Transitive actions of compact connected Lie groups on symmetric spaces

By
Etsuo Tsukada*

(Received April 2, 1977)

0. Introduction

Transitive actions of compact connected Lie groups on standard spheres have been studied by D. Montgomery–H. Sameleon [9] and A. Borel [2]. After them, W-Y. Hsiang–J. C. Su [8], A. L. Oniščik [12] and K. Abe–T. Watabe [1] have treated transitive actions on Grassmann and Stiefel manifolds.

In this paper we investigate transitive actions on every simply connected compact irreducible symmetric space M such that its Euler number $\chi(M) \neq 0$ and K is semisimple, where $M = I_0(M)/K$ as a symmetric space. Then we will show that such transitive action is unique and standard (Theorem 1.2).

Finally in Apendix, we consider transitive actions on Grassmann manifolds $G_{2n,2k-1}$ (2 < k < n-1) which A. L. Oniščik has left. We will see easily that under some strong assumption, a simple transitive action, it is unique and standard (Theorem 6.2).

I wish to thank Professor T. Watabe for his many helpful suggestions.

1. Notations and Main Theorem

For a topological space M, we denote the following notations. $H^*(M)$ is the cohomology with real coefficients and P(M, t) is the Poincaré polynomial of M. The sum of the ranks of $\pi_{2k-1}(M)$ $k=1, 2, \cdots$ is called the *Oniščik rank* of M.

Let G be a compact connected Lie group, U its closed subgroup, $j:U\longrightarrow G$: inclusion. Let P_G , P_U be the spaces of the primitive elements of $H^*(G)$, $H^*(U)$ respectively. Then it is known that j induces the homomorphism $j^*:P_G\longrightarrow P_U$, and we denote by R and S the kernel and cokernel of j^* respectively. Note P(R,t) and P(S,t) are topological invariants for G/U (cf. [11], Theorem 1). Put $R^i=R\cap R^i_G$, and $S^i=S\cap P^i_U$. Then we have $R=\oplus_i R^i$ and $S=\oplus_i S^i$.

Now we consider a C^{∞} -manifold M which is a simply-connected compact irreducible symmetric space with the following properties.

^{*} Niigata University

2 E. Tsukada

(*)
$$\left\{ \begin{array}{l} \chi(M) \neq 0 \text{, and when } M \text{ can be obtained by } I_0(M)/K \\ \text{as a symmetric space, } K \text{ is semisimple.} \end{array} \right.$$

Then by E. Cartan's classification of irreducible symmetric spaces, M is one of the followings.

type	space
B_lI_{2m}	$SO(2l+1)/SO(2m) \times SO(2l-1-2m)$
B_lII	SO(2l+1)/SO(2l)
C_lII_m	$Sp(l)/Sp(m) \times Sp(l-m)$
D_lI_{2m}	$SO(2l)/SO(2m) \times SO(2l-2m)$
E_6II	$E_6/SU(2) \cdot SU(6)$
E_7V	$E_7/SU^*(8)$, $SU^*(8)=SU(8)/Z_2$
E_7VI	$E_7/SU(2) \cdot Spin(12)$
E_8VIII	$E_8/SO(16)$
E_8IX	$E_8/SU(2) \bullet E_7$
F_4I	$F_4/SU(2) \cdot Sp(3)$
F_4II	$F_4/Spin(9)$
G_2I	$G_2/SO(4)$
	Table 1.

DEFINITION. Let G and K be two compact connected Lie groups which act on M transitively and effectively, H and L isotropy subgroups of G and K respectively at some point of M, and \mathfrak{g} , \mathfrak{t} , \mathfrak{h} and \mathfrak{l} Lie algebras of G, K, H and L respectively. When there is an isomorphism $\varphi:\mathfrak{g}\longrightarrow \mathfrak{t}$ such that $\varphi(\mathfrak{h})=\mathfrak{l}$, we say that the action of G is similar to that of K.

LEMMA 1.1 ([14], p. 296)

Let M be any homogeneous space such that $\chi(M) \neq 0$, G a compact Lie group which acts on M transitively and effectively. Then the center Z(G) of G is trivial.

Note: Let M be a simply-connected compact irreducible symmetric space with the property (*). Mereovere we represent M as a homogeneous space K/L in table 1. Then from (1.1), the induced action of adK on M is always effective, where adK is adjoint group of K, that is, adK is K/Z(K). This action is called the *standard* transitive action of M.

THEOREM 1.2

Let M be any simply-connected compact irreducible symmetric space (but B_3II) with the property (*), G a compact connected Lie group which acts on M transitively and effectively. Then the action of G is always similar to the standard transitive action of M.

Proof

For B_lI_{2m} , D_lI_{2m} and C_lI_m , we refer to [12], and for $B_lII = S^{2l}$ ($l \neq 3$), [9] and [2] have showed. Since Oniščik ranks of F_4II and G_2I are one, the theorem is true for them (cf. [11]).

Hence we have to prove the theorem for F_4I , E_6II , E_7V , E_7VI E_8VIII and E_8IX . Remaining sections will be spent to the proofs of the theorem for them.

