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0. Introduction

Transitive actions of compact connected Lie groups on standard spheres have been
studied by D. Montgomery-H. Sameleon [9] and A. Borel [2]. After them, W-Y. Hsiang-
J. C. Su [8], A. L. Onis¢ik [12] and K. Abe-T. Watabe [1] have treated transitive actions
on Grassmann and Stiefel manifolds.

In this paper we investigate transitive actions on every simply connected compact
irreducible symmetric space M such that its Euler number y(M)#0 and K is semisimple,
where M=1,(M)/K as a symmetric space. Then we will show that such transitive action
is unique and standard (Theorem 1. 2).

Finally in Apendix, we consider transitive actions on Grassmann manifolds Gzn, 21
(2<k<m—1) which A. L. OnisCik has left. We will see easily that under some strong
assumption, a simple transitive action, it is unique and standard (Theorem 6. 2).

I wish to thank Professor T. Watabe for his many helpful suggestions.

1. Notations and Main Theorem

For a topological space M, we denote the following notations. H*(M) is the cohomo-
logy with real coefficients and P(M, ¢) is the Poincaré polynomial of M. The sum of the
ranks of 7y, (M) k=1, 2,------ is called the Oniscik rank of M.

Let G be a compact connected Lie group, U its closed subgroup, j : U—> G : inclusion.
Let Pg, Pu be the spaces of the primitive elements of H*(G), H*(U) respectively. Then
it is known that j induces the homomorphism j* : Pc—— Py, and we denote by R and S
the kernel and cokernel of j* respectively. Note P(R, t)and P(S, ¢) are topological in-
variants for G/U (cf. [11], Theorem 1). Put Ri=RNRY,and Si=SNP},. Then we have
R=®:Ri and S=®:S:.

Now we consider a C*-manifold M which is a simply-connected compact irreducible
symmetric space with the following properties.
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2 E. Tsukada

( x(M)+#0, and when M can be obtained by I,(M)/K
*)
as a symmetric space, K is semisimple.

Then by E. Cartan’s classification of irreducible symmetric spaces, M is one of the follow-
ings.

type space
Bil;,, SO(214+1)/SO(2m)x SO2I—1—2m)
BiIT SO(2l+1)/S0(2!)
Gll,, Sp()[Sp(m)x Sp(I—m)
Dil,,, SO20)/SO(2m)x SO(2l—2m)
Eell Eg/SU(2)+SU(6)
EV E;/SU*(8), SU*(8)=SU(8)/Z,
E VI E;/SU(2) « Spin(12)
EVIIT E3/S0O(16)
EsI X Es/SU(2)« E
FJd F,/SU(2)-Sp(3)
F I Fy/Spin(9)
Gl G2/SO(4)
Table 1.

DerINiTION. Let G and K be two compact connected Lie groups which act on M
transitively and effectively, H and L isotropy subgroups of G and K respectively at some
point of M, and g, f,  and | Lie algebras of G, K, H and L respectively. When there is
an isomorphism ¢ : g——t such that ¢(§))=1I, we say that the action of G is similar to that
of K.

LemMma 1.1 ([14], p. 296)

Let M be any homogeneous space such that y(M)+0, G a compact Lie group which acts
on M transitively and effectively. Then the center Z(G) of Gis trivial.

NoTe: Let M be a simply-connected compact irreducible symmetric space with the
property (*). Mereovere we represent M as a homogeneous space K/L in table 1. Then
from (1. 1), the induced action of adK on M is always effective, where adK is adjoint
group of K, that is, edK is K/Z(K). This action is called the stendard transitive action of
M.

THEOREM 1. 2

Let M be any simply-connected compact irreducible symmetric space (but BsII) with the
property (%), G a compact connected Lie group which acts on M transitively and effectively.
Then the action of G is always similar to the standard transitive action of M.

Proor

For Bilsy, Dilsy, and Cil,,, we refer to [12], and for BiII=5S% (I+3), [9] and [2] have

showed. Since Oniscik ranks of F4II and G,I are one, the theorem is true for them (cf.

