by means of A

$$(1.3) R(X, Y) = \varepsilon \cdot AX \wedge AY + cX \wedge Y,$$

where, in general, $X \wedge Y$ denotes the endomorphism which maps Z upon g(Z, Y)X -g(Z, X)Y, and $\epsilon = +1$, or -1.

The type number k(x) at x is, by definition, the rank of A at x

2. Reduction of condition (*)

At a point $x \in M$, let $\{e_1, ..., e_n\}$ be an orthonormal basis of the tangent space $T_x(M)$ such that $Ae_i = \lambda_i e_i$, $1 \le i \le n$. Then the equation of Gauss implies

$$R(e_i, e_j) = (\varepsilon \lambda_i \lambda_j + c) e_i \wedge e_j$$
.

By computing

$$(R(e_i, e_j) \cdot R)(e_k, e_l) = [R(e_i, e_j), R(e_k, e_l)]$$

- $R(R(e_i, e_j) e_k, e_l) - R(e_k, R(e_i, e_j) e_l),$

we find that it is zero except possibly in the case where k=i and l+i, j(i+j). For this case we have

$$(2.1) (R(e_i, e_j) \cdot R)(e_i, e_l) = \delta(\varepsilon \lambda_i \lambda_j + c) \lambda_l (\lambda_j - \lambda_i) e_j \wedge e_l,$$

where $\delta = +1$, or -1.

Thus we see that condition (*) is equivalent to

(2.2)
$$(\varepsilon \lambda_i \lambda_j + c) \lambda_l(\lambda_j - \lambda_i) = 0$$
 for $l \neq i$, j , where $i \neq j$.

Suppose that the type number k(x) is ≥ 2 at a point $x \in M$ and assume that $\lambda_1, ..., \lambda_k$ are non-zero principal normal curvatures, that is, non-zero eigenvalues of A at x and $\lambda_{k+1} = ... = \lambda_n = 0$.

When $c \neq 0$, from (2.2), we can see that non-zero eigenvalues of A are classified into at most two classes, that is,

$$\lambda_{i_1} = \ldots = \lambda_{i_s} (= \lambda),$$

$$\lambda_{j_1} = \dots = \lambda_{j\ell} (= \mu)$$
, where $s + t = n$, and $\varepsilon \lambda \mu + c = 0$.

Then, by the observations we made above, we can define three linear subspaces,

say, $T_0(M)$, $T_1(M)$, $T_2(M)$ of the tangent space $T_x(M)$ at $x \in M$ as follows:

$$T_0(x) = \{X \in T_x(M) ; AX = 0\}$$

$$T_1(x) = \{X \in T_x(M); AX = \lambda X\}$$

$$T_2(x) = \{X \in T_x(M) ; AX = \mu X\}.$$

We have $T_x(M) = T_0(M) + T_1(M) + T_2(M)$ (direct sum). For any $Z \in T_x(M)$, Z_0 , Z_1 , and Z_2 will denote the components of Z in $T_0(x)$, $T_1(x)$ and $T_2(x)$, respectively. We shall only consider the following two cases in this paper.

- I. $c \neq 0$, and $k(x) \geq 3$ at a point $x \in M$, $s \geq 1$, $t \geq 1$.
- II. c=0, and $k(x) \ge 3$ at a point $x \in M$.

Then we have the following for the case I.

LEMMA 2.1. If $c \neq 0$ and the rank of A is ≥ 3 at $x_0 \in M$, then there is a neighborhood U of x_0 on which the dimension of $T_1(x)$ and the dimension of $T_2(x)$ are constant at each point $x \in U$, and the non-zero eigenvalues $\lambda(x)$ and $\mu(x)$ of A are differentiable functions. Where $\varepsilon \lambda(x) \mu(x) + c = 0$ and $\lambda(x) > \mu(x)$, at $x \in U$.

And we have also the following for the case II.

LEMMA 2.2. If c=0 and $k(x_0) \ge 3$ at $x_0 \in M$, then then there is a neighborhood U of x_0 on which $k(x) \ge 3$ at each point $x \in U$, and the non-zero eigenvalue k(x) is a differentiable function.

3. Lemmas

In this paper, we shall assume that M is oriented (so that a unit normal field is defined on the whole M) and the type number k(x) is ≥ 3 everywhere on M. By the observations we made in §2, for the case I, the functions s(x) and t(x) are locally constant and hence are constant functions, say, s and t, respectively, since M is connected, and moreover, for the case II, the function k(x) is locally constant and hence is a constant function, say, k.

LEMMA 3.1. For the case I, T_1 and T_2 are differentiable.