Note: For $B_3II=S^6$, there is a non-standard transitive action $G_2/SU(3)$.

2. the Symmetric Space F_4I

We consider the symmetric space $F_4I = F_4/SU(2) \cdot Sp(3) = F_4/A_1 \times C_3$ in this section.

Let T be a maximal torus of F_4 , x_1 , x_2 , x_3 , x_4 the canonical parameters of T. Then it is well-known that $H^*(B_T)$ is isomorphic to $R[x_1, x_2, x_3, x_4]$, where B_T is the classifying space of T.

Now we take the set $\{\pm x_i \ (i=1, 2, 3, 4), \pm x_i \pm x_j \ (1 \le i < j \le 4), \frac{1}{2} (\pm x_1 \pm x_2 \pm x_3 \pm x_4)\}$ as the root sysyem of F_4 . Put $\Delta = \{\pm x_j \ (1 \le i \le 4), \frac{1}{2} (\pm x_1 \pm x_2 \pm x_3 \pm x_4)\}$, and for any positive integer k let $I_k = \frac{1}{2} \sum_{\alpha \in \Delta} \alpha^k$. Then we have $H^*(B_{F_4}) \cong H^*(B_T)^{W(F_4)} \cong R[I_2, I_6, I_8, I_{12}]$, where $W(F_4)$ is the Weyl group of F_4 .

Set $\sigma_i(x^2) = \sigma_i(x_1^2, x_2^2, x_3^2, x_4^2)$ the *i*-th elementary symmetric polynomial. Then we have $I_2 = 3\sigma_1(x^2)$, $I_6 = 9\sigma_3(x^2) - \frac{3}{2}\sigma_2(x^2) \cdot \sigma_1(x^2) + 9\sigma_1(x^2)^3$ (see [13], p. 316). Lemma 2.1

For F_4I , we have $P(R, t) = t^{15} + t^{23}$ and $P(S, t) = t^3 + t^7$.

Рроог

In $F_4I=F_4/A_1\times C_3$, $A_1\oplus C_3$ (the Lie algebra of $A_1\times C_3$) is a regular subalgebra of F_4 [5], p. 142).

Let $T' = T_1 \times T_2$ be a maximal torus of $A_1 \times C_3$, and y', y_1 , y_2 , y_3 the canonical parameters of $A_1 \times C_3$. Then the inclusion $A_1 \times C_3 \longrightarrow F_4$ can be represented by the following embedding of the Dynkin diagrams.

$$A_{1} \bigcirc 2y' \quad | \cdots \bigcirc \widetilde{\alpha} = -x_{1} - x_{2}$$

$$\bigcirc x_{2} - x_{3}$$

$$\bigcirc 2y_{3} \quad | \cdots \bigcirc \widetilde{x_{3}} - x_{4}$$

$$C_{3} \bigcirc y_{2} - y_{3} \quad | \cdots \bigcirc \widetilde{x_{4}}$$

$$\bigcirc y_{1} - y_{2} \quad | \cdots \bigcirc \widetilde{x_{2}} - x_{3} - x_{4}$$

the Dynkin diagram of $A_1 \times C_3$ the extended Dynkin diagram of F_4

It is easy to show that the defining matrix of $A_1 \times C_3$ in F_4 is

$$f = \begin{pmatrix} -1 & -1 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & -1 \end{pmatrix}$$

Hence we have

$$tf: H^{1}(T) \longrightarrow H^{1}(T')$$

$$x_{1} | \longrightarrow \frac{1}{2} (-y' + y_{1})$$

$$x_{2} | \longrightarrow \frac{1}{2} (-y' - y_{1})$$

$$x_{3} | \longrightarrow \frac{1}{2} (y_{2} + y_{3})$$

$$x_{4} | \longrightarrow \frac{1}{2} (y_{2} - y_{3})$$

Here we need the following result in [3] (p. 178, Proposition 21. 3).

Let G be a compact Lie group, and U a closed subgroup of G. Put $Q_G = H^*(B_G)/D_G$, where D_G is the subspace of $H^*(B_G)$ spanned by $H^0(B_G)$ and decomposable elements of $H^*(B_G)$. Then the following diagram is commutative.

where τ is transgression and ρ^* is the map induced by $\rho^*(U, G)$.

Therefore we have to investigate the map $\rho^*: Q_{F_4} \longrightarrow Q_{A_1 \times C_3}$ where $Q_{F_4} = RI_2 + RI_6 + RI_8 + RI_{12}$ and $Q_{A_1 \times C_3} = Ry'^2 + R\sigma_1(y^2) + R\sigma_2(y^2) + R\sigma_3(y^2)$.

By simple verifications, we obtain $\rho^*(I_2) \equiv y'^2 + \sigma_1(y^2)$, $\rho^*(I_6) \equiv \sigma_3(y^2)$ and $\rho^*(I_8) \equiv \rho^*(I_{12})$ $\equiv 0 \mod D_{A_1 \times C_3}$. Consequently Ker. $\rho^* = RI_8 + RI_{12}$ and Coker. $\rho^* = R(y'^2 - \sigma_1(y^2)) + R\sigma_2(y^2)$. Hence we have $P(R, t) = t^{15} + t^{23}$ and $P(s, t) = t^3 + t^7$. q.e.d.