(11p.
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Hence we have to prove the theorem for FyI, E¢Il, E;V, E;VI EsVIII and E;IX.
Remaining sections will be spent to the proofs of the theorem for them.
Note: For B3II=SS8, there is a non-standard transitive action G»/SU(3).

2. the Symmetric Space F, 1

We consider the symmetric space Fyl=F,/SU(2)+ Sp(3)=F4/A; X C3 in this section.

Let T be a maximal torus of Fy, x;, %2, 43, ¥4 the canonical parameters of 7. Then it
is well-known that H*(Br) is isomorphic to R [x;, %2, 3, x4], where Br is the classifying
space of T.

Now we take the set {+xi (i=1, 2, 3, 4), i +x; 1=i<j=4), 3(Fx* 52+ x31+2,)} as
the root sysyem of Fy. Put 4= {+x; (1=i<4), 3 (£ x+tx,+x31+%4)}, and for any positive
integer k let Ir=-%-3" ak. Then we have H*(Bry) = H*(Br)WF9 = R[I,, I, I, I;5], where

dey
W (F}) is the Weyl group of Fy.
Set gi(x2)=0i(x%, x3, x3, ) the i-th elementary symmetric polynomial. Then we

have I,=30,(x?), Is=903 (xz)——g— a5(x2)ea, (x2)+90, (x2)8 (see [13], p. 316).
LemMma 2.1

For F, we have P(R, t)=1%+123 and P(S, t)=t341.
Proor -
In Fyl=F4/ A, x C3, A;@®Cs (the Lie algebra of A;x Cs) is a regular subalgebra of F,
(51, p. 142).

Let T'=T,x T, be a maximal torus of A;X Cs, and ¥, ¥, ¥2 ¥s the canonical para-
meters of A; X Cs. Then the inclusion A; X C3——F} can be represented by the following
embedding of the Dynkin diagrams.

/11 O 2y’ | ........................ —_ (l) a~= — X — X2
CID X2—X3
O 2y3 | ........................ — O X3— X4
U Y
Ca O Y2—3 l ........................ — CI> X4
Nn—y l ........................ —_ O __;_(xl_xz_xs_.xll)
the Dynkin diagram of A; X C; the extended Dynkin diagram of F,

It is easy to show that the defining matrix of A; X Cs3 in F} is

-1 -1 0 0
1 -1 0 0
f= |
0 01 1
0 01 -1

Hence we have
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tf : H(T)——H(T")
X1 l——'—’% (=¥ +»)

X2 |

g (Y=

X3 |————"-%— (J’2+y3)

X4 I—‘——‘"—% (y2—¥3)
Here we need the following result in [3] (p. 178, Proposition 21. 3).
Let Gbe a compact Lie group, and U a closed subgroup of G. Put Qe=H*(B¢)/Dg,
where D¢ is the subspace of H*(Bg) spanned by H?%(Bg) and decomposable elements of
H*(Bg). Then the following diagram is commutative.

Pc — Py
2 lr 2 lr
Q¢ e > QU

where z is transgression and p* is the map induced by p*(U, G).

Therefore we have to investigate the map p* : Qrs—> Q4,xc; where Qrs=RI,+RIg
+ R+ RI; and Qa,xCs=Ry'24+ Ray(y*)+ Roy( %)+ Roy(y?).

By simple verifications, we obtain p* (I3) = y'2+40,(3?), p* ({s) = g3(3%) and p*(Ig)=p*(1,3)
=0 mod Da,xcs. Consequently Ker. p* =RIg+RI;» and Coker. p*=R (y'2—a,(3?))
+Ra,(5?). Hence we have P(R, t)=t154-¢2 and P(s, t)=#34-17. qg.ed.

Note: From (2. 1), OniS¢ik rank of Fyl is P(R, 1)=2. This can be also taken from
that Oni$¢ik rank of F,/Cs is two and that of Fy/ A, X C; is not one (cf. [11]).

