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The $C$-numerical range of a $3\times 3$ normal matrix
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Abstract In this note we study the shape of the C-numerical range of a $3\times 3$

normal matrix.

1. Introduction and Results

In this decade many authors obtained new results in numerical ranges, numerical
radii of linear operators and their related topics (cf. [2, 3, 6, 7, 9, 11]). In the paper
[5] the author studied a special case of the C-numerical ranges. Recent work [4]
provides us a new method to treat the C-numerical ranges. We will prove “weak
convexity” of the C-numerical ranges in some sense.

Suppose that $C=diag(c_{1}, c_{2}, c_{3})$ and $T=diag(\alpha_{1}, \alpha_{2}, \alpha_{3})$ are complex 3 $\times 3$

diagonal matrices. We consider a compact subset $W_{C}(T)$ of the Gaussian plane $C$

defined by

$W_{C}(T)=\{tr(CUTU^{*}) : U\in M_{3}(C), U^{*}U=UU^{*}=I_{3}\}$ . (1.1)

However this range is not necessarily convex, this range is star-shaped with
respect to the point

$(1/3)(c_{1}+c_{2}+c_{3})(\alpha_{1}+\alpha_{2}+\alpha_{3})\in W_{C}(T)$ . (1.2)

We consider the following 6 special points of $W_{C}(T)$ :

$\sigma_{1}=c_{1}\alpha_{1}+c_{2}\alpha_{2}+c_{3}\alpha_{3},$ $\sigma_{2}=c_{1}\alpha_{2}+c_{2}\alpha_{3}+c_{3}\alpha_{1},$ $\sigma_{3}=c_{1}\alpha_{3}+c_{2}\alpha_{1}+c_{3}\alpha_{2},$ $(1.3)$

$\sigma_{4}=c_{1}\alpha_{1}+c_{2}\alpha_{3}+c_{3}\alpha_{2},$ $\sigma_{5}=c_{1}\alpha_{3}+c_{2}\alpha_{2}+c_{3}\alpha_{1},$ $\sigma_{6}=c_{1}\alpha_{2}+c_{2}\alpha_{1}+c_{3}\alpha_{3}$ . $(1.4)$

These are called $\sigma$-points of the range $W_{C}(T)$ . The 9 line segments
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$[\sigma_{j}, \sigma_{k}]=\{(1-t)\sigma_{j}+t\sigma_{k} : 0\leq t\leq 1\}$ (1.5)

$(j=1,2,3, k=4,5,6)$ are contained in the range $W_{C}(T)$ . Au-Yeung and Poon
gave these results in [1]. We remark that the direction of these line segments :

$\sigma_{6}-\sigma_{1}=(c_{1}-c_{2})(\alpha_{2}-\alpha_{1}),$ $\sigma_{4}-\sigma_{3}=(c_{1}-c_{2})(\alpha_{1}-\alpha_{3})$ ,
$\sigma_{5}-\sigma_{2}=(c_{1}-c_{2})(\alpha_{3}-\alpha_{2}),$ $\sigma_{4}-\sigma_{2}=(c_{1}-c_{3})(\alpha_{1}-\alpha_{2})$ ,

$\sigma_{5}-\sigma_{1}=(c_{1}-c_{3})(\alpha_{3}-\alpha_{1}),$ $\sigma_{6}-\sigma_{3}=(c_{1}-c_{3})(\alpha_{2}-\alpha_{3})$ ,
$\sigma_{5}-\sigma_{3}=(c_{2}-c_{3})(\alpha_{2}-\alpha_{1}),$ $\sigma_{6}-\sigma_{2}=(c_{2}-c_{3})(\alpha_{1}-\alpha_{3})$ ,

$\sigma_{4}-\sigma_{1}=(c_{2}-c_{3})(\alpha_{3}-\alpha_{2})$ .

The following is our new result.

