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1. Introduction

If a Riemannian manifold M is locally symmetric, then its curvature tensor R
satifies
) R(X, Y)+R=0 for all tangent vectors X and Y,
where the endomorphism R(X, Y) operates on R as a derivation of the tensor
algebra at each point of M. Conversely, does this algebraic condition on the cur-
vature tensor field R imply that M is locally symmetric ?

We conjecture that the answer is affirmative in the case where M is irreducible
and complete and dim M=3. '

Recently, K. Nomizu [4], has given an affirmative answer in the case Where
M is a complete hypersurface in a Euclidean space.

In this paper, let M be a (#+1)-dimensional connected pseudo-Riemannian
manifold with constant curvature c¢, and the main purpose is to consider the hyper-
surfaces of M satisfying the condition (k).

Now, we give a short summary of those parts of the theory of hypersurfaces
which are necessary for what follows.

Let M be a real hypersurface immersed in M and g be the induced pseudo-
Riemannian metric from the pseudo-Riemannian metric g of M. And let H be the
second fundamental form with respect to this immersion and A be a field of endo-
morphism which corresponds to H, that is, H(X, Y)=g(AX, Y), where X and Y
are tangent vectors to M.

By definition, the directions of the lines of curvature of M are given by the’

vectors pm' which satisfy
(1. 1) (Hij-zmg")p"‘!: y for m, i, j———l, 2, ceey n.

where H;; and gi; are the components of H and g, respectively, and as is a principal
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normal curvature and is a root of the determinant equation
1.2 |Hij—2gij| = 0.

If the principal normal curvature are real and none of the lines of curvature
are tangent to null vectors, we call M a proper hypersurface of M and term the
immersion a proper immersion respectively. In this paper, we assume that an
immersion means always a proper immersion.

The equation of Gauss expresses the curvature tensor R of M by means of A

1.3) R(X, Y)=e-AXAAY +cXNY,

where, in general, XAY denotes the endomorphism which maps Z upon g(Z, Y)X
—g(Z, X)Y, and e=+1, or —1.
The type number k(x) at x is, by definition, the rank of A at x

2. Reduction of condition (%)

At a point x&M, let {e,..., en} be an orthonormal basis of the tangent space
Tx(M) such that Aei=2iei, 1<i<n. Then the equation of Gauss implies

R(ei, e))=C(edi2j+c)ei/\e;j.
By computing
(RCei, e;)*R)(er, e)=[R(ei, ej), R(ex, e)]
—R(R(ei, ei) ek, e1)—R(er, R(ei, ej)er),
we find that it is zero except possibly in the case where k=i and /&, j(i'=4=i).
For this case we have
@.1D (R(ei, e))*R)(ei, e)=38(eAi 2j+c) i (Rj—2)ejNet,
where d=+1, or —1. '
Thus we see that condition (*) is equivalent to
@.2) Cedi 2j+)uQj—2)=0 for /=i, j, where i3=j.
Suppose that the type number k(x) is =2 at a point ¥EM and assume that

2y,..., A& are non-zero principal normal curvatures, that is, non-zero eigenvalues of

A atx and 2k+1=...=21z= 0.
When ¢#0, from (2.2), we can see that non-zero eigenvalues of A are classified

into at most two classes, that is,
A=........ =2is (=2),
A1 =euene.. =2it(=p), where s+¢=n, and edu+c=0.

Then, by the observations we made above, we can define three linear subspaces,
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say, To(M), T.(M), T,(M) of the tangent space Tx(M) at xEM as follows:
To()={XET-(M); AX=0})
T1(®)={XET=(M) ; AX=2X)
To(x)={(XET-(M); AX=upX}.

We have Tx(M)=To(M)+T1(M)+T(M) (direct sum). For any ZET«(M), Zy, Z,,
and Z, will denote the components of Z in To(x), T.(x) and T,(x), respectively.
We shall only consider the following two cases in this paper.
I. ¢=#0, and 2(x)=3 at a point x E M, s=1, t=1.
II. ¢=0, and 2(2)=3 at a point xE M.

Then we have the following for the case L

LemMa 2.1. If ¢*0 and the rank of A is =3 at oM, then there is a neighborhood

U of xo on which the dimension of T1(x) and the dimension of Ty(x) are constant at

| each point xEU, and the non-zero eigenvalues 2(x) and p(x) of A are differentiable
| Sunctions. Where eA(x)p(x)+c¢=0 and 2(x)>p(x), at x&U.

And we have also the following for the case IL

LEMMA 2.2. If ¢c=0 and k(%) =3 at % E M, then then there is a neighborhood
U of xy on which k(x)=3 at each point xEU, and the non-zero eigenvalue k(x) is a dif-
| Sferentiable function.