Note: From (2.1), Oniščik rank of F_4I is P(R, 1)=2. This can be also taken from that Oniščik rank of F_4/C_3 is two and that of $F_4/A_1 \times C_3$ is not one (cf. [11]).

LEMMA 2.2

Let M=K/L be a homogeneous space such that $\chi(M)\neq 0$, K compact and simple, L semisimple and its length ≤ 2 , and dim. $M\leq 12$. Then (K,L) has the following possibilities.

$$(K, L) | (B_k, D_k) \quad k=2, 3, 4, 5, 6 \qquad dimension | 2k (B_3, B_1 \times D_2) | 11 (C_4, C_1 \times C_3), (C_3, C_1 \times C_2), (C_2, C_1 \times C_1) | 8, 8, 4 (G_2, A_2), (G_2, A_1 \times A_1) | 6, 8$$

Proof.

Using results in [4], we can prove easily.

For two polynomials $f(t)=a_0+a_1t+\cdots+a_nt^n$ and $g(t)=b_0+b_1t+\cdots+b_mt^m$ of t with real coefficients, we write $f(t)\gg g(t)$ if $n\geq m$ and $a_i>b_i$ for $i=0,1,\cdots,n$, where we put $b_j=0$ for j>m.

Let G be a compact connected Lie group. We denote k(G) the integer such that 2k(G)+1 is a maximal stratification power for th space P_G .

Propositioo 2.3

Let G be a compact connected Lie group such that G acts on the symmetric space F_4I transitively and effectively. Then the action of G is similar to the standard action of F_4I . Proof.

Let $G = G_1 \times G_2 \times \cdots \times G_n$, G_i simple, and $U = U_1 \times U_2 \times \cdots \times U_n$ an isotropy subgroup, $U_i \subset G_i$. Then there is just one G_i such that $k(F_4) = k(G_i) = 11$, and U is semisiple. Moreover all G_i is not of type A_i ([12], p. 406, Lemma 5).

Now let i=1. Then \mathfrak{g}_1 is B_6 , C_6 , D_7 , F_4 , or E_6 . Since the length of $\mathfrak{u}_1 \leq 2$, the possibilities of $(\mathfrak{g}_1, \mathfrak{u}_1)$ are following.

$$\begin{array}{|c|c|c|c|c|c|}\hline \mathfrak{g}_1 & B_6 & C_6 & D_7 & F_4 & E_6\\ \hline \mathfrak{u}_1 & D_6 & & B_4, D_4\\ & B_i \times D_{6-i} & C_i \times C_{6-i} & D_i \times D_{7-i} & B_i \times D_{4-i} & A_1 \times A_5\\ & i=1,\,2,\,3,\,4 & i=1,\,2,\,3 & i=2,\,3 & i=1,\,2\\ & D_i \times D_{6-i} & & D_2 \times D_2\\ & i=2,\,3 & & A_1 \times C_3\\ & & & & A_2 \times A_2 \end{array}$$

Comparing $P(P_{\mathfrak{g}_1}, t)$ and $P(P_{\mathfrak{u}_1}, t)$ with (2. 1), we can cancell above possibilities mostly. After all, the following cases remain, $(C_6, C_1 \times C_5)$, (F_4, B_4) , $(F_4, A_1 \times C_3)$.

We assume $(\mathfrak{g}_1, \mathfrak{u}_1) = (C_6, C_1 \times C_5)$. Put $F_4I = [C_6/C_1 \times C_5] \times M_2 \times M'$. Then $\dim M_2 \le \dim F_4I - \dim C_6/C_1 \times C_5 = 28 - 20 = 8$. Hence (2. 2) concludes that $(\mathfrak{g}_2, \mathfrak{u}_2) = (B_2, D_2)$, (B_3, D_3) , (B_4, D_4) , $(C_4, C_1 \times C_3)$, $(C_3, C_1 \times C_2)$, $(C_2, C_1 \times C_1)$, (G_2, A_2) or $(G_2, A_1 \times A_1)$.

If we assume $(\mathfrak{g}_2, \mathfrak{u}_2) = (B_2, D_2)$, (B_3, D_3) , $(C_3, C_1 \times C_2)$, $(C_2, C_1 \times C_1)$, (G_2, A_2) or $(G_2, A_1 \times A_1)$, we have $P(R_2, t) \gg t^7$, t^{11} , t^{11} , t^7 , t^{11} or t^{11} respectively. It contradicts (2.1).

If $(\mathfrak{g}_2, \mathfrak{u}_2) = (B_4, D_4)$ or $(C_4, C_1 \times C_3)$, we have $P(S_2, t) \gg t^3$. Sinc $P(S_1, t) \gg t^3$, $P(S_1 + S_2, t) \gg 2t^3$. This contradicts (2. 1). Therefore we can except the case $(\mathfrak{g}_1, \mathfrak{u}_1) = (C_6, C_1 \times C_5)$.