Theorem 1. 1Suppose that $C=diag(c_{1}, c_{2}, c_{3})$ and $T=diag(\alpha_{1}, \alpha_{2}, \alpha_{3})$ are
complex $3\times 3$ diagonal matrices. Suppose that two elements $z_{1},$ $z_{2}$ of $W_{C}(T)$ satisfy
the $eq$uation

$z_{2}-z_{1}=s(c_{1}-c_{j})(\alpha_{p}-\alpha_{q})$ , (1.6)

for some $s\in R$ with $s\neq 0$ and $1\leq i\neq j\leq 3,1\leq p\neq q\leq 3$ . Then the line segment
$[z_{1}, z_{2}]$ is contained in the range $W_{C}(T)$ .

In the case the range $W_{C}(T)$ is convex, the assertion of the above theorem follows
immediately from the convexity of the range $W_{C}(T)$ . If $c_{1},$ $c_{2},$ $c_{3}$ are colinear, then the
range $W_{C}(T)$ is convex by Westwick’s theorem ([10]). If $\alpha_{1},$ $\alpha_{2},$ $\alpha_{3}$ are colinear, then
the range $W_{C}(T)=W_{T}(C)$ is convex. So we may assume that $(c_{1}-c_{j})(\alpha_{i}-\alpha_{j})\neq 0$

for $1\leq i<j\leq 3$ and $q’ s$ lie on a circle and $\alpha_{j}’ s$ lie on a circle. A $3\times 3$ real matrix
$A=(a_{ij})$ is called doubly stochastic if $(a_{ij})$ satisfies

$a_{ij}\geq 0$ , (1.7)

for $i,j=1,2,3$ and

$\sum_{i=1}^{3}a_{iq}=1$ , $\sum_{j=1}^{3}a_{pj}=1$ , (1.8)

for $p,$ $q=1,2,3$ . A $3\times 3$ doubly stochastic matrix $A$ is called orthostochastic if there
exists a $3\times 3$ unitary matrix $U=(u_{ij})$ with $a_{ij}=|u_{ij}|^{2}(i,j=1,2,3)$ . In [5] it
was shown that if $A=(a_{ij})$ is a boundary point of the set of $3\times 3$ orthostochastic
matrices, then the point $(a_{ij})$ satisfies the equation

$F(a_{ij} : i,j=1,2,3)$
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$=a_{11}^{2}a_{12}^{2}+a_{21}^{2}a_{22}^{2}+a_{31}^{2}a_{32}^{2}-2a_{11}a_{12}a_{21}a_{22}-2a_{11}a_{12}a_{31}a_{32}-2a_{21}a_{22}a_{31}a_{32}$

$=a_{11}^{2}a_{13}^{2}+a_{21}^{2}a_{23}^{2}+a_{31}^{2}a_{33}^{2}-2a_{11}a_{13}a_{21}a_{23}-2a_{11}a_{13}a_{31}a_{33}-2a_{21}a_{23}a_{31}a_{33}$

$=a_{12}^{2}a_{13}^{2}+a_{22}^{2}a_{23}^{2}+a_{32}^{2}a_{33}^{2}-2a_{12}a_{13}a_{22}a_{23}-2a_{12}a_{13}a_{32}a_{33}-2a_{22}a_{23}a_{32}a_{33}$

$=0$ .

We call that a general point $z$ of $W_{C}(T)$ is represented by

$z=\sum_{i=1j}^{3}\sum_{=1}^{3}c_{i}\alpha_{j}a_{ij}$ , (1.9)

where $A=(a_{ij})$ is a boundary point of the set of all $3\times 3$ orthostochastic matrices,
and hence the polynomial $F$ vanishes at $(a_{ij})$ . Conversely the point $z$ with the
expression (1.9) by an orthostochastic matrix $(a_{ij})$ belongs to $W_{C}(T)$ . We prove
Theorem 1.1 by using this relation.