LEMMA 2.2 _

Let M=K|/L be a homogeneous space such that y(M)+0, K compact and simple, L semi-

simple and its length < 2, and dim. M <12. Then (K, L) has the following possibilities.

(K, L)| (Br, Dr) k=2,3,4,5,6 dimension | 2k
(B3 B,x Dy) ' 11
(Co» Ci% C3), (C3, C1X Ca), (Cay Cyx Cy) 8,8 4
(Ga, A2), (G2, A1 X Ay) 6,8

Proor.
Using results in [4], we can prove easily.

For two polynomials f(f)=a¢+at+ --- +ant” and g(t)=bo+bit+ - +b,t™ of t with
real coefficients, we write f(£)> g(¢) if n=m and a: >b: for i=0, 1, --- , n, where we put b;
=0 for j >m.

Let G be a compact connected Lie group. We denote 2(G) the integer such that
2k(G)+1 is a maximal stratification power for th space Pg.
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ProposiTiOO 2. 3

Let G be a compact connected Lie group such that G acts on the symmetric space FuI
transitively and effectively. Then the action of G is similar to the standard action of Fyl.
Proor.

Let G=Gi X G X --- X Gy, Gi simple, and U=U; X UyX --- XU, an isotropy subgroup,
UiC Gi. Then there is just one G: such that 2(Fy)=k(G:)=11, and U is semisiple. More-
over all Gj is not of type A:; ([12], p. 406, Lemma 5).

Now let i=1. Then ¢, is Bs, Cs, Dy, Fy, or E¢. Since the length of u; <2, the possi-
bilities of (g;, u,) are following. ' '

81 B . Ce¢ - Dy Fy Es
u | De S ‘ - By Dy
BixDgi .. CixCsi - DixDyi . BixXDy_i A;XAs
i=1,2,3,4 i=1,23  i=23 i=1,2
DiX De_i | ' Dyx Dy
i=2,3 L A;x Cs
AxX Az

Comparing P(Pg,, t) and P(Puy,, t) with (2. 1), we can cancell above possibilities mostly.
After all, the following cases remain, (Cg, C; X Cs), (Fy, By), (Fy, A; X C3). '

We assume (g, 1;)=(Csq, C; X C5). Put F J=[Cs/Ci X Cs]1XMax M’. Then dim. M,
=dim. FyI—dim. C¢/C; X C5=28—20=8. Hence (2. 2) concludes that (g2, uz)=(B3, D3), (B3,
D3), (By, Dy), (Cyy C1 X C3), (C3, Cyx Cy), (Ca, C1 X Cy), (G, Ap) o1 (Ga, A1 X Ap)-

If we assume (gp, u2) =(Bz, D2), (B3, D3), (C3, C1X Cy), (C2, C1X Cy), (Ga, Ap) or (Ga, Az)
or (Gs, A1 X Ay), we have P(R,, £)>17, 11, 11 {7, 11 or #11 respectively. It contradicts (2. 1).

If (a2, u2)=(By, Dy) or (C4, C1X C3), we have P(Ss, H)>1. Sinc P(S;, H)> 13, P(S;+S2, £)
>2. This contradicts (2. 1). Therefore we can except the case (g, 1;)=(Cs, C;X% C5s).

If we assume (g;, u;,)=(Fy, By), we can show contradictions in the same way as above.

Consequently we have (g;, t;)=(Fy, A; X C5). q.ed.

3. the Symmetric Space E¢Il

In this section we study the transitive action on the symmetric space E¢lI=Egs/SU(2)
«SU(6)=FEg/ A; X As.
Let @i=xi—2xiyq, i=1, 2, .-, 5, @g=x4-+ x5+ x¢ be the simple roots of E;z. Put

ai = x1+—%‘ (x1+x2+x3+x4+x5+x6)’ i=1, 2’ oy 6
bi ——-—xi—-g— (x1+xz+x3+x4+x5+x6); i=1’ 2) Tty 6

Cij=—Xi—Xj+ -i,l;; (%1 + x5+ 23+ 24+ x5+ %), 4, 1=1, 2, -+ , 6
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and L= (Saf+ Do+ Dl

Then it is known H*(Bge)=H*(Br)WE® =~ R[I,, Is, Is, I3, Iy, I)p], where T is a maximal
torus of Eg (cf. [13]).