3. Lemmas

In this paper, we shall assume that M is oriented (so that a unit normal field is
| defined on the whole M) and the type number k(x) is =3 everywhere on M. By
i the observations we made in §2, for the case I, the functions s(x) and ¢(x) are
‘ ‘locally constant and hence are constant functions, say, s and t,. respectively, since
| M is connected, and moreover, for the case II, the function k(x) is locally constant
and hence is a constant function, say, k. '

LemMA 3.1. For the case I, T1 and T, are differentiable.

Proor. For any point xy=M, let {Xj,..., Xs} be a basis of T1(xp) and {Xs41,...
X} be a basis of Ty(x). We extend Xi’s to vector fields on M and define vector
fields '

Yi=(A—uDXi for1<i<s
and

Yi=(A—-DX; for s+1<j<mn,
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where I denotes the identity transformation. At x5, we have Yi=Q—p)X: for
1<i<s and Yi=—Q~p)X;j for s+1<i<n.

Thus Y;,......, Ya are linearly independent at 1y and hence in a neighborhood U of
xo. At each point of U, we have

(A-DYi=(A-D(A—puDXi=0 for 1<i<s,
(A—pDYi=(A—pD(A-2DX;=0 for s+1<j5<n.
Hence Yjy,...... ,Ys from a basis of Ty and Ysiq,...... , Y from a basis of T,.

And we have also the following
LemMa 3.2. For the case II, To and Ty are differentiable.
LemMma 3.3. For the case I, Ty and T, are involutive.

Proor. We recall the Codazzi equation: (VxA)Y=(VyA)X, where V denotes
the Levi-Civita connection with respect to the pseudo-Riemannian metric g of M.
Suppose that X and Y are vector fields belonging to T;. Then

(VxA)Y = Vx(AY)—A(VxY)=(XDY +2(VxY)—A(VxY),
and
(VrAX=FDX+2(VyX)—A(VyX).
Thus we get
XY~ DX+QI-A)[X, Y]1=0.
Since (XDY - DXET, and QAI-A)[X, Y1=Q—-wI[X, Y], we get
XDY - )X=0 and [X, Y],=0.

The second identity shows that [X, Y]ET;, proving that T is involutive. Simil-
arly, T, is involutive.
And we have also the following

Lemma 3.4. For the case II, Ty and Ty are involutive.

4. Some results

For the case I, let M;(x) and M;(x) be the maximal integral manifolds of T,
and T, respectively.
. Then we have the following

Lemma 4.1. For the case I, if s=2 and t=2, then 2(x) and pu(x) are constant
Junctions on M.

Proor. Since s=>2, we may choose X, YET,(x) such that X and Y are linearly
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independent. Extending X and Y to vector fields belonging to Ti(x), we have

(XDY—-(XDX=0 at x. Thus XA=Y1=0 at x. Therefore, the function A(x) is

constant on each M;(x). Similarly, since #=2, the function u(x) is also constant

on each M,(x). However, eAu+ ¢ =0, thus it follows that 2(x) is a constant function

on M, say, i. And moreover, y(;c) is also a constant function on M, say, 2.
From Lemma 4. 1., we can easily prove the following

LemMa 4.2, If s=2 and t=2, then M,(x) and My(x) are both totally geodesic
and T1(x) and Ty(x) are paprallel.

Thus, by virtue of above two lemmas, we can see that M;(x) and Mj,(x) are
spaces of constant curvatures c;, ¢, respectively, where

c1==eA2+4¢

co=¢ep+tc.
Then, we see that ¢; and ¢, satisfy the following equation
“@n 1/a141/ca=1/c.

And moreover, we can show that for a point ¥EM, there is a coordinate system
{x1,...... , X5, xs¥L . , a»} with origin x in a neighborhood U of x such that {d/dx},
...... , 0/0xs} and {a/9xs*l,......, 3/0x"} are local bases for T; and T, and with respect
to this coordinate system the first fundamental form of M is given as follows

4.2) dst= (@) tesdr)?
(1444 +es@dD)]

es41(dxst)24...... + en(dxn)?
2?
(14— CeonCami 4. enCam)

where each ¢ is +1, or —1. (See for example A. Fialkow [1].)
Then M may be immersed in M by means of the algebraic equations

4.3) ei(@H)2+...... +esyo(zst)2=1/c,

esy+2(28t)24 ... +enya(nt2)2=1/c,,
where the ¢’s are ‘+1, or —1 and the M is defined by
4.9 ()2 ... Fens (2 22=1/c.

The 2’s are the point coordinates of Weierstrass. Since n=4 and Au+0, the M is
indeformable in M.