We define a subset $K$ of the unit circle by

$K=\{z\in C:|z|=1,$ $z_{1},$ $z_{2}\in W_{C}(T)$ and $z_{2}-z_{1}=tz$ for some $t\in R$

imply $[z_{1}, z_{2}]\in W_{C}(T)$ }. (1.10)

This set $K$ is symmetric with respect to the origin. Theorem 1.1 implies that this
set contains a set

$\{\epsilon\frac{\sigma_{j}-\sigma_{k}}{|\sigma_{j}-\sigma_{k}|} : j=1,2,3, k=4,5,6, \epsilon=\pm 1\}$ . (1.11)

Under the condition that neither the points $c_{1},$ $c_{2},$ $c_{3}$ nor the points $\alpha_{1},$ $\alpha_{2},$ $\alpha_{3}$ are
colinear, the range $W_{C}(A)$ contains an interior point. Under this condition the range
$W_{C}(T)$ is convex if and only if $K$ coincides with the unit circle. We can show that
the set $K$ coincides with the set (1.11) in a case. So we may assert that Theorem 1.1
is best possible in some sense. In the case $C=diag(c_{1}, c_{2}, c_{3}),$ $T=diag(\alpha_{1}, \alpha_{2}, \alpha_{3})$

with $|\alpha_{1}|=|\alpha_{2}|=|\alpha_{3}|=1,$ $|c_{1}|=|c_{2}|=|c_{3}|=1,$ $\alpha_{1}\alpha_{2}\alpha_{3}=c_{1}c_{2}c_{3}=1$ , the
boundary of the range $W_{C}(A)$ consists of some line segments $\ell_{j,k}\subset[\sigma_{j}, \sigma_{k}](j=$

$1,2,3,$ $k=4,5,6$) and arcs $\Gamma_{j}$ of the deltoid

$\Gamma=\{2\exp(i\theta)+\exp(-2i\theta) : 0\leq\theta\leq 2\pi\}$ . (1.12)

(cf. [5]). If $C=T=diag(1, -1/2+\sqrt{3}i/2, -1/2-\sqrt{3}i/2)$ , then the boundary of
$W_{C}(T)$ coincides with the deltoid F. In this case $\sigma_{1}=\sigma_{2}=\sigma_{3}=0$ and $\sigma_{4}=3$ ,
$\sigma_{5}=3(-1/2-\sqrt{3}i/2),$ $\sigma_{6}=3(-1/2+\sqrt{3}i/2)$ and the set $K$ coincides with

$\{\exp(i\frac{2k\pi}{6}) : k=0,1,2,3,4,5\}$ .
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This follows from Theorem 1.1 and the strict concaveness of the arc:

$\{2 \exp(i\theta)+\exp(-2i\theta) : 0\leq\theta\leq\frac{2\pi}{3}\}$ .

2. Proof of the theorem

In this section we shall prove Theorem 1.1. By using the relations

$a_{13}$ $=$ $1-a_{11}-a_{12}$ , $a_{23}=1-a_{21}-a_{22}$ ,
$a_{31}$ $=$ $1-a_{11}-a_{21}$ , $a_{32}=1-a_{12}-a_{22}$ ,
$a_{33}$ $=a_{11}+a_{12}+a_{21}+a_{22}-1$ ,

We rewrite the equation of a boubdary point of the set of the $3\times 3$ orthostochastic
matrices as the following:

$F(a_{11}, a_{12}, a_{21}, a_{22})=a_{11}^{2}a_{22}^{2}+a_{12}^{2}a_{21}^{2}-2a_{11}a_{12}a_{21}a_{22}$

$-2a_{11}a_{22}(a_{11}+a_{22})-2a_{12}a_{21}(a_{12}+a_{21})-2(a_{11}a_{12}a_{21}+a_{11}a_{12}a_{22}+a_{11}a_{21}a_{22}$

$+a_{12}a_{21}a_{22})+a_{11}^{2}+a_{12}^{2}+a_{21}^{2}+a_{22}^{2}+2(a_{11}a_{12}+a_{11}a_{21}+a_{12}a_{22}+a_{21}a_{22}$