PROOF. For any point $x_0 \in M$, let $\{X_1, ..., X_s\}$ be a basis of $T_1(x_0)$ and $\{X_{s+1}, ..., X_n\}$ be a basis of $T_2(x)$. We extend X_i 's to vector fields on M and define vector fields

$$Y_i = (A - \mu I)X_i$$
 for $1 \le i \le s$

and

$$Y_j = (A - \lambda I)X_j$$
 for $s + 1 \le j \le n$,

where I denotes the identity transformation. At x_0 , we have $Y_i = (\lambda - \mu)X_i$ for $1 \le i \le s$ and $Y_j = -(\lambda - \mu)X_j$ for $s+1 \le j \le n$.

Thus Y_1, \ldots, Y_n are linearly independent at x_0 and hence in a neighborhood U of x_0 . At each point of U, we have

$$(A-\lambda I)Y_i = (A-\lambda I)(A-\mu I)X_i = 0 for 1 \le i \le s,$$

$$(A-\mu I)Y_j = (A-\mu I)(A-\lambda I)X_j = 0 for s+1 \le j \le n.$$

Hence Y_1, \ldots, Y_s from a basis of T_1 and Y_{s+1}, \ldots, Y_n from a basis of T_2 . And we have also the following

LEMMA 3.2. For the case II, T_0 and T_1 are differentiable.

LEMMA 3.3. For the case I, T_1 and T_2 are involutive.

PROOF. We recall the Codazzi equation: $(\nabla x A)Y = (\nabla_Y A)X$, where ∇ denotes the Levi-Civita connection with respect to the pseudo-Riemannian metric g of M.

Suppose that X and Y are vector fields belonging to T_1 . Then

$$(\nabla x A)Y = \nabla x (AY) - A(\nabla xY) = (X\lambda)Y + \lambda(\nabla xY) - A(\nabla xY),$$

and

$$(\nabla_Y A)X = (Y\lambda)X + \lambda(\nabla_Y X) - A(\nabla_Y X).$$

Thus we get

$$(X\lambda)Y-(Y\lambda)X+(\lambda I-A)[X, Y]=0.$$

Since $(X\lambda)Y - (Y\lambda)X \in T_1$ and $(\lambda I - A)[X, Y] = (\lambda - \mu)[X, Y]_2$, we get $(X\lambda)Y - (Y\lambda)X = 0$ and $[X, Y]_2 = 0$.

The second identity shows that $[X, Y] \in T_1$, proving that T_1 is involutive. Similarly, T_2 is involutive.

And we have also the following

LEMMA 3.4. For the case II, T_0 and T_1 are involutive.

4. Some results

For the case I, let $M_1(x)$ and $M_2(x)$ be the maximal integral manifolds of T_1 and T_2 , respectively.

Then we have the following

LEMMA 4.1. For the case I, if $s \ge 2$ and $t \ge 2$, then $\lambda(x)$ and $\mu(x)$ are constant functions on M.

Proof. Since $s \ge 2$, we may choose $X, Y \in T_1(x)$ such that X and Y are linearly

independent. Extending X and Y to vector fields belonging to $T_1(x)$, we have $(X\lambda)Y-(X\lambda)X=0$ at x. Thus $X\lambda=Y\lambda=0$ at x. Therefore, the function $\lambda(x)$ is constant on each $M_1(x)$. Similarly, since $t\geq 2$, the function $\mu(x)$ is also constant on each $M_2(x)$. However, $\varepsilon\lambda\mu+c=0$, thus it follows that $\lambda(x)$ is a constant function on M, say, λ . And moreover, $\mu(x)$ is also a constant function on M, say, μ .

From Lemma 4.1., we can easily prove the following

LEMMA 4.2. If $s \ge 2$ and $t \ge 2$, then $M_1(x)$ and $M_2(x)$ are both totally geodesic and $T_1(x)$ and $T_2(x)$ are paperallel.

Thus, by virtue of above two lemmas, we can see that $M_1(x)$ and $M_2(x)$ are spaces of constant curvatures c_1 , c_2 , respectively, where

$$c_1 = \varepsilon \lambda^2 + c$$

$$c_2 = \varepsilon \mu^2 + c.$$

Then, we see that c_1 and c_2 satisfy the following equation

$$(4.1) 1/c_1+1/c_2=1/c.$$

And moreover, we can show that for a point $x \in M$, there is a coordinate system $\{x^1, \ldots, x^s, x^{s+1}, \ldots, x^n\}$ with origin x in a neighborhood U of x such that $\{\partial/\partial x^1, \ldots, \partial/\partial x^s\}$ and $\{\partial/\partial x^{s+1}, \ldots, \partial/\partial x^n\}$ are local bases for T_1 and T_2 , and with respect to this coordinate system the first fundamental form of M is given as follows

