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The C'-numerical range of a 3 X 3 normal matrix

Hiroshi NAKAZATO

Abstract In this note we study the shape of the C-numerical range of a 3 x 3
normal matrix.

1. Introduction and Results

In this decade many authors obtained new results in numerical ranges, numerical
radii of linear operators and their related topics (cf. [2, 3, 6, 7, 9, 11]). In the paper
[5] the author studied a special case of the C-numerical ranges. Recent work [4]
provides us a new method to treat the C-numerical ranges. We will prove ”weak
convexity” of the C-numerical ranges in some sense.

Suppose that C = diag(cy, cz,c3) and T = diag(as, @, a3) are complex 3 x 3
diagonal matrices. We consider a compact subset Wg(T') of the Gaussian plane C
defined by

Wo(T) = {tr(CUTU*) : U € M3(C), U*U = UU* = I3}. (1.1)

However this range is not necessarily convex, this range is star-shaped with
respect to the point

(1/3)(61 + co + C3)(Otl + ag + 013) € Wc(T) (1.2)
We consider the following 6 special points of W¢(T') :

01 = C10q + cap + c3ai3, O3 = Ciap + caa3 + C3ayy, 03 = C1Q3 + Caary + czaz, (1.3)

04 = €101 + a3+ C3Q2, 05 = C1a3 + Co2 + 31, O = C102 + Coaq + czaz. (1.4)

These are called o-points of the range W¢(T"). The 9 line segments
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[oj,08) ={(1 —t)oj +tor : 0 <t <1} (1.5)

(j=12,3, k =4,5,6) are contained in the range Wx(T'). Au-Yeung and Poon
gave these results in [1]. We remark that the direction of these line segments :

06 —01 = (c1 — ¢2)(a2 — 1), 04 — 03 = (1 - c2)(a1 — as),
g5 — 03 = (c1 — ¢2)(a3 — a2), 04 — 02 = (1 — ¢3) (1 — @),
05 — 01 = (e1 — ¢3)(a3 — 1), 06 — 03 = (¢ — c3)(ag — a3),
o5 — 03 = (c2 — ¢3)(a2 — 1), 06 — 02 = (2 — ¢c3) (0 — a3),

04— 01 = (c2 — c3)(az — ag).

The following is our new result.

Theorem 1. 1Suppose that C = diag(c;, c2,c3) and T = diag(a;, az, a3) are
complex 3 x 3 diagonal matrices. Suppose that two elements z;, zo of W (T) satisfy
the equation

2 — 21 =s(c; — ¢;)(ap — ), (1.6)
for some s € R withs #0and1 <1i# j <3,1<p# q<3. Then the line segment
[21, 9] is contained in the range W¢(T).

In the case the range W (T') is convex, the assertion of the above theorem follows
immediately from the convexity of the range W¢(T). If ¢y, ¢s, c3 are colinear, then the
range W (T) is convex by Westwick’s theorem ([10]). If a;, a2, a3 are colinear, then
the range W¢(T) = Wr(C) is convex. So we may assume that (¢; — ¢;)(a; — ;) # 0
for 1 <7< j <3 and ¢;’s lie on a circle and a;’s lie on a circle. A 3 x 3 real matrix
A = (ay;) is called doubly stochastic if (a;;) satisfies

a"ij Z 07 (17)
fori,7=1,2,3 and
3 3
Zaiq =1, DY a;=1, (1.8)
i=1 j=1
for p,g = 1,2,3. A 3 x 3 doubly stochastic matrix A is called orthostochastic if there
exists a 3 X 3 unitary matrix U = (u;) with a;; = |ui|? (4,5 = 1,2,3). In [5] it

was shown that if A = (a;;) is a boundary point of the set of 3 x 3 orthostochastic
matrices, then the point (a;;) satisfies the equation

F(a;:1,7=1,2,3)




2 9 2 2 2 2
= a7;07 + 45,059 + G31Q39 — 2011012021022 — 2a11012031@32 — 2021022031032

2 2 2 2 2 2
= a7,073 + 45,055 + A3,Q33 — 2011013021023 — 2211013231433 — 2021023031033

2 2 2 2 2 2
= 75073 + 03,053 + A35033 — 2012013022023 — 2012013032033 — 2022023032033
= 0.
We call that a general point z of W¢(T') is represented by

3 3 '
z = Ci Q5 Qjj, (19)
' J )

where A = (a;;) is a boundary point of the set of all 3 x 3 orthostochastic matrices,
and hence the polynomial F' vanishes at (a;;). Conversely the point z with the
expression (1.9) by an orthostochastic matrix (a;;) belongs to W¢(T'). We prove
Theorem 1.1 by using this relation.