$+2a_{11}a_{22}+2a_{12}a_{21})-2(a_{11}+a_{12}+a_{21}+a_{22})+1=0$ . (2.1)

This equation is solved with respect to $a_{11}$ as the following:

$(a_{22}-1)^{2}a_{11}=a_{12}a_{21}a_{22}+(1-a_{12}-a_{22})(1-a_{21}-a_{22})$

$+2\epsilon\sqrt{a_{12}a_{21}a_{22}}\sqrt{(1-a_{12}-a_{22})(1-a_{21}-a_{22})}$ , (2.2)

$(\epsilon=\pm 1)$ on the set

{ $(a_{12}, a_{21}, a_{22})$ : $0\leq a_{12},0\leq a_{21},0\leq a_{22},$ $a_{22}\neq 1$

$a_{12}+a_{22}\leq 1,$ $a_{21}+a_{22}\leq 1$ }. (2.3)

If $a_{22}\rightarrow 1$ , and hence $a_{12}\rightarrow 0,$ $a_{21}\rightarrow 0$ , then $a_{11}$ may converges to an arbitrary
point of $[0,1]$ .

The equation (2.2) implies that the solution $a_{11}$ satisfies
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$a_{11}\geq 0$ , (2.4)

on the set (2.3). In fact we have

$\{a_{11}a_{12}a_{21}+(a_{12}+a_{22}-1)(a_{21}+a_{22}-1)\}^{2}$

$-4a_{12}a_{21}a_{22}(1-a_{12}-a_{22})(1-a_{21}-a_{22})$

$=(a_{22}-1)^{2}(a_{12}a_{21}-a_{12}-a_{21}-a_{22}+1)^{2}$ .
The solution (2.2) on (2.3) satisfies

$1-a_{11}-a_{12}\geq 0$ . (2.5)

In fact we have

$(a_{22}-1)^{2}(1-a_{11}-a_{12})\geq a_{21}(1-a_{12}-a_{22})+a_{12}a_{22}(1-a_{21}-a_{22})$

$-2\sqrt{a_{12}a_{21}a_{22}}\sqrt{(1-a_{12}-a_{22})(1-a_{21}-a_{22})}$ ,

where
$a_{21}(1-a_{12}-a_{22})+a_{12}a_{22}(1-a_{21}-a_{22})\geq 0$ ,

and

$\{a_{21}(1-a_{12}-a_{22})+a_{12}a_{22}(1-a_{21}-a_{22})\}^{2}-4a_{12}a_{21}a_{22}(1-a_{12}-a_{22})(1-a_{21}-a22)$

$=(1-a_{22})^{2}(a_{12}a_{21}+a_{12}a_{22}-a_{21})^{2}\geq 0$ .

Similarly the solution (2.2) on (2.3) satisfies

$1-a_{11}-a_{21}\geq 0$ . (2.6)

The solution (2.2) on (2.3) satisfies

$a_{11}+a_{12}+a_{21}+a_{22}-1\geq 0$ . (2.7)

In fact we have

$(a_{22}-1)^{2}(a_{11}+a_{12}+a_{21}+a_{22}-1)\geq a_{12}a_{21}+a_{22}(1-a_{12}-a_{22})(1-a_{21}-a_{22})$

$-2\sqrt{a_{12}a_{21}a_{22}}\sqrt{(1-a_{12}-a_{22})(1-a_{21}-a_{22})}$ ,
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where
$a_{12}a_{21}+a_{22}(1-a_{12}-a_{22})(1-a_{21}-a_{22})\geq 0$ ,

and
$\{a_{12}a_{21}+a_{22}(1-a_{12}-a_{22})(1-a_{21}-a_{22})\}^{2}$

$-4a_{12}a_{21}a_{22}(1-a_{12}-a_{22})(1-a_{21}-a_{22})$

$=(a_{22}-1)^{2}(-a_{22}+a_{12}a_{21}+a_{12}a_{22}+a_{21}a_{22}+a_{22}^{2})^{2}\geq 0$ .
We also remark that the content of the radical in (2.2) satisfies

$a_{12}a_{21}a_{22}(1-a_{12}-a_{22})(1-a_{21}-a_{22})\geq 0$ . (2.8)

The restriction of the 2-valued function $a_{11}$ to sub convex domain of (2.3) also satis-
fies automatically the linear inequalities (2.4), (2.5), (2.6), (2.7) and the inequality
(2.8). We shall prove the following lemma.

