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REVERSES OF OPERATOR INEQUALITIES
ON OPERATOR MEANS

MASATOSHI FUJII*, RITSUO NAKAMOTO** AND SATIYO SUGIYAMA*

ABSTRACT. In this note, we improve the non-commutative Kantorovich inequality
as follows: If A, B satisfy 0 < m < A, B < M, then for each u € [0,1]

MV, m
AV, B < =
\C “M!l,m

Al B,

where A !, B is the y-harmonic mean and AV, B is the y-arithmetic mean. Next
we discuss the optimality of the constant (v M — /m)? in the difference reverse
inequality ,
AVB - A! B< (VM — /m)?
for all positive invertible A, B with0 <m < A,B < M.
In addition, we compare the u-geometric mean A §, B with AV,B, A!, B
and 1(AV,B + A !, B) for positive operators A and B.

1. Noncommutative Kantorovich inequality. Let ® be a unital positive
linear map on B(H), the C*-algebra of all bounded linear operators on a Hilbert
space H. Then Kadison’s Schwarz inequality asserts

(1) (AT < 2(4)
for all positive invertible A € B(H).
If ® is defined on B(H) & B(H) by
() ®(A® B) = %(A +B) for A,B € B(H),
then @ satisfies
(3) ®((AeB)™)'=A!B, ®A® B)=AVB

for all positive invertible A, B € B(H), where A ! B is the harmonic operator
mean and AV B is the arithmetic operator mean in the sense of Kubo-Ando [5].
Consequently, Kadison’s Schwarz inequality implies the arithmetic-harmonic mean
inequality, i.e., A! B < AVB, cf. [1] and [3].

By the same discussion as in above, the weighted arithmetic-harmonic mean in-
equality, i.e., A!, B < AV,B for u € [0, 1], is proved.
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Moreover a reverse of Kadison’s Schwarz inequality is known as follows:
(M + m)?
4Mm

if A satisfies 0 <m < A < M for some constants m < M, cf. [4, Theorem 1.32] and
[3]. Thus it follows that

(4) ®(A) < d(AH)!

(M + m)?
4

(5) AV,B < ALB

for A,B with 0 < m < A,B < M. It is nothing but the noncommutative Kan-
torovich inequality introduced in [1] (for the case u = 1), cf. [3]. We here remark
the following facts:

(1) The Kantorovich constant %"nﬁ is understood as the ratio of MVm by
M!m, that is,
(M +m)>2  MVm
4Mm  M'm’

(2) The Kantorovich constant is the maximum among {MWY,,%”; u € [0,1]}. That
is,

(M+m)2 MVm _ MV,m
4Mm M!m — M!,m

for all u € [0, 1].

Based on these facts, we prove the following improvement:

Theorem 1. If A, B satisfy 0 <m < A, B < M, then for each p € [0, 1]

(6) av,B<M V“mA' B.
Mi,m
Proof. We put K, = A]’f; 2 C=A" 2BA~% and h = M Then it suffices to show

that
Iv,C <K, 1,C,
by the transformer inequality, or equivalently,

1Vt < K, 1t for t € [p71, A].

This follows from K, = max{ IIY L.t e (R R}

2. Reverse inequalities of difference type. A difference version of the
noncommutative Kantorovich inequality is also introduced by
(7 AVB — A! B< (VM — \/m)?
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for all positive invertible A, B € B(H) with 0 < m < A, B < M, cf. [1, Theorem
6]. More generally, it has already known in {4, Theorem 1.32] that

(8) B(A) - B(A™) T < (VM — Vm)?

for all positive invertible A € B(H) with0 <m < A< M.

On the other hand, the optimality of the constant (v M — y/m)? has been dis-
cussed. It is shown by the following example in [2, Example 2.4]:

Example 2. Let A and B be 2 X 2 matrices defined by

_ (40 1[4 2v/2
A—(O 1) and B—§<2\/§ 11).

Then we can take m = 1 and M = 4 because spectra of both A and B are {1,4}.

Furthermore we have Y
1/(8 2
AV B = 3 ( N )

2/( 8 2
| J——
Al B 9(\/5 Q

We pay our attention to the fact that

and

A!B=—§-AVB

in this example, and show that it happens often in the following way:

Lemma 3. Let A and B be 2 x 2 matrices satisfying |A| = |B| # 0 and |AV ,B| # 0.
Then

A
(9) AlB = 4]

[AV,.B|

AV,B.

| Proof. We put v = 1 — i and denote by X the cofactor matrix of a matrix X, i.e.,

X = <d _b) for X = (a b). Then we have
—c a c d

-1
AL,B = (WA '+ uBYH)l= (iZH —“—B)
wBo= "=\t 1E

A - - A
= ———|—|—-—(1/A+uB)= Al

= = ——————(vA + uB),
[vA + uB| IVA+;LB|(U uB)

as required.