Now we consider the case E¢/I as in the proof of (2.1). Since A;® A; (the Lie algebra
of A, X As) is a regular subalgebra of Es, the embedding of the Dynkin diagrams is follow-
ing.

O 2y [rreeeeeeeees -> O\ @=2%;+ 23+ %5+ 54+ %5+ %5

Q ag=x41+x51%

O > O ag=n—2
(') 0y =X3—X3
(l) Q3=X3—%4
(5 Ay=X4—X5
L oo b o & s,
the Dynkin diagram the extended Dynkin diagram
of A; X As of Eg

Hence the defining matrix of A; X As in Eg is
3 3 3 3 3 3
5 -1 -1 -1 -1 -1
-1 5 -1 -1 -1 -1

Consequently
of L HI(T) -~ H(T)
%1 | - nt+y
x2 | - ya+y
%6 | - Yty

where 7T is a maximal torus of 4; x As. Note that the reration Nn+y+y3+ya+ys+y =0
holds.
Now we put
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=%—° (%14 %2423+ 24+ X5+ %6)

§i= xi— %— N= Xi— % (X + %o+ 23+ 24+ 25+ %¢), =1, 2, -+, 6

and Y= > (x4+x5+x6)

Then we we have

{ 7 | >y’
&i I —>Yi, i:]-’ 2, e :6
Moreover by [5], p. 777 it holds

In= % (E af-l-z bf—*—z cfj)
]
(g )sk_zj 2Tl (= 1) {(6 2 Dske+ - E( )sr Sk.—r} R

where se=6F 4854 ... 1k,

‘"MLT@

Therefore
L33
) I )} (g)sey it (G-
i=0
L3 (8)rvi)
2 L\ TR

where s'k=yF+ 95+ - +oE.

LemMma 3.1 ;

For E¢Il, we have P(R, t) =11+ A74+2 gnd P(S, H)=t3+5+417. Therefore Onisck rank
of Egll is three.
Proor.

Using (**), it can be shown that p*(ly) = 6(y'3—032(9)), p*(I5)=—3605(3), p*(L)
=15006(¥) and p*(Ig) = p*(l12)=0 mod Dre¢. Consequently Ker.o*=RIz+ RIy+ RI;; and
Coker. p* =R(y'2+02(9)+ Ro3(y»)+ Ros(y). Taking them back by transgression, we
conclude that P(R, H)=#5+7+¢23 and P(S, H)=8B+15+17. q.ed.
ProrosiTION 3. 2

Let G be a compact connected Lie group which acts on the symmetric space E¢ll effective-
ly and transitively. Then the action of Gis similar to the standard transitive action of E¢II.
Proor.



8 E. Tsukada

As the proof of (2. 3) we can show that the possibilities of (g;, u;) are (Cg, Cy X Cs), (Fy,
By), (Fy, B x B3) and (Eg, A1 X As).

Assum that (g;, ;)= (Cs, C1 X Cs), (Fy, By or (Fy, BiXB3). Then P(R;, £) has no term
of #17. Therefore there is some integer i such that #(Gi)=8. Then G: is of type As. But
this contradicts the fact that every G; is not of type A;. Hence we have (g, u;)=(Eé,
A; X As). q.e.d.

4. the Symmetric Spaces E;V and E;VI

(1) EV=E,/SUX8)=E:/A;.

Let G be a compact connected Lie group which acts on the symmetric space E;V.
As in section 2 and 3, we take (g;, u;). Then g, is By, Cg, Dy or E4, since k(E)=k(G,)=17.
Moreover we have the length of u;<2.