Lemma 2. $1Suppose$ that $C=diag(c_{1}, c_{2}, c_{3}),$ $T=diag(a_{1}, a_{2}, a_{3})$ where the
diagonal entries $a_{j}’ s$ and $c_{j}’ s$ are $ar$bitrary complex numbers. Suppose that $\sigma_{j}(j=$

$1,2,3,4,5,6)$ are points of the range $W_{C}(T)$ deffied by (1.3), (1.4) and $\phi\in[0,2\pi]$

is an arbitrary angle. Then the $eq$uation

$\{\Re(z\exp(-i\phi)):z\in W_{C}(T)\}=\{\Re(z\exp(-i\phi)):z\in[\sigma_{j}, \sigma_{k}]$

$(j=1,2,3, k=4,5,6)\}$ (2.9)

holds.

Proof of Lemma 2.1. We consider even permutation matrices:

$P_{1}=\left(\begin{array}{lll}1 & 0 & 0\\0 & 1 & 0\\0 & 0 & 1\end{array}\right)$ , $P_{2}=(001$

and odd permutation matrices:

$P_{4}=\left(\begin{array}{lll}1 & 0 & 0\\0 & 0 & 1\\0 & 1 & 0\end{array}\right)$ , $P_{5}=(001$

$001$ $001)$ , $P_{3}=\left(\begin{array}{lll}0 & 0 & 1\\1 & 0 & 0\\0 & 1 & 0\end{array}\right)$ ,

$001$ $001)$ , $P_{6}=\left(\begin{array}{lll}0 & 1 & 0\\1 & 0 & 0\\0 & 0 & 1\end{array}\right)$ .

The point $\sigma_{j}$ corresponds to $P_{j}$ by the relation

$(c_{1}, c_{2}, c_{3})P_{j}(\alpha_{1}, \alpha_{2}, \alpha_{3})^{T}=\sigma_{j}$

$(1 \leq j\leq 6)$ . The above 6 matrices are orthostochastic matrices : $P_{j}=P_{j}\circ P_{j}$ $($

$1\leq j\leq 6)$ where $\circ$ denotes the Hadamard product. By Birkhoff’s theorem ([8], $p$ .

–192–



200), the convex hull of these 6 matrices coincides the convex set of all $3\times 3$ doubly
stochastic matrices. We call representation (1.9) of a general point of $W_{C}(T)$ and
the fact that the 9 line segments (1.5) is contained in $W_{C}(T)$ . By using these facts,
we obtain the inclusion

$\cup\{[\sigma_{j}, \sigma_{k}] : j=1,2,3, k=4,5,6\}\subset W_{C}(T)\subset conv(W_{C}(T))$

$=$ { $(c_{1},$ $c_{2},$ $c_{3})S(\alpha_{1},$ $\alpha_{2},$
$\alpha_{3})^{T}$ : $S$ is adoubly stochastic matrix}

$=conv([\sigma_{j}, \sigma_{k}] : j=1,2,3, k=1,2,3)$ .

The projection $\pi$ : $z(\in C)\rightarrow\Re(z\exp(-i\phi))(\in R)$ satisfies $\pi(\Gamma)=\pi(conv(\Gamma))$ for
every compact connected set $\Gamma\subset C$ . Thus the relation (2.9) follows from the above
inclusion.