If we assume $(\mathfrak{g}_1, \mathfrak{u}_1) = (F_4, B_4)$, we can show contradictions in the same way as above. Consequently we have $(\mathfrak{g}_1, \mathfrak{u}_1) = (F_4, A_1 \times C_3)$. q.e.d.

3. the Symmetric Space E₆II

In this section we study the transitive action on the symmetric space $E_6II = E_6/SU(2)$ • $SU(6) = E_6/A_1 \times A_5$.

Let
$$\alpha_i = x_i - x_{i+1}$$
, $i = 1, 2, \dots, 5$, $\alpha_6 = x_4 + x_5 + x_6$ be the simple roots of E_6 . Put $a_i = x_i + \frac{1}{3} (x_1 + x_2 + x_3 + x_4 + x_5 + x_6)$, $i = 1, 2, \dots, 6$ $b_i = x_i - \frac{2}{3} (x_1 + x_2 + x_3 + x_4 + x_5 + x_6)$, $i = 1, 2, \dots, 6$ $c_{ij} = -x_i - x_j + \frac{1}{3} (x_1 + x_2 + x_3 + x_4 + x_5 + x_6)$, $i, j = 1, 2, \dots, 6$

and
$$I_k = \frac{1}{2} \left(\sum_i a_i^k + \sum_i b_i^k + \sum_i c_{ij}^k \right).$$

Then it is known $H^*(B_{E_6}) \cong H^*(B_T)^{W(E_6)} \cong \mathbf{R}[I_2, I_5, I_6, I_8, I_9, I_{10}]$, where T is a maximal torus of E_6 (cf. [13]).

Now we consider the case E_6II as in the proof of (2.1). Since $A_1 \oplus A_5$ (the Lie algebra of $A_1 \times A_5$) is a regular subalgebra of E_6 , the embedding of the Dynkin diagrams is following.

the Dynkin diagram

of $A_1 \times A_5$

the extended Dynkin diagram of E_6

Hence the defining matrix of $A_1 \times A_5$ in E_6 is

$$f = \begin{pmatrix} 3 & 3 & 3 & 3 & 3 & 3 \\ 5 & -1 & -1 & -1 & -1 & -1 \\ -1 & 5 & -1 & -1 & -1 & -1 \\ -1 & -1 & 5 & -1 & -1 & -1 \\ -1 & -1 & -1 & 5 & -1 & -1 \\ -1 & -1 & -1 & -1 & 5 & -1 \\ -1 & -1 & -1 & -1 & -1 & 5 \end{pmatrix}$$

Consequently

where T is a maximal torus of $A_1 \times A_5$. Note that the reration $y_1 + y_2 + y_3 + y_4 + y_5 + y_6 = 0$ holds.

Now we put

$$\eta = \frac{1}{2} (x_1 + x_2 + x_3 + x_4 + x_5 + x_6)$$

$$\xi_i = x_i - \frac{1}{3} \eta = x_i - \frac{1}{6} (x_1 + x_2 + x_3 + x_4 + x_5 + x_6), i = 1, 2, \dots, 6$$

$$\nu = \frac{1}{2} (x_4 + x_5 + x_6).$$

and

Then we we have

$$\begin{cases}
\eta \mid \longrightarrow y' \\
\xi_i \mid \longrightarrow y_i, i=1, 2, \dots, 6
\end{cases}$$

Moreover by [5], p. 777 it holds

$$\begin{split} I_{k} &= \frac{1}{2} \left(\sum_{i} a_{i}^{k} + \sum_{i} b_{i}^{k} + \sum_{i} c_{ij}^{k} \right) \\ &= \sum_{f=0}^{\left[\frac{k}{2}\right]} {k \choose 2j} s_{k-2j} \, \eta^{2j} + \frac{(-1)^{k}}{2} \left\{ (6-2k^{-1})s_{k} + \frac{1}{2} \sum_{r=0}^{k-2} {k \choose r} s_{r} \, s_{k-r} \right\}, \end{split}$$

where $s_k = \xi_1^k + \xi_2^k + \cdots + \xi_6^k$.

Therefore

$$(**) I_{k} \longmapsto \sum_{j=0}^{\lfloor \frac{k}{2} \rfloor} {k \choose 2j} s'_{k-2} y'^{2j} + \frac{(-1)^{k}}{2} \left\{ (6-2^{k-1}) s'_{k} + \frac{1}{2} \sum_{r=2}^{k-2} {k \choose r} s'_{r} s'_{k-r} \right\}$$

where $s'_{k} = y_{1}^{k} + y_{2}^{k} + \cdots + y_{6}^{k}$.

LEMMA 3.1

For E_6II , we have $P(R, t) = t^{11} + t^{17} + t^{23}$ and $P(S, t) = t^3 + t^5 + t^7$. Therefore Oniščk rank of E_6II is three.

Proof.