In the below, we fix matrices A and B for a given M > 0 as follows:
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(10) A=(M6” ‘1)>:<A04 8)+1 and B = UAU",

where U = (u U) is unitary.
w oz

Lemma 4. Let A, B, u and v be as in above. Then the spectrum and determihant
of AV, B are as follows:

o(AV, B)={1+ —Azf(l + /1 — dvpjw|?)}

|AV, Bl =1+ M + M*vp|w|.

Thus it follows that
|AV,.B| — |4]
— | =
AV,B-A!, B A%, B AV,B
< M?vplw/|®
~ 14+ M+ M?*vu|w|?
M2vplw|?

1+ %01 - \/1 — 4V,u,|w|2).

M
(1+ 7(1 + /1 — dvpjw|?))

Summing up, we have

Lemma 5. Let A, B, u and v be as in above. Then
M?vp|w|?

1+ 41-,/1- dvplw|?)

Under such preparation, we have the following conclusion:

AV,B— A, B<

Theorem 6. Let A, B, pu and v be as in above. That is, they satisfy 1 < A, B <
M+1. If M > ﬁ; for & = \/T—=4vp, then the optimal upper bound (v M + 1—1)2
of AV,B — A, B can be attained.

In particular, if p = 3, then the optimal upper bound (VM +1 — 1)? can be
attained for all M > 0.

Proof. For convenience, we put
t = dvplw|®,s =1 —tand N = M/2.
Hence Lemma 5 ensures that it suffices to estimate

(M/2)* . _ N*(1-¢%)
maX{l+M/2.(1_\/1_'__t);t€ [011]} —max{m,se [0,].]}
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. 2(Ng2— s 2(1_g2 .
Since ¢'(s) = ¥ (1‘£1+1\?((11j:\)’))2+N) for g(s) = ﬁuz&r—lu—s% (s € [0,1)), the solusion of
g (s) =01is {x#(N +1++2N +1)}. So we adopt

1
so=(N+1-vaN+T) € [0,1]

Then it is easily seen that g(so) = (V2N +1—1)2 = (vVM + 1 — 1)2. Incidentally

it is clear that § < s < 1 by |w|? € [0,1]. So we need the condition ¢ < so(< 1) to

be attained the optimal constant, and it is equivalent to M > H%%)—z.

For convenience, we rephrase Theorem 6 in a general setting:

Theorem 7. Suppose that 0 <r < A B< Rand0 < pu < 1. If§ > (%;)2 for
§ = +/T=4vp, then the optimal upper bound (VR — /7)? of AV,B— A, B can

be attained.

In particular, if p = %, then the optimal upper bound (VR —+/7)? can be attained.

Remark. We mention that the second half of Theorem 7 has been discussed in
the further observation after [2, Example 2.4].

3. Comparison with the geometric mean. The p-geometric mean A §, B
for positive (invertible) operators A and B is defined by

Af, B= Ai(A"TBA"1)*A3,
and we denote by A f B = A {; B simply, see [5].
It is well-known that
Al, B<Af4,B<AV,B

for positive operators A and B.

In this section, we compare the y-geometric mean A §, B with AV,B, A!, B and
%(AVMB + A !, B) for positive operators A and B. We first discuss the following
reverse inequalities:

Theorem 8. If A and B are positive operators 0 < m < A, B< M, h = % and
p € (0,1), then

(11) L(p)'AV,B< A4, B<L(1-pA!, B,
where
. _ -1
L(ﬁ):%}ﬁ (0<B<1/2), :1—%@—- (1/2<B<1).
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Proof. The representing functions of V,,, §, and !, are
t
1—p+pt, t*and —————
(1-pt+p
respectively. So if we set v
_ 1—p+put . Q1-—pt+p

Li= max (=) and Lo= max (T}

then we have
AV,B<LA#§, B and Af, B<L,A\, B

and L,, L, are optimal.

Next we determine them exactly. For this, we show that

1—t+th ! 1—t+th
g(t) = = i

satisfies g(t) < 0 for 0 < ¢t < 1/2 and g(¢) > 0if 1/2 < t < 1. Noting that
9(t) =t(1 —)(f(t) — f(1 - 1)) for

s ="

it suffices to prove that f(t) is an increasing function, which is exhibited as lemma:

0<t<l)

h—t

= k(tt) (0<t<1),

Lemma 9. The function f(t) = ﬁt;th—_—t = E&Q for 0 <t <1 is increasing.

Proof. Since k'(t) = (logh)(h* + h™*) > 0 and k"(t) = (log h)%k(t) > 0, k(t) is
increasing and convex. Combining it with £(0) = 0, it follows that for a € (0, 1),

ak(t) = ak(t) + (1 — a)k(0) > k(ot + (1 — @)0) = k(at).

Therefore we have . .
- > k(— —
t+6k(t+e) _k(t+6(t+e)) k(t)

for € > 0, so that f(t) = %9 is increasing, as desired.