Proof of Theorem 1.1. We assume that two points $z_{1},$ $z_{2}$ of the range $W_{C}(T)$

satisfy the equation

$z_{2}-z_{1}=s(c_{1}-c_{3})(\alpha_{1}-\alpha_{3})$ ,

for some $s\in R,$ $s\neq 0$ with $c_{1}\neq c_{3},$ $\alpha_{1}\neq\alpha_{3}$ . By using a translation, we may assume
that $c_{3}=\alpha_{3}=0$ . Under this assumption, a general point $z$ of $W_{C}(T)$ is represented
by

$z=c_{1}\alpha_{1}a_{11}+c_{1}\alpha_{2}a_{12}+c_{2}\alpha_{1}a_{21}+c_{2}\alpha_{2}a_{22}$ ,

where $(a_{ij})$ is a doubly stochastic matrix satisfying the equation $F(a_{11},$ $a_{12},$ $a_{21}$ ,
$a_{22})=0$ . We choose angle $\phi\in[0,2\pi]$ so that

$\Re(c_{1}\alpha_{1}\exp(-i\phi))=0$ .

We consider an affine constraint

$\Re$ ( $[c_{1}\alpha_{2}a_{12}+c_{2}\alpha_{1}a_{21}+c_{2}\alpha_{2}a_{22}]$ exp $(-i\phi)$ ) $=\Re$ ( $z_{1}$ exp $(-i\phi)$ ), (2.10)

on the hypersurface $F(a_{11}, a_{12}, a_{21}, a_{22})=0$ under the condition

$0\leq a_{12},0\leq a_{21},0\leq a_{22},$ $a_{12}+a_{22}\leq 1,$ $a_{21}+a_{22}\leq 1$ .

The affine constrant is reduced to a trivial condition if and only if the equations

$\Re(c_{1}\alpha_{2}\exp(-i\phi))=0$ , $\Re(c_{2}\alpha_{1}\exp(-i\phi))=0$ , $\Re(c_{2}\alpha_{2}\exp(-i\phi))=0$

–193–



hold. If these equations hold, then the range $W_{C}(T)$ lies on a straight line, and the
connectedness of the group $U(3)$ guarantees that $[z_{1}, z_{2}]\subset W_{C}(T)$ . So we assume
that at least one of

$\Re(c_{1}\dot{a}_{2}\exp(-i\phi))$ , $\Re(c_{2}a_{1}\exp(-i\phi))$ , $\Re(c_{2}a_{2}\exp(-i\phi))$

is non-zero. By Lemma 2.1 there exists a point $z_{0}\in[\sigma_{j}, \sigma_{k}]$ satisfying

$\Re(z_{0}\exp(-i\phi))=\Re(z_{1}\exp(-i\phi))$ ,

for some $j\in\{1,2,3\},$ $k\in\{4,5,6\}$ . This implies that there exists a point $(a_{11}, a_{12}, a_{21}, a_{22})$

satisfying the affine constraint and

$a_{12}a_{21}a_{22}(1-a_{12}-a_{22})(1-a_{21}-a_{22})=0$ .
Thus the two parts of the graph of 2-valued function $a_{11}$ on the domain (2.3) with
the constraint (2.10) is connected. As a continuous image of this connected set, the
set

$\{z\in W_{C}(T):\Re(z\exp(-i\phi))=\Re(z_{1}\exp(-i\phi))\}$

$=$ { $z\in W_{C}(T):z=z_{1}+sc_{1}\alpha_{1}$ for some $s\in R$}, (2.11)

is connected. The assertion of Theorem 1.1 for the case

$(q-c_{j})(\alpha_{p}-\alpha_{q})=(c_{1}-c_{3})(\alpha_{1}-\alpha_{3})$

follows from (2.11). By changing the roles of $(c_{1}, c_{2}, c_{3})$ or $(\alpha_{1}, \alpha_{2}, \alpha_{3})$ , we can prove
the assertion of Theorem 1.1 for the other cases.