-~ We define a subset K of the unit circle by
K={ze€C:|z|=1,2,20 € We(T)and 2, — z; =t zforsomet € R

imply [21, 20] € We(T)}. (1.10)

This set K is symmetric with respect to the origin. Theorem 1.1 implies that this
set contains a set

{ 0j — Og

eZi7%% .5 _1923k=4,506e==%1}. (1.11)
loj — ol

Under the condition that neither the points ¢, ¢z, c3 nor the points oy, as, a3 are
colinear, the range W (A) contains an interior point. Under this condition the range
We(T) is convex if and only if K coincides with the unit circle. We can show that
the set K coincides with the set (1.11) in a case. So we may assert that Theorem 1.1
is best possible in some sense. In the case C = diag(cy, ¢, ¢3), T = diag(aq, az, as)
with || = |ae| = |az] = 1, |a] = |e2| = |es] = 1, aronaz = cicocz = 1, the
boundary of the range Wz (A) consists of some line segments £, C [0j,0%) ( J =
1,2,3, k =4,5,6) and arcs I'; of the deltoid

I = {2exp(if) + exp(—2i6) : 0 < 6 < 27}. (1.12)

(cf. [5]). If C = T = diag(1,—1/2 + v/3i/2, —1/2 — 1/3i/2), then the boundary of
We(T) coincides with the deltoid I'. In this case 03 = 03 = 03 = 0 and 04 = 3,
o5 = 3(—1/2 —/3i/2), 06 = 3(—1/2 + +/3i/2) and the set K coincides with

{exp(i %7[) :k=0,1,2,3,4,5}.
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This follows from Theorem 1.1 and the strict concaveness of the arc:
. i 27
{2exp(i6) + exp(—2i0) : 0 <6 < —3—}

2. Proof of the theorem

In this section we shall prove Theorem 1.1. By using the relations

a3 = 1—an —a2, a3 =1-—ay — ay,

as; 1—an —az, ax=1-a;— ax,

ass = a1 +ai2+axn +ax—1,

We rewrite the equation of a boubdary point of the set of the 3 x 3 orthostochastic
matrices as the following :

F(au1,a12, a1, a2) = a?,a3, + a?,a3, — 2a11a12021a22
—20a11022(a11 + a22) — 2a12a21 (@12 + a21) — 2(@11012021 + 11012022 + @11021022
+a12a21022) + 63, + a3y + a3y + a3, + 2(a11012 + a11a21 + G12a22 + Gz
+2a11822 + 2a12021) — 2(a11 + @12 + @21 + ax) +1=0. (2.1)

This equation is solved with respect to a1; as the following :

(age — 1)%a1; = a12a91092 + (1 — a1 — az2)(1 — az — ag)

+2€\/012021022\/(1 — a12 — a22)(1 — a1 — ag), (2.2)
(e = %1) on the set

{(@12,021,0822) : 0 < @12,0 < a21,0 < @z, a2 # 1
a12 + a2 < 1,a21 + a2 < 1} (2.3)

If ass — 1, and hence a;2 — 0, az; — 0, then a;; may converges to an arbitrary
point of [0, 1].

The equation (2.2) implies that the solution a;; satisfies




a1 Z 0, (24)
on the set (2.3). In fact we have

{a11a12a91 + (@12 + ag2 — 1)(ag + ag — 1)}2
—4a12a21022(1 — a1z — a22)(1 — a21 — ag2)
= (ag2 — 1)*(a12a21 — @12 — ag1 — a2 + 1)2

The solution (2.2) on (2.3) satisfies

1-— aij; — a19 Z 0. (25)

In fact we have

(aze — 1)*(1 — a1 — a12) > ax (1 — a1z — agz2) + a12a22(1 — ag1 — a22)

—2\/a12a21a22\/(1 — a1z — ag)(1 — az1 — az),

where
a2 (1 — ayz — age) + a12a22(l — ag1 — axn) >0,

and
{az1(1 = a12 — ag2) + a12a02(1 — ag1 — a22) }* — 4a12a21a22(1 — a12 — G22)(1 — @21 — G22)

= (1 — ag)*(a12a21 + a12a22 — 6121)2 > 0.