Using (**), it can be shown that $\rho^*(I_2) \equiv 6(y'^3 - \sigma_2(y))$, $\rho^*(I_5) \equiv -36\sigma_5(y)$, $\rho^*(I_6) \equiv 150\sigma_6(y)$ and $\rho^*(I_8) \equiv \rho^*(I_{12}) \equiv 0 \mod D_{E_6}$. Consequently $Ker.\rho^* = RI_8 + RI_9 + RI_{12}$ and $Coker. \ \rho^* = R(y'^2 + \sigma_2(y)) + R\sigma_3(y) + R\sigma_4(y)$. Taking them back by transgression, we conclude that $P(R, t) = t^{15} + t^{17} + t^{23}$ and $P(S, t) = t^3 + t^5 + t^7$. q.e.d.

Proposition 3.2

Let G be a compact connected Lie group which acts on the symmetric space E_6II effectively and transitively. Then the action of G is similar to the standard transitive action of E_6II . Proof.

8 E. Tsukada

As the proof of (2.3) we can show that the possibilities of (g_1, u_1) are $(C_6, C_1 \times C_5)$, (F_4, B_4) , $(F_4, B_1 \times B_3)$ and $(E_6, A_1 \times A_5)$.

Assum that $(\mathfrak{g}_1, \mathfrak{u}_1) = (C_6, C_1 \times C_5)$, (F_4, B_4) or $(F_4, B_1 \times B_3)$. Then $P(R_1, t)$ has no term of t^{17} . Therefore there is some integer i such that $k(G_i) = 8$. Then G_i is of type A_8 . But this contradicts the fact that every G_i is not of type A_i . Hence we have $(\mathfrak{g}_1, \mathfrak{u}_1) = (E_6, A_1 \times A_5)$.

4. the Symmetric Spaces E_7V and E_7VI

(1) $E_7V = E_7/SU^*(8) = E_7/A_7$.

Let G be a compact connected Lie group which acts on the symmetric space E_7V . As in section 2 and 3, we take $(\mathfrak{g}_1, \mathfrak{u}_1)$. Then \mathfrak{g}_1 is B_9 , C_9 , D_{10} or E_7 , since $k(E_7)=k(G_1)=17$. Moreover we have the length of $\mathfrak{u}_1 \leq 2$.

By [4], the possibilities of (g_1, u_1) are following.

(i) the case $g_1=B_9$.

If $(g_1, \mathfrak{u}_1) = (B_9, D_9)$, we have $P(S_1, t) \gg t^{17}$. This contradicts the fact $P(P_{A_7}, t) \gg P(S, t) \gg P(S_1, t)$.

If $(g_1, u_1) = (B_9, B_i \times D_{9-i})$ for $i=1, 2, \dots, 7$, we have $P(R_1, t) \gg t^{31}$. However $P(P_{E_7}, t)$ has no term of t^{31} . Therefore it is impossible.

If $(g_1, u_1) = (B_9, D_i \times D_{9-i})$ for i=2, 3, 4, we have $P(R_1, t) \gg t^{31}$. It is a contradiction.

(ii) the case $g_1 = D_9$.

If $(g_1, u_1) = (C_9, C_i \times C_{9-i})$ i=2, 3, 4, we have $P(R_1, t) \gg t^{31}$. It is a contradiction.

(iii). the case $g_1 = D_{10}$.

If $(g_1, u_1) = (D_{10}, D_i \times D_{10-i})$ for i = 2, 3, 4, we have $P(R_1, t) \gg t^{31}$. It is is impossible.

(iv) the case $g_1 = E_7$.

We assume $(g_1, u_1) = (E_7, A_2 \times A_5)$. Then we have $P(S_1, t) \gg 2t^5$. But $P(P_{A_5}, t)$ has no term $2t^5$. Hence it is impossible.

Therfore we conclude that the possibilities of (g_1, u_1) are $(C_9, C_1 \times C_8)$, (E_7, A_7) and $(E_7, A_1 \times D_6)$.

Proposition 4.1

Let G be a compact connected Lie group which acts on the symmetric space E_7V transitively and effectively. Then the action of G is similar to the standard action of E_7V .

Proof.

It is sufficient to show that (g_1, u_1) can be neither $(C_9, C_1 \times C_8)$ nor $(E_7, A_1 \times D_6)$.

We set $M=E_7/A_7$ and $M_1=G_1/U_1$. If M_1 is $C_9/C_1\times C_8$, we can take $\pi_9(M_1)=\mathbb{Z}_2$. On the other hand $\pi_9(M_1)=\mathbb{Z}$, and so it is impossible. If M_1 is $E_7/A_1\times D_6$, we have $\pi_9(M_1)=\mathbb{Z}_3+\mathbb{Z}_2$. It is impossible. q.e.d.

Note: About homotopy groups of Lie groups, we refer to the tables in "Mathematics Dictionary" (in Japanese) Iwanami, 1968.

(2) $E_7VI = E_7/SU(2) \cdot Spin(12) = E_7/A_1 \times D_6$.