3. Example

We give an example to illustrate Theorem 1.1. Let

$c_{1}=\frac{63}{65}-\frac{16}{65}i$ , $c_{2}=-\frac{3}{5}+\frac{4}{5}i$ , $c_{3}=-\frac{5}{13}-\frac{12}{13}i$ ,

$\alpha_{1}=\frac{40}{41}+\frac{9}{41}i$ , $\alpha_{2}=-\frac{528}{697}+\frac{455}{697}i$ , $\alpha_{3}=-\frac{15}{17}-\frac{8}{17}i$ .

Then the numbers $c_{j}’ s$ and $\alpha_{j}’ s$ lie on the unit circle $|z|=1$ and satisfy the condition
$c_{1}c_{2}c_{3}=1,$ $\alpha_{1}\alpha_{2}\alpha_{3}=1$ . Set $C=diag(c_{1}, c_{2}, c_{3}),$ $T=diag(\alpha_{1}, \alpha_{2}, \alpha_{3})$ . The 6 $\sigma-$

points of this system are given by

$\sigma_{1}=\frac{7583}{9061}-\frac{1342}{45305}i,$ $\sigma_{2}=\frac{7237}{45305}-\frac{5340}{9061}i,$ $\sigma_{3}=-\frac{37969}{45305}+\frac{38874}{45305}i$
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$\sigma_{4}=\frac{126829}{45305}-\frac{124}{45305}i,$ $\sigma_{5}=-\frac{54881}{45305}-\frac{20130}{9061}i,$ $\sigma_{6}=-\frac{12953}{9061}+\frac{11606}{45305}i$ .

Figure 1:

In this example 6 points of the boundary of $W_{C}(T)$ appear as the point of
tangency of the deltoid $\Gamma$ defined by (1.13) and some line segement $[\sigma_{j}, \sigma_{k}]$ . Those
are given by the following:

$P_{1}=\frac{17723}{7225}-\frac{576}{7225}i$ , $P_{2}=\frac{195906479}{82101721}+\frac{7805242}{82101721}i$ ,

$P_{3}=-\frac{57241}{48841}+\frac{106480}{48841}i$ , $P_{4}=-\frac{57313}{42025}+\frac{96026}{42025}i$ ,

$P_{5}=-\frac{1289697}{1221025}-\frac{1149984}{1221025}i$ , $P_{6}=\frac{17723}{7225}-5767225i$ ,

where $P_{1},$
$\ldots,$

$P_{6}$ lie on respective line segments $[\sigma_{2}, \sigma_{4}],[\sigma_{3}, \sigma_{4}],$ $[\sigma_{1}, \sigma_{6}],$ $[\sigma_{3}, \sigma_{6}]$ ,
$[\sigma_{3}, \sigma_{5}],$ $[\sigma_{1}, \sigma_{5}]$ . Figure 1 shows the boundary of the range $W_{C}(T)$ and the $\sigma$-points
and the points $P_{j}’ s$ . We consider the set $K$ defined by (1.11). In this situation, a
unit complex number $z=\exp(i\theta)$ with $-\pi/2\leq\theta\leq\pi/2$ belongs to $K$ if and only
if the slope $ m=\tan\theta$ satisfies one of the inequalities

$m_{1}=-\frac{19}{7}\leq m\leq m_{2}=-\frac{11}{10},$ $m_{3}=-\frac{31}{131}\leq m\leq m_{4}=\frac{2}{9}$ ,
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Figure 2:

$m_{5}=\frac{61}{57}\leq m\leq m_{6}=\frac{33}{4}$ ,

where $m_{1},$ $\ldots,m_{6}$ are respeective slopes of the line segments $[\sigma_{3}, \sigma_{6}],$ $[\sigma_{1}, \sigma_{6}],$ $[\sigma_{3}, \sigma_{4}]$ ,
$[\sigma_{2}, \sigma_{4}],$ $[\sigma_{1}, \sigma_{5}],$ $[\sigma_{3}, \sigma_{5}]$ . Figure 2 shows 6/5-times $K$ .
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