Similarly the solution (2.2) on (2.3) satisfies

| 1-— ai1 — ag1 Z 0. (26)
The solution (2.2) on (2.3) satisfies

a1 + a2 +ag +axp—1>0. (2.7)

In fact we have

(ago — 1)%(ay1 + a1z + a1 + age — 1) > a12a21 + a22(1 — a12 — ag2)(1 — a1 — az2)

—2\/012(1216122\/(1 — Q12 — a22)(1 — Q21 — a22),
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where
a12021 + a22(1l — @12 — az2)(1 — ag1 — az) >0,

and
{a12a91 + ag2(1 — a1z — ag)(1 — ag; — az2)}?

—4a12a21022(1 — a12 — a22)(1 — a2 — ag2)
= (ag2 — 1)*(—aa2 + a12a21 + a12a22 + az1a92 + a2,)* > 0.

We also remark that the content of the radical in (2.2) satisfies

a12021022(1 — @12 — ag2)(1l — az — agze) > 0. (2.8)

The restriction of the 2-valued function a,; to sub convex domain of (2.3) also satis-
fies automatically the linear inequalities (2.4), (2.5), (2.6), (2.7) and the inequality
(2.8). We shall prove the following lemma.

Lemma 2.1Suppose that C = diag(ci,ce,c3), T = diag(ai, az,a3) where the
diagonal entries a;’s and c;’s are arbitrary complex numbers. Suppose that o; (j =
1,2,3,4,5,6) are points of the range W (T') defined by (1.3), (1.4) and ¢ € [0, 2]
is an arbitrary angle. Then the equation

{R(zexp(—i0)) : z € Wo(T)} = {R(zexp(—ig)) : 2 € [0}, 4]
(j=1,2,3,k=4,5,6)} (2.9)

1
0f,
0

holds.

Proof of Lemma 2.1. We consider even permutation matrices:

1 0 0 0 1 0 0
P1= 01 0 y P2= 0 0 1 , P3= 1
0 01 1 00 0

and odd permutation matrices:

1 00 0 0 1 0
Ppb=({0 0 1|, B=]0 10|, P=11
010 1 00 0

The point o; corresponds to P; by the relation

= =]

OO -
-0 O
N—

(Cla C2, c3)Pj(al, g, a3)T = 0;
(1 < j <6). The above 6 matrices are orthostochastic matrices : P; = Pjo P; (
1<j<6

) where o denotes the Hadamard product. By Birkhoff’s theorem ([8], p.

IN
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200), the convex hull of these 6 matrices coincides the convex set of all 3 x 3 doubly
stochastic matrices. We call representation (1.9) of a general point of W¢(T) and
the fact that the 9 line segments (1.5) is contained in W¢(T'). By using these facts,
we obtain the inclusion

U{loj,0k] : 7=1,2,3,k=4,5,6} C We(T) C conv(W¢(T))
= {(c1, €2, ¢3)S (011, g, as)? : Sisadoubly stochastic matrix}
= conv([oj,0%] 1 j =1,2,3,k=1,2,3).

The projection 7 : z(€ C) — R(zexp(—i¢))(€ R) satisfies 7(I") = m(conv(T")) for
every compact connected set I' C C. Thus the relation (2.9) follows from the above
inclusion.

Proof of Theorem 1.1. We assume that two points 21,z of the range W¢(T)
satisfy the equation

2o — 21 = s (1 — ¢3)(a1 — a3),

for some s € R, s # 0 with ¢; # c3, a1 # a3. By using a translation, we may assume
that c3 = as = 0. Under this assumption, a general point z of W (T') is represented
by

Z = C11a11 + C10i2Q12 + C2¥1a21 + C2Qi2022,

where (aij) is a doubly stochastic matrix satisfying the equation F(aj1,a12, @21,
ag2) = 0. We choose angle ¢ € [0, 27] so that

R(c1oy exp(%iqﬁ)) =0.