Since $P(P_{A_1 \times D_6}, t) = 2t^5 + \cdots$, we can see that the length of $\mathfrak{u}_1 \leq 3$. Now we assume that the length of \mathfrak{u}_1 is just three. Then the possibilities of $(\mathfrak{g}_1, \mathfrak{u}_1)$ are following.

$$\begin{array}{|c|c|c|c|c|c|}\hline \mathfrak{g}_1 & B_9 & C_9 & D_{10} & E_{71}\\ \hline \mathfrak{u}_1 & B_i \times D_j \times D_k & C_i \times C_j \times C_k & D_i \times D_j \times D_k & A_1 \times D_i \times D_{6-i}\\ & D_i \times D_j \times D_k & i+j+k=9 & i+j+k=10 & i=2, 3\\ & i+j+k=9 & & & & & & & & & & & \\ \hline \end{array}$$

If $g_1=B_9$, C_9 or D_{10} , we have $P(R_1, t) \gg t^{31}$. But $P(P_{E_7}, t)$ has no term of t^{31} , it is a contradiction.

Now we assume that (g_1, u_1) is $(E_7, A_1 \times D_i \times D_{6-i})$ for i=2, 3. Then it can be shown that $P(S_1, t) \gg 3t^3$ for i=2 and $P(S_1, t) \gg 2t^5$ for i=3. So it is impossible.

Hence we conclude the length of $\mathfrak{u}_1 \leq 2$.

As in (1), we can see that the possibilities of $(\mathfrak{g}_1, \mathfrak{u}_1)$ are $(C_9, C_1 \times C_8)$, (E_7, A_7) and $(E_7, A_1 \times D_6)$.

Proposition 4.2

Let G be a compact connected Lie group which acts on the symmetric space E_7VI transitively and effectively. Then action of G is similar to the standard transitive action of E_7VI . Proof

We can see easily that $\pi_9(E_7VI) = \mathbf{Z}_3 + \mathbf{Z}_2$ and $\pi_9(E_7V) = \mathbf{Z}$. Therefore we omit the case (E_7, A_7) .

Now we put $M_1 = C_9/C_1 \times C_8$. Then we can take that there is some i for $i \ge 2$ such that $k(G_i)=13$ and the length of $u_i \le 2$. Set i=2. Then the possibilities of (g_2, u_2) is following.

(i) the case $g_2=B_7$.

If $(g_2, u_2)=B_7$, D_7), then $P(S_2, t)\gg t^{13}$. It is impossible.

If $(g_2, u_2) = (B_7, B_i \times D_{7-i})$ for i = 2, 3, 4, then we have

$$P(S_2, t) \gg \begin{cases} t^9 & \text{if } i=2\\ 2t^7 & \text{if } i=3\\ t^5 & \text{if } i=4 \end{cases}$$

Therefore it is impossible.

If $(g_2, u_2) = (B_7, D_i \times D_{9-i})$ for i=2, 3, then we have

$$P(S_2, t) \gg \begin{cases} t^9 & \text{if } i=3\\ t^5 & \text{if } i=4 \end{cases}$$

Hence it is a contrdiction.

(ii) the case $\mathfrak{g}_2 = D_8$.

If $(g_2, u_2) = (D_8, D_i \times D_{8-i})$ for i=3, 4, then we have

$$P(S_2, t) \gg \begin{cases} t^9 & \text{if } i = 3 \\ 3t^7 & \text{if } i = 4 \end{cases}.$$

Therefore it is impossible.

From (i) and (ii), we see that the possibilities of (g_2, u_2) are $(B_7, B_1 \times D_6)$, $(B_7, B_5 \times D_2)$, $(C_7, C_1 \times C_6)$, $(C_7, C_2 \times C_5)$, $(C_7, C_3 \times C_4)$ and $(D_8, D_2 \times D_6)$.

Now we put $M_2 = G_2/U_2$, then $E_7VI = M_1 \times M_2 \times M'$.

If $M_2=B_7/B_1\times D_6$, Then the facts, $\pi_{10}(E_7VI)=\mathbf{Z}_3+\mathbf{Z}_2$ and $\pi_{10}(M_1)=\pi_{10}(C_9/C_1\times C_8)=\mathbf{Z}_3$, follow that $\pi_{10}(M_2)$ is trivial or \mathbf{Z}_2 . Considering the homotopy exact sequence of the fibre bundle $(B_7, M_2; B_1\times D_6)$:

$$\pi_{10}(B_7) \longrightarrow \pi_{10}(M_2) \longrightarrow \pi_{9}(B_1 \times D_6) \longrightarrow \pi_{9}(E_7),$$

we take a contradiction.

As in above we can take contradictions for the cases $(C_7, C_1 \times C_6)$ and $(D_8, D_2 \times D_6)$. Hence the two cases $(C_7, C_2 \times C_5)$ and $(C_7, C_3 \times C_4)$ remain. But for them we have contradictions by comparing their dimensions. For example, if $M_2 = C_7/C_2 \times C_5$, then dim. $M_2 = 40$. Since dim. $E_7VI = 64$ and dim. $M_1 = \dim C_9/C_1 \times C_8 = 38$, we have dim. $E_7VI < \dim M_1 + \dim M_2$ Obviously it is a contradiction. q.e.d.

