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1. Introduction

If a Riemannian manifold $M$ is locally symmetric, then its curvature tensor $R$

satifies
$(*)$ $R(X, Y)\cdot R=0$ for all tangent vectors $X$ and $Y$,
where the endomorphism $R(X, Y)$ operates on $R$ as a derivation of the tensor
algebra at each point of $M$ . Conversely, does this algebraic condition on the cur-
vature tensor field $R$ imply that $M$ is locally symmetric ?

We conjecture that the answer is affirmative in the case where $M$ is irreducible
and complete and $\dim M\geqq 3$ .

Recently, K. Nomizu [4], has given an affirmative answer in the case where
$M$ is a complete hypersurface in a Euclidean space.

In this paper, let $\overline{M}$ be a $(n+1)$-dimensional connected pseudo-Riemannian
manifold with constant curvature $c$, and the main purpose is to consider the hyper-
surfaces of $\overline{M}$ satisfying the condition $(*)$ .

Now, we give a short summary of those parts of the theory of hypersurfaces
which are necessary for what follows.

Let $M$ be a real hypersurface immersed in $\overline{M}$ and $g$ be the induced pseudo $\cdot$

Riemannian metric from the pseudo-Riemannian metric $\tilde{g}$ of $\overline{M}$ . And let $H$ be the
second fundamental form with respect to this immersion and $A$ be a field of endo-
morphism which corresponds to H. that is, $H(X, Y)=g(AX, Y)$ , where $X$ and $Y$

are tangent vectors to $M$ .
By definition, the directions of the lines of curvature of $M$ are given by the

vectors $\rho_{n^{i}}$ which satisfy

(1.1) $(H_{1j}-\lambda_{mg_{ij}})\rho_{m^{i}}=0$, for $m,$ $i,$ $j=1,2,$
$\ldots,$

$n$ .
where $Hij$ and $g_{ij}$ are the components of $H$ and $g$, respectively, and $\lambda_{\hslash}$ is a principal
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normal curvature and is a root of the determinant equation

(1.2) $|H_{ij}-\lambda g_{ij}|=0$ .
If the principal normal curvature are real and none of the lines of curvature

are tangent to $nuu$ vectors, we call $M$ a proper hypersurface of $\overline{M}$ and term the
immersion a proper immersion respectively. In this paper, we assume that an
immersion means always a proper immersion.

The equation of Gauss expresses the curvature tensor $R$ of $M$ by means of $A$

(1.3) $R(X. Y)=\epsilon\cdot AX\wedge AY+cX\wedge Y$,

where, in general, $X\wedge Y$ denotes the endomorphism which maps $Z$ upon $g(Z, Y)X$

$-g(Z, X)Y$, and $\epsilon=+1$ , or $-1$ .
The type number $k(x)$ at $x$ is, by definition, the rank of $A$ at $x$

2. Reduction of condition $(*)$

At a point $x\in M$, let $\{e_{1}\ldots., e_{l}\}$ be an orthonormal basis of the tangent space
$T_{x}(M)$ such that $Aej=\lambda iej1\leqq i\leqq n$. Then the equation of Gauss implies

$R(ei. ej)=(\epsilon\lambda i\lambda j+c)e;\wedge ej$

By computing

$(R(ei. ej)\cdot R)(ek. e\iota)=$ [$R(ei,$ $ej),$ $R(ek$, et)]

$-R(R(ei. ej)ek. e\iota)-R(ek. R(ei, ej)el)$,

we find that it is zero except possibly in the case where $k=i$ and $l\neq i$. $j(i\neq i)$ .
For this case we have

(2.1) $(R(ei. ej)\cdot R)(ei. e\iota)=\delta(e\lambda j\lambda j+c)\lambda\iota(\lambda j-\lambda i)ej\wedge e\iota$ .
where $\delta=+1$ . or $-1$ .
Thus we see that condition $(*)$ is equivalent to

(2.2) $(e\lambda_{i}\lambda_{j}+c)\lambda_{l}(\lambda_{j}-\lambda_{i})=0$ for $l\neq i,$ $j$, where $i\neq j$ .
Suppose that the type number $k(x)$ is $\geqq 2$ at a point $x\in M$ and assume that

$\lambda_{1},\ldots,$ $\lambda\iota$ are non-zero $pr\dot{i}$cipal normal curvatures, that is, $non\cdot zero$ eigenvalues of
$A$ at $x$ and $\lambda_{l+1}=\ldots=\lambda_{l}=0$ .
When $c\neq 0$. from (2.2), we can see that non-zero eigenvalues of $A$ are classified.
into at most two dasses, that is,