$$ds^{2} = \frac{\varepsilon_{1}(dx^{1})^{2} + \dots + \varepsilon_{s}(dx^{s})^{2}}{\left[1 + \frac{c_{1}}{4}(\varepsilon_{1}(x^{1})^{2} + \dots + \varepsilon_{s}(x^{s})^{2})\right]^{2}} + \frac{\varepsilon_{s+1}(dx^{s+1})^{2} + \dots + \varepsilon_{n}(dx^{n})^{2}}{\left[1 + \frac{c_{2}}{4}(\varepsilon_{s+1}(x^{s+1})^{2} + \dots + \varepsilon_{n}(x^{n})^{2})\right]^{2}},$$

where each ε is +1, or -1. (See for example A. Fialkow [1].) Then M may be immersed in \tilde{M} by means of the algebraic equations

(4.3)
$$e_1(z^1)^2 + \dots + e_{s+2}(z^{s+1})^2 = 1/c_1,$$
$$e_{s+2}(z^{s+2})^2 + \dots + e_{n+2}(z^{n+2})^2 = 1/c_2,$$

where the e's are +1, or -1 and the \tilde{M} is defined by

$$(4.4) e_1(z^1)^2 + \dots + e_{n+2}(z^{n+2})^2 = 1/c.$$

The z's are the point coordinates of Weierstrass. Since $n \ge 4$ and $\lambda \mu \ne 0$, the M is indeformable in \tilde{M} .

The equations (4,3) show that M may also be considered as the intersection of two hypersylinders in a flat space of n+2 dimensions.

Thus we have the following

THEOREM 4.3. Let \tilde{M} be complete, connected and of constant curvature $c \neq 0$ and defined by (4.4). If M is connected complete proper hypersurface of \tilde{M} of the case I and $s \geq 2$, $t \geq 2$, then M may be considered as the intersection of two hypersylinders in a flat space of n+2 dimensions.

As a result, M is, of course, symmetric.

Next, for the case II, let $M_0(x)$ and $M_1(x)$ be the maximal integral manifolds of T_0 and T_1 respectively.

LEMMA 4.4. If X belongs to $T_1(x)$, then $X\lambda = 0$.

From this lemma, we see that the function λ is constant on each maximal integral manifold of T_1 , that is, on each $M_1(x)$.

We now let $X \in T_1$, $Y \in T_0$ and compute the both sides of the Codazzi equation:

$$(\nabla_X A)Y = \nabla_X (AY) - A(\nabla_X Y) = -A(\nabla_X Y) = -\lambda(\nabla_X Y)_1,$$

$$(\nabla_Y A)X = \nabla_Y (AX) - A(\nabla_Y X) = \nabla_Y (\lambda X) - A(\nabla_Y X)$$

$$= Y\lambda \cdot X + \lambda(\nabla_Y X) - A(\nabla_Y X)$$

$$= Y\lambda \cdot X + \lambda(\nabla_Y X)_0.$$

Therefore we have

$$(\nabla_{Y}X)_{0}=0$$
, that is, $\nabla_{Y}X \in T_{1}$

and

$$(Y\lambda)X = -\lambda(\nabla xY)_1 = -A(\nabla xY).$$

We have hence

LEMMA 4.5. If $X \in T_1$, $Y \in T_0$, then $A(\nabla x Y) = -(Y\lambda)X$.

LEMMA 4.6.

- (i) If $Y \in T_0$, then $\nabla_Y(T_1) \subset T_1$.
- (ii) If $Y \in T_0$, then $\nabla_Y(T_0) \subset T_0$.
- (iii) If $Y \in T_0$, $X \in T_1$ and [X, Y] = 0, then $\nabla x Y \in T_1$.

By virtue of Lemma 4.5. and Lemma 4.6., we have

$$(4.5) \nabla_Y X = -\frac{Y\lambda}{\lambda} \cdot X. \text{for } X \in T_1, Y \in T_0, (X,Y) = 0.$$

By virtue of Lemma 3.4., for a point $x \in M$, there is a coordinate system $\{x^1, ..., x^n\}$ in a neighborhood U of x such that $\{\partial/\partial x^1, ..., \alpha/\partial x^k\}$ and $\{\partial/\partial x^{k+1}, ..., \partial/\partial x^n\}$ are local bases for T_1 and T_0 , respectively.