Remark. In the proof of [1, Theorem 11], it is shown that if o is an operator mean,
0<m<AB<Mandh=2 then

g(h) —g(h™") ,  hg(h™!) — h7'g(h)
>
(12) AoBxfo T 2p ot Ty,
where g is the representing function of o, g(t) = 1 o t for ¢t > 0. Therefore, if
f@t) = i}": (0 <t <1) asin Lemma 9, then we have

(13) Af, B>
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Noting that f(¢) is increasing by Lemma 9, it follows from (13) that

1

[0 av,B 0<u<d),

h—h-1 2
AWBZ21 pa—y 1

,lhlAWB (3<p<])

Unfortunately the above estimation is not better than that of Theorem 8 by Lemma
9. As a matter of fact, if 0 < p < 1, then

@)™ = Ly h = b1 = gt k) = w1 — @) (A= ) = F()) > 0.

h—h-1
Similarly, if = < pu <1, then
f ( 1)

(L)~ = =) (1= W(h=h") (L= p+uh™) = u(1=w)(f() = f(1-p) 2 0.

Next we compare A § B and 4YB441 B

Theorem 10. If A and B are positive operators, then
AVB+ A!'B

(14) 5 > At B.
On the other hand, if 0 <m < A, B< M and K = %’-"T,{'—)ﬂ then
| .
(15) AVB-;A.BSKAuB.
Proof. We put
1VE+111¢

ft)y=4- for t € [h™1, A, whereh=%.

2Vt
Then f'(t) = —2?(\;7_(?1_%31—)2 and f”(t) > 0, so that min f(t) = f(1) = 1. Therefore we
have the former.

To prove the latter, we note that f'(t) <O0for0<t <1, f'(t) >0 for t > 1 and
f(h) f(RYH. It follows that

max f(t) = max{f(h™"), f(h)}= f(h),
which implies (15).

Next we consider the Welghted version of the above, in which they are not ordered

in the sense that IVt
0= g

So one of inequalities we can discuss is a reverse one as follows:

—131—



Theorem 11. If A and B are positive operators 0 <m < A, B< M and h = %,
then .

|
(16) k#AﬁuBsAqu—lz—A.uB

where ky = fu((12.)%), and K = fu(h) 0 < p < }, and K, = fu(h™")
s<p<l

<K, Al B,

Proof. We put v =1 — u for convenience. Then
vu(t — 1)2(v2% — p?
£1(8) = ( +1) ( 2#)
2th1 (u + vt)
Noting that f,(1) = f,"(’,j—:) =0, fu(t) is decreasing in (0, ‘5;) and f,(t) is increasing
in ( ﬁ;, 00). Hence it follows that
max{f,(t);t € (7', A} = max{f.(h7"), f.(h)}.

If 0 < p < 3, then fu(h™') < fu(h), and, if 3 < p < 1, then f,(h7!) > fu(h). As
a matter of fact, it is assured as follows: We put g(h) = Tf‘(‘{_ll) for h > 1. Then
g(1) = 1. Since

ph+v
log g(h) = 1
og g(h) 8 on

+ (1 —2u) logh,

it follows that
1-2p  pv(v—p)(h—1)>
log g(h)} = —~— — —~ E :
{log g(h)} ph+v p+vh h h(ph + v)(n + vh)
Finally the left hand side of (16) follows from k, = min f,(t).

REFERENCES

(1] J.I.Fuii, M.NAKAMURA, J.E.PECARIC AND Y.SEO, Bounds for the ratio and difference
between parallel sum and series via Mond-J.E.Peéarié method, Preprint.

[2] M.FuJi, S.IzuMINO AND R.NAKAMOTO, Upper bounds for the difference between symmetric
operator means, Sci. Math. Japon., 63(2006), 103-111.

[3] M.Fuii aAND M.NAKAMURA, Kadison’s Schwarz inequality and noncommutative Kantorovich
inequality, Sci. Math. Japon., 63(2006), 101-102.

[4] T.Furuta, J.MI¢I¢, J.E.PECARIC AND Y.SEO, Mond-Peéarié Method in Operator Inequal-
ities, Monographs in Inequalities 1, Element, Zagreb, 2005.

[5] F.KuBo AND T.ANDO, Means of positive linear operators, Math. Ann., 246(1980), 205-224.

—132—



*) DEPARTMENT OF MATHEMATICS, OSAKA KYOIKU UNIVERSITY, ASAHIGAOKA, KASHI-
WARA, OSAKA 582-8582, JAPAN.

E-mail address: mfujii@cc.osaka-kyoiku.ac. jp

*xx) FACULTY OF ENGINEERING, IBARAKI UNIVERSITY, HITACHI, IBARAKI 316-8511, JAPAN.

E-mail address: nakamoto@base.ibaraki.ac.jp

Received June 13, 2006
Revised August 12, 2006

—133—