$\lambda_{i_{1}}=\ldots\ldots\ldots=\lambda_{is}(=\lambda)$,

$\lambda_{j_{1}}=\ldots\ldots\ldots=\lambda_{jt}(=\mu)$. where $s+t=n$, and $\epsilon\lambda\mu+c=0$ .
Then, by the observations we made above, we can define three linear subspaces,
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Say, $T_{0}(M),$ $T_{1}(M),$ $T_{2}(M)$ of the tangent space $T_{x}(M)$ at $x\in M$ as follows:

$T_{0}(x)=\{X\in T_{x}(M);AX=0\}$

$T_{1}(x)=\{X\in T_{x}(M);AX=\lambda X\}$

$T_{2}(x)=\{X\in T_{x}(M);AX=\rho\ell X\}$ .

We have $T_{x}(M)=T_{0}(M)+T_{1}(M)+T_{2}(M)$ (direct sum). For any $Z\in T_{x}(M)$ . $Z_{0},$ $Z_{1}$ .
and $Z_{2}$ will denote the components of $Z$ in $T_{0}(x),$ $T_{1}(x)$ and $T_{2}(x)$ , respectively.
We shall only consider the following two cases in this paper.
I. $c\neq 0$, and $k(x)\geqq 3$ at a point $x\in M,$ $s\geqq 1,$ $t\geqq 1$ .
II. $c=0$, and $k(x)\geqq 3$ at a point $x\in M$ .

Then we have the following for the case I.

LEMMA 2. 1. If $c\neq 0$ and the rank of $A$ $is\geqq 3$ at $x_{0}\in M$, then there is a neighborhood
$U$ of $x_{0}$ on which the dimension of $T_{1}(x)$ and the dimenston of $T_{2}(x)$ are constant at
each point $x\in U$, and the non-zero eigenvalues $\lambda(x)$ and $\mu(x)$ of $A$ are differentiable
functions. Where $\epsilon\lambda(x)\mu(x)+c=0$ and $\lambda(x)>\mu(x)$ , at $x\in U$.

And we have also the following for the case II.

LEMMA 2.2. If $c=0$ and $k(x_{0})\geqq 3$ at $x_{0}\in M$, then then there is a neighborhood
$U$ of $x_{0}$ on which $k(x)\geqq 3$ at each point $x\in U$, and the $non\cdot zero$ eigenvalue $k(x)$ is a dif-
ferentiable function.

3. Lemmas

In this paper, we shall assume that $M$ is oriented (so that a unit nomal field is
defined on the whole $M$) and the type number $k(x)$ is $\geqq 3$ everywhere on $M$ . By
the observations we made in \S 2, for the case I, the functions $s(x)$ and $t(x)$ are
locally constant and hence are constant functions, say, $s$ and $t$. respectively, since
$M$ is connected, and moreover, for the case $n$, the function $k(x)$ is locally constant
and hence is a constant function, say, $k$.

LEMMA 3.1. For the case $I,$ $T_{1}$ and $T_{2}$ are differentiable.
PROOF. For any point $x_{0}\in M$, let $\{X_{1}\ldots., X_{S}\}$ be a basis of $T_{1}(x_{0})$ and $\{X_{\$+1}\ldots$ .

$X_{n}\}$ be a basis of $T_{2}(x)$ . We extend $X_{i^{\prime}}s$ to vector fields on $M$ and define vector
fields

$Y;=(A-\mu I)X_{i}$ for $1\leqq i\leqq s$

and

$Y_{j}=(A-X)X_{j}$ for $s+1\leqq i\leqq n$.
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where $I$ denotes the identity transformation. At $x_{0}$ , we have $Y;=(\lambda-\mu)X$; for
$1\leqq i\leqq s$ and $Yj=-(\lambda-\mu)Xj$ for $s+1\leqq i\leqq n$ .
Thus $Y_{1},\ldots\ldots.Y_{\hslash}$ are linearly independent at $x_{0}$ and hence in a neighborhood $U$ of
$x_{0}$. At each point of $U$, we have

$(A-\lambda I)Y:=(A-\lambda I)(A-\mu I)X;=0$ for $1\leqq i\leqq s$.
$(A-\mu I)Y_{j}=(A-\mu I)(A-\lambda I)X_{j}=0$ for $s+1\leqq i\leqq n$ .

Hence $Y_{1}\ldots\ldots..Y_{s}$ from a basis of $T_{1}$ and $Y_{s+1},\ldots\ldots,$ $Y_{\hslash}$ from a basis of $T_{2}$ .
And we have also the folowing

LEMMA 3.2. For the case II, $T_{0}$ and $T_{1}$ are differentiable.
LEMMA 3.3. For the case I. $T_{1}$ and $T_{2}$ are involutive.