The equations (4.3) show that M may also be considered as the intersection of two
hypersylinders in a flat space of #-2 dimensions.
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Thus we have the following

THEOREM 4.3. Let M be complete, connected and of constant curvature c+0 and
defined by (4.4). If M is connected complete proper hypersurface of M of the case I
and s=2, t=2, then M may be considered as the intersection of two hypersylinders in a
flat space of n+2 dimensions.

As a result, M is, of course, symmetric.
Next, for the case II, let My(x) and M;(x) be the maximal integral manifolds
of Ty and T; respectively.

Lemma 4.4. If X belongs to Ty1(x), then X2=0.

From this lemma, we see that the function 21 is constant on each maximal
integral manifold of T,, that is, on each M(x).
We now let X&T,, YET, and compute the both sides of the Codazzi equation:

(VxAY = Vx(AY)—A(VxY)=—A(VxY)=—2(VxY ),
(VyA)X= Vy(AX)—A(VyX)= Vy(AX)—A(VyX)
=Y 2. X+ VyX)—A(VyX)
=Y2-X4+2(VyX)o.
Therefore we have
(VyX)o=0, that is, VyX€ET,
and
A DX=—2(VxY);=—A(VxY).
We have hence
Lemma 4.5. If XET,, YET,, then A(VxY)=—FDX.

LemmMA 4. 6.
(i) If YET,, then Vy(TDCT;.
(ii) If YET,, then Vy(To)CT,.
(iii) If YETo, XETy and [X, Y]1=0, then VxYET;.

By virtue of Lemma 4.5. and Lemma 4.6., we have
.5 vrx=—Fl.x. for XETy, YETo, (X,¥)=0.

By virtue of Lemma 3. 4., for a point xEM, there is a coordinate system ({x}, ..., x%}
in a neighborhood U of x such that {3/dx}, ...... , a/oxk} and {9/0xk*1, ...... , 3/0xn} are
local bases for T; and T,, respectively.

By setting gas(#}, ...... , x") =g(9/0x=, 3/0xF) for k+1<a, B<n, we have
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0 gap/0xr =g(Va,0:7(0/0%%), 0/0xF)+g(3/0%%, Va0:7(3/3%F)).
But since Lemma 4.6 (iii), implies V3,0:7(0/0x<)ET; for 1<r<k, we have
2(Va,0:7(3/8x%), 9/3x6)=0

and, similarly, g(8/0x, Va,5:7(3/9x))=0. We have thus dg.s/0xr =0. Moreover, by
setting gpe(xl, ......, x) =g(0/09x9, 3/9x9) for 1<p, q<k,
we have

0gpq/0x5=g( V3,3:2(3/0x?), 3/0x9)+g(3/0x?, V3,5x2(0/0%p)).

But (4.5) implies V/0x2(0/0x#) = V3,02 (3/0%2) = —Tax't—a/axl’ for k+1<La<n.

Hence

4.6) 0gpq/0x%=—(202/0%°)gpq .

Thus we have the following

THEOREM 4.7. For the case II, there is a coordinate system in a neighborhood U

of x such that with respect to this coordinate system the metric tensor of M is given as
Jfollows

@D L gs ey )0

where gpe(x, ...... , ¥%) must satisfy (4.6), and gap are constant on U.

Lastly, let us give an example of hypersurface, of the case I, in the hyperbolic

space of dimension n+1, say, H#*l. Then H»*! is isometric to the Riemannian half
space

ds?=(1/21)2 ((dzD)1+...... +(dz»*1)?), zER**Y, 21>0.
Let M be a hypersurface of H»+!, defined by the equations:
Zl=eu,  zi=euwi(al, ...... , 20D, i=2, ... , n+l, uER, n=3

where e# denotes the exponential function of .
Then the Riemannian metric of M is expressed as follows

n+1 ntl
gpq=i2(3wi/ 0x#)(0wi/9x9), gex=1 +§2(wi)2: P g=1,..... yn—1,

where the first fundamental from of M is written in the form, ds®=gpdxPdxe
+g**dudu.

Then, if M satisfies the condition (*), then, s or £=1 and from the similar argu-
ments as before, we have
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741
22(w1)=1'2, where r is a constant.
=

Therefore, M is homothetic to the direct product Riemannian space of (n—1)-
dimensional sphere with radius |r| and a real line R.

-Remarks, (1) If ¢%0 and k(x)=3 at some point x&M, then we can show that
the condition (*) is equivalent to the condition, R(X, Y)+S=0, at x. Where S
denotes the Ricci tensor of M.

(i) The assumption, k(x)=3 everywhere on M, can be replaced by the assumption,
k(x)=3 at some point x&=M.
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