By [4], the possibilities of (g;, u;) are following.

a1 B, Co Dy E;
i Dg A7
Bix Dg_i CixCg_i Dix Dyg—i A; X Dg
i=1,2, -, 7 i=2,3,4 i=2,3,4,5
Dix Dg_i As X As
i=2,3,4

(i) the case g;=Bs.

If (a1, w)=(By, Dg), we have P(S;, H)>#17. This contradicts the fact P(Paz, H)>P(S, t)
>P(S,, b).

If (g1, u)) = (Bg, Bi X Dg—i) for i=1, 2, ---, 7, we have P(R,, t)> t3. However P(PEy t)
has no term of ! Therefore it is impossible.

If (g, w1)=(Bg, Dix Dy_;) for i=2, 3, 4, we have P(Ry, £)>3'. 1t is a contradiction.
(ii) the case g;=D,.

If (g1, u))=(Cq, Cix Cy_i) i=2, 3, 4, we have P(R,, H)>¢3. It is a contradiction.
(iii). the case g;=D1-

If (g1, u1)=(D1g, DiX Dyo—i) for i=2, 3, 4, we have P(R,, £)>131. It is is impossible.
(iv) the case g;=E;.

We assume (g;, u,)=(E7, A2X As). Then we have P(S;, {)>25. But P(Pas, t) has no
term 2¢5. Hence it is impossible.

Therfore we conclude that the possibilities of (g;, 1;) are (Cq, C, X Cg), (E7, A7) and (Ey,
A; X Deg).

ProposITION 4. 1

Let G be a compact connected Lie group which acts on the symmetric space E;V trans-
itively and effectively. Then the action of G is similar to the standard action of E;V.
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ProOF.

It is sufficient to show that (g;, u;) can be neither (Cy, C; X Cg) nor (Ey, A; X De).

We set M=F;/A; and M;=G,/U;. If M, is Cy/C, X Cg, we can take ng(M;)=2Z,. On
the other hand =y(M,)=~Z, and so it is impossible. If M, is E;/ A, x Ds, we have mg(M;)
=2Z3+7Z,. It is impossible. q.ed.

NoTte: About homotopy groups of Lie groups, we refer to the tables in “Mathema-
tics Dictionary” (in Japanese) Iwanami, 1968.

) E;VI=E;/SU2)-Spin (12)=E;/A; X Ds.

Since P(Pa,xDs,t)=2t5+ ---, we can see that the length of u; <3. Now we assume

that the length of u, is just three. Then the possibilities of (g;, 1) are following.

(3] By Co Dio En

iy | BixDjxDr GCixCixCr DixDjxDe A;XDixXDs_i
DixDixDr i+j+k=9 i+j+k=10 i=2,3
i-+7+k=9

If g;=Bg, Co or Dy, we have P(Ry, )> 3. But P(Pgq, ) has no term of 3, it is a
contradiction.

Now we asume that (g, 1) is (F;, A; X Dix Dg_i) for i=2, 3. Then it can be shown
that P(S;, £)> 38 for i=2 and P(S;, £)>28 for i=3. So it is impossible.

Hence we conclude the length of u; < 2.

As in (1), we can see that the possibilities of (g;, 1;) are (Cg, C, X Cy), (E;, A7) and (£,
A; X Dg).
ProposITION 4. 2

Let G be a compact connected Lie group which acts on the symmetric space E;VI transi-
tively and effectively. Then action of G is similar to the standard transitive action of E; V1.
Proor

We can see easily that 7g(E;VI)=234+Z, and ng(E;V)=Z. Therefore we omit the
case (B, Ay). v

Now we put M; =Cy/C;x Cg. Then we can take that there is some i for i =2 such
that £(G:)=13 and the length of u;<2. Seti=2. Then the possibilities of (g2, uz) is fol-
lowing.

g2 B7 C7 Dg

U D,

BixXDq_i CixCqei DixDg_i
i=1,2, -, 5 i=1,2,3 i=2,3,4
DixXDq_i

i=2,3
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(i) the case g;=5;.
If (g2, uz)=B;, D7), then P(S,, t)>¢#13. It is impossible.
If (a2 us)=(B7, Bix D) for i=2, 3, 4, then we have
0 ifi=2

P(Sy, t)> 2t7 if i=3
5 ifi=4.