PROOF. We recall the Codazzi equation: $(\nabla xA)Y=(\nabla_{Y}A)X$, where $\nabla$ denotes
the Levi-Civita connection with respect to the pseudo-Riemannian metric $g$ of $M$.

Suppose that $X$ and $Y$ are vector fields belonging to $T_{1}$ . Then

$(\nabla xA)Y=\nabla x(AY)-A(\nabla xY)=(X\lambda)Y+\lambda(\nabla xY)-A(\nabla xY)$ .
and

$(\nabla_{Y}A)X=(Y\lambda)X+\lambda(\nabla_{Y}X)-A(\nabla_{Y}X)$ .
Thus we get

$(X\lambda)Y-(Y\lambda)X+(\lambda I-A)[X, Y]=0$ .
Since $(X\lambda)Y-(Y\lambda)X\in T_{1}$ and $(\lambda I-A)[X, Y]=(\lambda-\mu)[X, Y]_{2}$ , we get

$(X\lambda)Y-(Y\lambda)X=0$ and $[X, Y]_{2}=0$ .
The second identity shows that [X, $Y$] $\in T_{1}$ , proving that $T_{1}$ is involutive. Simil-
arly, $T_{2}$ is involutive.

And we have also the following

LEMMA 3.4. For the case II, $T_{0}$ and $T_{1}$ are involutive.

4. Some results

For the case I, let $M_{1}(x)$ and $M_{2}(x)$ be the maximal integral manifolds of $T_{1}$

and $T_{2}$ . respectively.
Then we have the following

LEMMA 4.1. For the case $I$, if $s\geqq 2$ and $l\geqq 2$, then $\lambda(x)$ and $\mu(x)$ are constant
functions on $M$.

PROOF. Since $s\geqq 2$. we may choose X. $Y\in T_{1}(x)$ such that $X$ and $Y$ are linearly
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independent. Extending $X$ and $Y$ to vector fields belonging to $T_{1}(x)$ , we have
$(X\lambda)Y-(X\lambda)X=0$ at $x$ . Thus $X\lambda=Y\lambda=0$ at $x$ . Therefore, the function $\lambda(x)$ is
constant on each $M_{1}(x)$ . Similarly, since $t\geqq 2$ , the function $\mu(x)$ is also constant
on each $M_{2}(x)$ . However, $\epsilon\lambda\mu+c=0$, thus it follows that $\lambda(x)$ is a constant function
on $M$, say, $\lambda$ . And moreover, $\mu(x)$ is also a constant function on M. say, $\mu$ .

From Lemma 4. 1., we can easily prove the folowing

LEMMA 4. 2. If $s\geqq 2$ and $t\geqq 2$, then $M_{1}(x)$ and $M_{2}(x)$ are both totally geodesic
and $T_{1}(x)$ and $T_{2}(x)$ are paprallel.

Thus, by virtue of above two lemmas, we can see that $M_{1}(x)$ and $M_{2}(x)$ are
spaces of constant curvatures $c_{1},$ $c_{2}$, respectively, where

$c_{1}=\epsilon\lambda^{2}+c$

$c_{2}=\epsilon\mu^{2}+c$ .
Then, we see that $c_{1}$ and $c_{2}$ satisfy the following equation

(4. 1) $1/c_{1}+1/c_{2}=1/c$ .
And moreover, we can show that for a point $x\in M$. there is a coordinate system
$\{x^{1}\ldots\ldots..x^{s}, x^{s+1}\ldots\ldots..x^{n}\}$ with origin $x$ in a neighborhood $U$ of $x$ such that $\{\partial/\partial x^{1}$.
......, $\partial/\partial x^{s}$ } and $\{\partial/\partial x^{s+1}, \ldots\ldots, \partial/\partial x^{n}\}$ are local bases for $T_{1}$ and $T_{2}$, and with respect
to this coordinate system the first fundamental form of $M$ is given as folows

(4.2)
$ds^{2}=\frac{\epsilon_{1}(dx^{1})^{2}+\ldots\ldots+.\epsilon_{S}(dx^{s})^{2}}{[1+\frac{c_{1}}{4}(\epsilon_{1}(x^{1})^{2}+..+\epsilon_{S}(x^{s})^{2})]^{2}}$

$+\frac{\epsilon_{S+1}(dx^{s+1})^{2}+\ldots\ldots+.\epsilon_{n}(dx^{n})^{2}}{[1+\frac{c_{2}}{4}(\epsilon_{S+1}(x^{s+1})^{2}+..+\epsilon_{n}(x^{n})^{2})]^{2}}$

,

where each $\epsilon$ is $+1$ , or $-1$ . (See for example A. Fialkow [11.)