5. the Symmetric Spaces E₈VIII and E₈IX

(1) $E_8VIII = E_8/SO(16) = E_8/D_8$.

As in the proof of section 4, we cancel the most possibilities of $(\mathfrak{g}_1, \mathfrak{u}_1)$, and remain only three cases $(C_{15}, C_1 \times C_{14})$, (E_8, D_8) and $(E_8, A_1 \times E_7)$.

Proposion 5. 1

Let G be a compact connected Lie group which acts on the symmetric space E₈VIII transi-

tively and effectively. Then the action of G is similar to the standard transitive action of E_8VIII .

Proof

It is sufficient to say that $(\mathfrak{g}_1, \mathfrak{u}_1)$ cannot be neither $(C_{15}, C_1 \times C_{14})$ nor $(E_8, A_1 \times E_7)$. This is led from the fact that $\pi_{10}(E_8VIII) = \mathbb{Z}_2$, $\pi_{10}(C_{15}/C_1 \times C_{14}) = \mathbb{Z}_3$ and $\pi_{10}(E_8/A_1 \times E_7) = \mathbb{Z}_3$.

(2) $E_8IX = E_8/SU(2) \cdot E_7$.

We need the following lemma.

LEMMA 5.2

The integral homology of E_8IX has \mathbb{Z}_2 -torsion.

Proof

In the symmetric space $E_8IX=E_8/SU(2) \cdot E_7$, we have $SU(2) \cap E_7 = \mathbb{Z}_2$. Therefore by the homotopy exact sequence of the fibre bundle $(SU(2) \times E_7, SU(2) \cdot E_7; \mathbb{Z}_2)$, we have $\pi_1(SU(2) \cdot E_7) = \mathbb{Z}_2$. Moreover we can take $\pi_2(E_8IX) = \mathbb{Z}_2$ and $\pi_1(E_8IX) = \pi_0(E_8IX) = 0$. Using the Hurewicz isomorphism theorem, we have $H_2(E_8IX) = \mathbb{Z}_2$.

In the same way of section 4, we see the length of $u_1 \leq 2$, and moreover the possibilities of (g_1, u_1) are $(C_{15}, C_1 \times C_{14})$, (E_8, D_8) and $(E_8, A_1 \times E_7)$.

Proposition 5.3

Let G be a compact connected Lie group which acts on the symmetric space E_8IX transitively and effectively. Then the action of G is similar to the standard transitive action of E_8IX .

PROOF

Since $\pi_{10}(E_8IX) = \mathbb{Z}_3$, and $\pi_{10}(E_8/D_8) = \mathbb{Z}_2$, we cancel the case (E_8, D_8) .

Now we assume $(g_1, u_1) = (C_{15}, C_1 \times C_{14})$. Then we have $P(R_1, t) = t^{59}$ and so there is just one i such that $k(G_i) = 23$. We set i = 2. Then we have the length of $g_2 \le 2$, and by the same consideration of section 4, we see that the remaining possibilities of (g_2, u_2) are (B_{12}, D_{12}) and $(C_{12}, C_1 \times C_{11})$.

Now we put $M = E_8 IX$, $M_1 = C_{15}/C_1 \times C_{14}$ and $M_2 = G_2/U_2$, then we have $\pi_{10}(M_2) = \mathbb{Z}_3$. Therefore

$$\pi_{10}(M) = \pi_{10}(M_1) + \pi_{10}(M_2) + \pi_{10}(M'')$$
$$= \mathbf{Z}_3 + \mathbf{Z}_3 + \pi_{10}(M'')$$

This contradicts $\pi_{10}(E_8IX) = \mathbb{Z}_3$. Hence we can omit the case $(\mathfrak{g}_2, \mathfrak{u}_2) = (C_{12}, C_1 \times C_{11})$.

Now we assume $(\mathfrak{g}_2, \mathfrak{u}_2) = (B_{12}, D_{12})$. Here we note $M'' \neq \phi$, where $M = M_1 \times M_2 \times M''$. As the above consideration, we see $M = M_1 \times M_2 \times M_3 \times M'''$, where $M_3 = G_3/U_3$ and $(\mathfrak{g}_3, \mathfrak{u}_3) = (B_{10}, D_{10})$. Then it is easy to see that dim.M'' = 12. Hence we can use (2. 2), and so we have $M'' = B_6/D_6$.

After all, we can take that

$$M = [C_{15}/C_1 \times C_{14}] \times B_{12}/D_{12}] \times [B_{10}/D_{10}] \times [B_6/D_6],$$

12 E. Tsukada

that is,

$$M = [S_b(15)/S_b(1) \times S_b(14)] \times S^{24} \times S^{20} \times S^{12}$$
.

Since it has torsion-free homology, we can see by (5.2) that it is impossible. q.e.d.

6. Appendix

In this section we consider transitive actions of a compact Lie group G on Grassmann manifolds $G_{2n, 2k-1}(2 < k < n-1)$. Here we note that these manifolds have zero Eular number, and therefore the classification of transitive actions on them is more difficult than before. So we assume that G is simple. Then we can use the following lemma. Lemma 6.1 ([11], p. 169, Theorem 7)

Let M be a homogeneous manifold G/H where G is a compact simple Lie group of type B_n , C_n or D_{n+1} and H is a closed subgroup of G. If G' is a compact simple Lie group which acts on M transitively and effectively, then G' is of type B_n , C_n or D_{n+1} .