We consider an affine constraint

§R([cla2a12 + Ccax1a91 + Czagazg] exp(—z¢)) = QR(Z1 exp(—ch))), (210)

on the hypersurface F'(a;1, a2, as1,a22) = 0 under the condition

0 < aiz, 0 < ag, 0 < agg,a12+ a2 < 1,49 +azp < 1.

The affine constrant is reduced to a trivial condition if and only if the equations

R(ciaz exp(—ip)) =0, R(coonexp(—ip)) =0, R(coaqexp(—ig)) =0

—193—




hold. If these equations hold, then the range W (T) lies on a straight line, and the
connectedness of the group U(3) guarantees that [z1, 22] C W (T). So we assume
that at least one of

%(cldg exp(—ip)), R(cqa;exp(—ig)), R(coazexp(—ig))

is non-zero. By Lemma 2.1 there exists a point 2z € [0}, 0%] satisfying

R(20 exp(—i¢)) = R(z exp(—i4)),

for some j € {1,2,3},k € {4,5,6}. This implies that there exists a point (a1, a12, o1, azz)

satisfying the affine constraint and

a12021022(1 — a12 — a22)(1 — a1 — ax) =0.

Thus the two parts of the graph of 2-valued function a;; on the domain (2.3) with
the constraint (2.10) is connected. As a continuous image of this connected set, the
set

{z € We(T) : R(z exp(—ig)) = R(z1 exp(—i¢))}
={z € We(T) : 2= 2z + scia; forsome s € R}, (2.11)

is connected. The assertion of Theorem 1.1 for the case

(ci — ¢j)(ap — ag) = (c1 — ¢3) (a1 — a3)
follows from (2.11). By changing the roles of (c1, ¢z, ¢3) or (a1, a2, a3), we can prove
the assertion of Theorem 1.1 for the other cases.

3. Example

We give an example to illustrate Theorem 1.1. Let
63 16 . 3 4 5 12 .

Cl=—6g—&;2, C2=—g+g’&, C3=—i§—T§Z,
a—40+9z' Qg = @4—4—5?1 Qg = 15 8i
YT T TP 7697 Te9r 0 )T 1T 1t

Then the numbers c;’s and «;’s lie on the unit circle |2| = 1 and satisfy the condition
cicees =1, qpazaz = 1. Set C = diag(cy, c2,¢3), T = diag(ay, @z, a3). The 6 o-
points of this system are given by

7583 1342 7237 5340 . 37969 38874 .

= 9061 4530572 ~ 45305 9061 7% = 15305 ' 45305 °

251
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126820 124 . 54881 20130 12953 11606
45305 45305 ' 7°

94 = = 25305~ 9061 %% = o061 ' 45305

Figure 1:

In this example 6 points of the boundary of W (T) appear as the point of
tangency of the deltoid I" defined by (1.13) and some line segement [0}, o). Those
are given by the following:

P = 17723 _ 576 i Py= 195906479 N 7805242 ;
7225 7225 82101721 82101721
P, = _57241 n 1064802_ ) = _57313 i 96026i
48841 48841 42025 = 42025
1289697 1149984 . 17723 .
Ps = — 1501025 ~ 121025 0 T6 T aas 070720
where Pi,...,Ps lie on respective line segments [o2,04],[03,04], [01,06], [03,06),

[03, 03], [01,05). Figure 1 shows the boundary of the range W¢(T') and the o-points
and the points P;’s. We consider the set K defined by (1.11). In this situation, a
unit complex number z = exp(i ) with —7/2 < 6 < 7/2 belongs to K if and only
if the slope m = tan @ satisfies one of the inequalities

19 11 31
ma = SM S Mo 1O,m3 131_m_m4 9,
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O3 —0Og
/ 1
O1-0s
0.5¢
O2—-04
-1 0.5 0.5 1
O3—-04
-0.5}
O71—-0
O3 —Og 1 6
_1-
Figure 2:
61 33
=—<m< =2
Ms =gz =M=Me =0
where my, . .., mg are respeective slopes of the line segments [o3, 0], [01, 06|, [03, 04),

[o2, 04, [01, 03], [03,05). Figure 2 shows 6/5-times K.
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