Then $M$ may be immersed in $\tilde{M}$ by means of the algebraic equations

(4.3) $e_{1}(z^{1})^{2}+\ldots\ldots+e_{s+2}(z^{s+1})^{2}=1/c_{1}$ ,

$e_{s+2}(z^{s+2})^{2}+\ldots\ldots+e_{\hslash+2}(z^{n*2})^{2}=1/c_{2}$ .
where the $e’ s$ are $+1$ , or $-1$ and the $\tilde{M}$ is defined by

(4. 4) $e_{1}(z^{1})^{2}+\ldots\ldots+e_{n+2}(z^{n+2})^{2}=1/c$ .
The $z’ s$ are the point coordinates of Weierstrass. Since $n\geqq 4$ and $\lambda\mu\neq 0$, the $M$ is
indeformable in $\overline{M}$ .
The equations (4.3) show that $M$ may also be considered as the intersection of two
hypersylinders in a flat space of $n+2$ dimensions.
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Thus we have the following

THEOREM 4.3. $Lel\overline{M}$ be complete, connected and of constanl curvature $c\neq 0$ and
defined by (4. 4). If $M$ is connected complete proper hypersurface of $\overline{M}$ of the case $I$

and $s\geqq 2,$ $t\geqq 2$, then $M$ may be considered as the intersection of two hypersylinders in a
flat space of $n+2$ dimensions.

As a result, $M$ is, of course, symmetric.
Next, for the case 11, let $M_{0}(x)$ and $M_{1}(x)$ be the maximal integral manifolds

of $T_{0}$ and $T_{1}$ respectively.

LEMMA 4.4. If $X$ belongs to $T_{1}(x)$. then $X\lambda=0$ .
From this lemma, we see that the function $\lambda$ is constant on each maximal

integral manifold of $T_{1}$ , that is, on each $M_{1}(x)$ .
We now let $X\in T_{1},$ $Y\in T_{0}$ and compute the both sides of the Codazzi equation:

$(\nabla xA)Y=\nabla_{X}(AY)-A(\nabla_{X}Y)=-A(\nabla xY)=-\lambda(\nabla xY)_{1}$ .
$(\nabla_{Y}A)X=\nabla_{Y}(AX)-A(\nabla_{Y}X)=\nabla_{Y}(\lambda X)-A(\nabla YX)$

$=Y\lambda\cdot X+\lambda(\nabla_{Y}X)-A(\nabla_{Y}X)$

$=Y\lambda\cdot X+\lambda(\nabla_{Y}X)_{0}$ .
Therefore we have

$(\nabla_{Y}X)_{0}=0$, that is, $\nabla_{Y}X\in T_{1}$

and

$(Y\lambda)X=-\lambda(\nabla xY)_{1}=-A(\nabla xY)$ .
We have hence

LEMMA 4. 5. If $X\in T_{1}$ . $Y\in T_{0}$ , then $A(\nabla xY)=-(Y\lambda)X$.
LEMMA 4.6.

(i) If $Y\in T_{0}$ . then $\nabla_{Y}(T_{1})\subset T_{1}$ .
(ii) If $Y\in T_{0}$ . then $\nabla_{Y}(T_{0})\subset T_{0}$ .
(iii) If $Y\in T_{0}$ . $X\in T_{1}$ and [X, $Y$] $=0$. then $\nabla xY\in T1$ .
By virtue of Lemma 4. 5. and Lemma 4.6., we have

(45)
$\nabla_{Y}X=-\frac{Y\lambda}{\lambda}\cdot X$ . for $X\in T_{1}$ . $Y\in T_{0},$ [X. $Y$) $=0$ .

By virtue of Lemma 3.4., for a point $x\in M$. there is a coordinate system $\{x^{1}\ldots..x^{n}\}$

in a neighborhood $U$ of $x$ such that $\{\partial/\partial x^{1}\ldots\ldots..\alpha/\partial x^{k}\}$ and $\{\partial/\partial x^{k+1}\ldots\ldots., \partial/\partial x^{n}\}$ are
local bases for $T_{1}$ and $T_{0}$ , respectively.
By sett’ng $g_{\alpha f}(x_{1}^{1}\ldots\ldots, x^{n})=g(\partial/\partial x^{a}, \partial/\partial xl)$ for $ k+1\leqq\alpha$. $\beta\leqq n$. we have