Therefore it is impossible.
If (g3, u2)=(B;, Dix Dy_;) for i=2, 3, then we have

#  ifi=3

P(S;, t)>{ L
5 ifi=4.

Hence it is a contrdiction.
(ii) the case go=Ds.
If (g, us)=(Ds, D; x Ds_i) for i=3, 4, then we have

# ifi=3

P(S;, t>>{ o
317 ifi=4.

Therefore it is impossible.

From (i) and (ii), we see that the possibilities of (gz, up) are (B;, By X D), (B7, BsX Dy),
(Cs C1%x Cg), (Cy, C3% Cs), (Cq, C3x Cy) and (Dg, D2 % De).

Now we put My=G,/U,, then E;VI=M;x Max M.

If M,=B;/B;x D¢, Then the facts, 7 o(E;V)=Z 3+ Z 5 and 7;(M;)= 714(Cy/C1 X Cg)
=Z 3, follow that =,o(M>) is trivial or Z,. Considering the homotopy exact sequence of
the fibre bundle (B;, M;; B, X Dg):

T1(Br)——> 19 (M2)—>79(By X Dg)—>7g (E7),

we take a contradiction.

As in above we can take contradictions for the cases (C; C,;x Cg) and (Dg, D3X Dg).
Hence the two cases (C; C2x Cs)and (Cy C3x Cy) remain. But for them we have con-
tradictions by comparing their dimensions. For example, if M;=C,/C;x C;, then dim.
M,=40. Since dim. E;VI=64 and dim. M;=dim. Cy/C,; X C3=38, we have dim. E; VI
<dim. M;+dim. M, Obviously it is a contradiction. q.e.d.

5. the Symmetric Spaces EgVIII and EgIX

(1) EgVIII=E3/SO(16)=Eg/D;.

As in the proof of section 4, we cancel the most possibilities of (g;, u;), and remain
only three cases (C;s, C; X C14), (Es, Dg) and (Eg, A, X E7).
ProprosioN 5.1

Let G be a compact connected Lie group which acts on the symmetric space E3VIII transi-
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tively and effectively. Then the action of G is similar to the standard transitive action of
EsVIII.
Proor

It is sufficient to say that (g;, ;) cannot be neither (C;s5, C1 X C14) nor (Eg, A;XEy).
This is led from the fact that 7o(EsVIII)=Z,, 7,0(C15/C1 X C1y)=Z 3 and myo(Eg/ Ay X Ey)
=2Z;. q.ed.
(2) ERIX=FE3/SU(2)-E;.

We need the following lemma.
LeEmMMA 5.2

The intgral homology of ElX has Z »-torsion.
ProoF

In the symmetric space Esl X=F3/SU(2)-E,, we have SUQ2)NE;=Z, Therefore by
the homotopy exact sequence of the fibre bundle (SU(2)x E;, SU(2)+E;; Z,), we have
7 (SUQ2)+«E;)=Z,. Moreover we can take 7mo(EgIX)=Z, and 7 (Es [ X)=n(Es [X)=0.
Using the Hurewicz isomorphism theorem, we have Hy,(Es I X)=Z,.

In the same way of section 4, we see the length of u; <2, and moreover the possibili-
ties of (g, ;) are (Cys, Cy X C1a), (Eg, Dg) and (Eg, Ay X Ep).
ProrosITION 5. 3

Let G be a compact connected Lie group which acts on the symmetric space EsIX transi-
tively and effectively. Then the action of G is similar to the standard transitive action of
EIX.

Proor

Since 7,0(Egl X)=Z 3, and =,((Es/Dg)=Z 5, we cancel the case (Eg, D).