Let G be a compact simple Lie group which acts on a Grassmann manifold $G_{2n, 2k-1}$ (2 < k < n-1) transitively and effectively. Then the action of G is similar to the standard transitive action.

Proof.

THEOREM 6.2

From above lemma, G is B_{n-1} , C_{n-1} or D_n . On the other hand by simple verifications we have

$$P(R, t) = \begin{cases} t^{(4n-k)+3} + t^{(4n-k)+7} + \cdots + t^{4n-3} + t^{2n-1} & (n \ge 2k-1) \\ t^{4k-1} + t^{4k+3} + \cdots + t^{4n-3} + t^{2n-1} & (n \le 2k-1) \end{cases}$$

Therefore we see that there is a non-zero element in $R \subset P_G$ such that its degree is 2n-1. So G is of type D_n .

From [11] theorem 1, we have

$$\frac{P(G, t)}{P(H, t)} = \frac{P(SO(2n), t)}{P(SO(2(n-k)+1) \times SO(2k-1), t)}$$

Hence

$$P(H, t) = P(SO(2(n-k)+1) \times SO(2k-1), t)$$

$$= P(SO(2(n-k)+1), t) + P(SO(2k-1), t).$$

Therefore we conclude that H is $B_{n-k} \times B_{n-k}$, $C_{n-k} \times B_{k-1}$, $B_{n-k} \times C_{k-1}$ or $C_{n-k} \times C_{k-1}$. Now we consider an irreducible orthogonal representation

$$\phi: C_{n-k} \times B_k \longrightarrow D_m$$
.

We set the complexification $\phi^C: C_{n-k} \times B_k \longrightarrow D_m^C$ of ϕ . Then we have $\phi^C = \phi_1 + \phi_2$, where ϕ_1 and ϕ_2 are complex representations of C_{n-k} and B_k respectively. Since dimensions of

non-trivial orthogonal representations are more than 4k-1, we have

 $m=\dim_R \phi=\dim_C \phi^C=\dim_C \phi_1+\dim_C \phi_2 \geq 2(n-k)+k-1=2n-k-1$. For k < n-1, we have 2n-k-1 > n, i.e. m > n. Therefore H is not $C_{n-k} \times B_{k-1}$. As in above we can see that H is neither $B_{n-k} \times C_{k-1}$ nor $C_{n-k} \times C_{k-1}$. Hence we have H is $B_{n-k} \times B_k$. Moreover non-trivial homomorphism $B_{n-k} \times B_k \longrightarrow D_n$ is only a standard inclusion, and so the action of G is similar to the standard transitive action.

NIIGATA UNIVERSITY

References

- [1] K. ABE-T. WATABE: A note on transitive and irreducible action on the Stiefel manifold $V_{n,n-2}$. Sci. Rep. Niigata Univ. series A, 9(1972), 9-16.
- [2] A. Borel: Le plan projectif des octoves et le sphére comme espaces homogènes. C. R. Acad. Sci. Paris, 230 (1950), 1378-1380.
- [3] ": Sur la cohomologie des espaces fibrés principaux et des homogènes de groupes de Lie compacts. Ann. of Math., 57 (1953), 115-207.
- [4] A. Borel-J. de Siebenthal: Les sous-groupes fermes des rang maximum des groupes de Lie clos. Comment. Math. Helv., 23 (1949), 200-221.
- [5] H. S. M. COXETER: The product of generators of a finite group generated by reflections. Duke Math. J., 18 (1951), 765-783.
- [6] E. B. DYNKIN: Semisimple subalgebras of semisiple Lie aigebras. Am. Math. Soc. Trans., 6 (1957), 111-244.
- [7] " : Maximal subgroups of the classical groups. Am. Math. Soc. Trans., 6 (1957), 245-378.
- [8] W-Y. HSIANG-J. C. Su: On the classification of transitive effective actions on Stiefel manifolds. Trans. Am. Math. Soc., 130 (1968), 322-336.
- [9] D. Montgomery-H. Samelson: Transformation groups of spheres. Ann. of Math., 44 (1943), 454-470.
- [10] A. L. Oniščik: Inclusion relations among trasitive compact transformation groups. Am. Math. Soc. Trans., 50 (1966), 5-58.
- [11] ": Transitive compact transformation groups. Am. Math. Soc. Trans., 55 (1966), 153-194.
- [12] ": Lie groups transitive on Grassmann and Stiefel manifolds. Math. USSR Sb., 12 (1970), 405-427.
- [13] M. TAKEUCHI: On Pontriagin classes of compact symmetric spaces. J. Fac. Sci. Univ. Tokyo, 9 (1963), 313-328.
- [14] H. C. WANG: Homogeneous spaces with non-vanishing Euler chracteristics. Ann. of Math., 50 (1949), 925-953.