On hypersurfaces in spaces of constant curvature satisfying a certain 7

$\partial g_{a\beta/\partial x^{\gamma}=g(\nabla_{\partial/ax^{r}}(\partial/a_{X^{\alpha}})},$ $\partial/\partial x^{\beta}$) $+g(\partial/\partial x^{\alpha},$ $\nabla a/\partial x^{\gamma(\partial/\partial x^{\beta}))}$

But since Lemma 4. 6 (iii), implies $\nabla_{\text{{\it \^{a}}}/0x^{r}}(\partial/a_{X^{\alpha}})\in T_{1}$ for $1\leqq r\leqq k$, we have

$g(\nabla a/\partial x^{\gamma}(\partial/\partial x^{\alpha}), \partial/\partial x^{\beta})=0$

and, similarly, $g(\partial/\partial x^{\alpha},$ $\nabla a_{/\partial x^{\gamma(\partial/\partial x))=0}}$ . We have thus $\partial g\alpha\beta/\partial x^{r}=0$ . Moreover, by
setting $gpq(x^{1}, \ldots\ldots, x^{n})=g(\partial/a_{X}P\partial/\partial x^{q})$ for $1\leqq p,$ $q\leqq k$,

we have

$\partial gpq/\partial x^{\alpha}=g(\nabla_{\partial/\partial x^{\alpha}}(\partial/\partial x^{p}), \partial/\partial x^{q})+g(\partial/\partial x^{\phi}. \nabla_{\partial/}a_{x^{\alpha}}(\partial/\partial x_{\phi}))$ .

But (4.5) implies $\nabla a/\partial x^{\alpha(a/\partial xP)}=\nabla_{\partial/}a_{X}p(\partial/\partial x^{a})=-\frac{\partial\lambda}{\partial x^{\alpha}}\partial/\partial x^{p}$ for $k+1\leqq\alpha\leqq n$ .
Hence

(4.6) $\partial gpq/\partial x^{a}=-(2\partial\lambda/\partial x^{\alpha})gpq$ .
Thus we have the folowing

THEOREM 4. 7. For the case II, there is a coordinate system in a neighborhood $U$

of $x$ such that with respect to this coordinate system the metric tensor of $M$ is given as
follows
(4. 7)

$gij(x)=($
$0$

$g_{\alpha\theta}(x^{k*1}, \ldots\ldots, 0x^{n}))$

$/gpq(X^{1}. \ldots\ldots, x^{n})$

where $gp_{q}(x^{1}. \ldots\ldots, x^{n})$ must satisfy (4. 6), and $g_{a\beta}$ are constant on $U$.
Lastly, let us give an example of hypersurface, of the case I, in the hyperbolic

space of dimension $n+1.$ say, $H^{n^{*}1}$ . Then $H^{n^{*1}}$ is isometric to the Riemannian half
space

$ds^{2}=(1/z^{1})^{2}((dz^{1})^{1}+\ldots\ldots+(dz^{n\star 1})^{2}),$ $z\in R^{n^{*1}},$ $z^{1}>0$ .
Let $M$ be a hypersurface of $H^{n+1}$, defined by the equations:

$z^{1}=e^{u}$, $z^{i}=e^{u}w^{i}(x^{1}\ldots\ldots., x^{n-1})$ , $i=2,$
$\ldots\ldots,$

$n+1$. $u\in R$, $n\geqq 3$

where $e^{u}$ denotes the exponential function of $u$ .
Then the Riemannian metric of $M$ is expressed as follows

$gpq=\sum_{i-2}^{n+1}(\partial w^{i}/\partial x^{p})(\partial w^{i}/\partial x^{q})$ , $g_{**}=1+\sum_{\iota-l}^{\hslash+1}(w^{j})^{2}$, $p,$ $q=1,$
$\ldots\ldots,$

$n-1$ ,

where the first fundamental from of $M$ is written in the form, $ds^{2}=gpqdx^{p}dxq$

$+g_{**}dudu$ .
Then, if $M$ satisfies the condition $(^{*})$ , then, $s$ or $t=1$ and from the similar argu-
ments as before, we have
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$\sum_{i-2}^{n+1}(w^{i})=r^{2}$, where $r$ is a constant.

Therefore, $M$ is homothetic to the direct product Riemannian space of $(n-1)-$

dimensional sphere with radius $|r|$ and a real line $R$ .
Remarks, (i) If $c\neq 0$ and $k(x)\geqq 3$ at some point $x\in M$, then we can show that

the condition $(^{*})$ is equivalent to the condition, $R(X, Y)\cdot S=0$, at $x$. Where $S$

denotes the Ricci tensor of $M$ .
(ii) The assumption, $k(x)\geqq 3$ everywhere on $M$ , can be replaced by the assumption,
$k(x)\geqq 3$ at some point $x\in M$ .
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