Now we assume (g;, 1;)=(Cy5, C; X C14). Then we have P(R;, t) =17 and so there is
just one ¢ such that 2(G:)=23. We set i=2. Then we have the length of g, <2, and by
the same consideration of section 4, we see that the remaining possibilities of (gs, uz) are
(B12) Dy2) and (Cya, C1 X Cyy).

Now we put M=FEzIX, M;=C,5/C,x Cy4 and M= G,/U,, then we have 7,((M;)=2Z ;.
Therefore

M) =nm10(M)+m10(M)+710(M’")
=Z3+Z3+mo(M')

This contradicts 7,o(EsI/X)=Z3;. Hence we can omit the case (g, 12)=(C;2, C;X Cyy)-
Now we assume (gs, u3)=(B;s, D12). Here we note M’ +¢, where M=M;x My x M"’.
As the above consideration, we see M=M,; x MyX M3x M’"’, where Ms= G3/U; and (g3, u3)
=(By¢ Dyo)- Then it is easy to see that dim.M’'=12. Hence we can use (2. 2), and so we
have M''=Bg/ Ds.
After all, we can take that

M=[C;5/Cy X Ci4] X By2/ D12] X [B1o/ D10] X [Bs/ D],



12 E. Tsukada

that is,
M=[Sp(15)/Sp(1)x Sp(14)] X S24x S20x S12,

Since it has torsion-free homology, we can see by (5. 2) that it is impossible.  g.e.d.

6. Appendix

In this section we consider transitive actions of a compact Lie group Gon Grassmann
manifolds Gay, 22— (2<k<n—1). Here we note that these manifolds have zero Eular
number, and therefore the classification of transitive actions on them is more difficult
than before. So we assume that Gis simple. Then we can use the following lemma.
LemmMma 6.1 ([11], p. 169, Theorem 7)

Let M be a homogeneous manifold G/H where G is a compact simple Lie group of type
By, Cn 0r Dyyy and H is a closed subgroup of G If G’ is a compact simple Lie group which
acts on M transitively and effectively, then G’ is of type Bn, Cp 07 Dyyy.

THEOREM 6. 2

Let G be a compact simple Lie group which acts on a Grassmann manifold Gan, 20—,
(2<k<n—1) transitively and effectively. Then the action of G is similar to the standard
transitive action.

ProOF.
- From above lemma, G is By—;, Cy—; or D,. On the other hand by simple verifications

we have

{An—R+3 L fan—R+74. ... L pan—3L fan—1 (n=2k—1)

P(R, t)={
Hk—14 pak+3 4 ... - pan—34 p2n—1 (n=2k—1)

Therefore we see that there is a non-zero element in R C P¢ such that its degree is 2n—1.

So Gis of type D,.
From [11] theorem 1, we have

P(G, b _ P(SO(2n), b
P(H, ) = P(SOCn—k)+1)x SO@k—T1), H)

Hence
P(H, H)=P(SO(2(n—k)+1)x SO(2k—1), 1)
=P(SO(2(n—k)+1), )+ P(SOQ2k—1), t).

Therefore we conclude that H is By £ XBp—k, Co kX Bk, Buk X Ck—1 OF Cpk X Ck—y.
Now we consider an irreducible orthogonal representation

@ : Cu—e X Be—>D,,.

We set the complexification ¢C : Cy—x X Be—>D$, of ¢. Then we have ¢C=¢,+¢,, where
¢, and ¢, are complex representations of C.—x and B respectively. Since dimensions of
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non-trivial orthogonal representations are more than 44—1, we have

m=dimp¢p=dimc ¢ =dim¢c ¢, +dimc ¢ =2(n—k)+k—1=2n—k —1. For k<n—1, we
have 2n—k—1">n, i.e. m >n. Therefore H is not C,_rxXBr_;. As in above we can see
that H is neither B,z X Ck—q nor C,_r X Ck—;. Hence we have H is Bu_.x X Br. Moreover
non-trivial homomorphism B,_% X Br—>D, is only a standard inclusion, and so the action
of Gis similar to the standard transitive action. g.e.d.
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