By setting $g_{\alpha\beta}(x^1, \ldots, x^n) = g(\partial/\partial x^\alpha, \partial/\partial x^\beta)$ for $k+1 \le \alpha, \beta \le n$, we have

$$\partial g_{\alpha\beta}/\partial x^r = g(\nabla_{\partial/\partial x^r}(\partial/\partial x^\alpha), \ \partial/\partial x^\beta) + g(\partial/\partial x^\alpha, \ \nabla_{\partial/\partial x^r}(\partial/\partial x^\beta)).$$

But since Lemma 4.6 (iii), implies $\nabla_{\partial/\partial x} r(\partial/\partial x^{\alpha}) \in T_1$ for $1 \le r \le k$, we have

$$g(\nabla_{\partial/\partial x}r(\partial/\partial x^{\alpha}), \partial/\partial x^{\beta}) = 0$$

and, similarly, $g(\partial/\partial x^{\alpha}, \nabla_{\partial/\partial x^{r}}(\partial/\partial x)) = 0$. We have thus $\partial g_{\alpha\beta}/\partial x^{r} = 0$. Moreover, by setting $g_{pq}(x^{1}, \ldots, x^{n}) = g(\partial/\partial x^{p}, \partial/\partial x^{q})$ for $1 \leq p$, $q \leq k$, we have

$$\partial g_{pq}/\partial x^{\alpha} = g(\nabla_{\partial/\partial x^{\alpha}}(\partial/\partial x^{p}), \partial/\partial x^{q}) + g(\partial/\partial x^{p}, \nabla_{\partial/\partial x^{\alpha}}(\partial/\partial x_{p})).$$

But (4.5) implies $\nabla_{\partial/\partial x^{\alpha}}(\partial/\partial x^{p}) = \nabla_{\partial/\partial x^{p}}(\partial/\partial x^{\alpha}) = -\frac{\partial\lambda}{\partial x^{\alpha}}\partial/\partial x^{p}$ for $k+1 \le \alpha \le n$. Hence

$$(4.6) \partial g_{pq}/\partial x^{\alpha} = -(2\partial \lambda/\partial x^{\alpha})g_{pq}.$$

Thus we have the following

THEOREM 4.7. For the case II, there is a coordinate system in a neighborhood U of x such that with respect to this coordinate system the metric tensor of M is given as follows

(4.7)
$$g_{ij}(x) = \begin{pmatrix} g_{pq}(x^1, \dots, x^n) & 0 \\ 0 & g_{\alpha\beta}(x^{k+1}, \dots, x^n) \end{pmatrix}$$

where $g_{pq}(x^1, \ldots, x^n)$ must satisfy (4.6), and $g_{\alpha\beta}$ are constant on U.

Lastly, let us give an example of hypersurface, of the case I, in the hyperbolic space of dimension n+1, say, H^{n+1} . Then H^{n+1} is isometric to the Riemannian half space

$$ds^2 = (1/z^1)^2 ((dz^1)^1 + \dots + (dz^{n+1})^2), z \in \mathbb{R}^{n+1}, z^1 > 0.$$

Let M be a hypersurface of H^{n+1} , defined by the equations:

$$z^1=e^u$$
, $z^i=e^uw^i(x^1,, x^{n-1})$, $i=2,, n+1$, $u\in \mathbb{R}$, $n\geq 3$

where e^{u} denotes the exponential function of u.

Then the Riemannian metric of M is expressed as follows

$$g_{pq} = \sum_{i=2}^{n+1} (\partial w^i / \partial x^p) (\partial w^i / \partial x^q), \qquad g_{**} = 1 + \sum_{i=2}^{n+1} (w^i)^2, \qquad p, q = 1, \dots, n-1,$$

where the first fundamental from of M is written in the form, $ds^2 = g_{pq}dx^p dx^q + \sigma$

Then, if M satisfies the condition (*), then, s or t=1 and from the similar arguments as before, we have

$$\sum_{i=2}^{n+1} (w^i) = r^2, \quad \text{where } r \text{ is a constant.}$$

Therefore, M is homothetic to the direct product Riemannian space of (n-1)-dimensional sphere with radius |r| and a real line R.

Remarks, (i) If $c \neq 0$ and $k(x) \geq 3$ at some point $x \in M$, then we can show that the condition (*) is equivalent to the condition, $R(X, Y) \cdot S = 0$, at x. Where S denotes the Ricci tensor of M.

(ii) The assumption, $k(x) \ge 3$ everywhere on M, can be replaced by the assumption, $k(x) \ge 3$ at some point $x \in M$.

NIIGATA UNIVERSITY

References

- 1. A. FIALKOW: Hypersurfaces of a space of constant curvature, Ann. of Math., 39 (1938), 762-785.
- 2. S. KOBAYASHI and K. NOMIZU: Foundations of Differential Geometry, Vol. 1, Interscience Publishers, New York, 1963.
- 3. K. NOMIZU: On hypersurfaces satisfying a certain condition on the curvature tensor, Tohoku Math. J., 20 (1968), 46-59.