REVERSES OF OPERATOR INEQUALITIES ON OPERATOR MEANS

MASATOSHI FUJII*, RITSUO NAKAMOTO** AND SATIYO SUGIYAMA*

ABSTRACT. In this note, we improve the non-commutative Kantorovich inequality as follows: If A, B satisfy $0 < m \le A, B \le M$, then for each $\mu \in [0, 1]$

$$A\nabla_{\mu}B \leq \frac{M\nabla_{\mu}m}{M !_{\mu} m}A !_{\mu} B,$$

where $A \mid_{\mu} B$ is the μ -harmonic mean and $A\nabla_{\mu}B$ is the μ -arithmetic mean. Next we discuss the optimality of the constant $(\sqrt{M} - \sqrt{m})^2$ in the difference reverse inequality

$$A\nabla B - A ! B \le (\sqrt{M} - \sqrt{m})^2$$

for all positive invertible A, B with $0 < m \le A, B \le M$.

In addition, we compare the μ -geometric mean $A \sharp_{\mu} B$ with $A \nabla_{\mu} B$, $A !_{\mu} B$ and $\frac{1}{2} (A \nabla_{\mu} B + A !_{\mu} B)$ for positive operators A and B.

1. Noncommutative Kantorovich inequality. Let Φ be a unital positive linear map on B(H), the C^* -algebra of all bounded linear operators on a Hilbert space H. Then Kadison's Schwarz inequality asserts

(1)
$$\Phi(A^{-1})^{-1} \le \Phi(A)$$

for all positive invertible $A \in B(H)$.

If Φ is defined on $B(H) \oplus B(H)$ by

(2)
$$\Phi(A \oplus B) = \frac{1}{2}(A+B) \text{ for } A, B \in B(H),$$

then Φ satisfies

(3)
$$\Phi((A \oplus B)^{-1})^{-1} = A ! B, \quad \Phi(A \oplus B) = A \nabla B$$

for all positive invertible $A, B \in B(H)$, where A ! B is the harmonic operator mean and $A\nabla B$ is the arithmetic operator mean in the sense of Kubo-Ando [5]. Consequently, Kadison's Schwarz inequality implies the arithmetic-harmonic mean inequality, i.e., $A ! B \leq A\nabla B$, cf. [1] and [3].

By the same discussion as in above, the weighted arithmetic-harmonic mean inequality, i.e., $A \mid_{\mu} B \leq A \nabla_{\mu} B$ for $\mu \in [0, 1]$, is proved.

¹⁹⁹¹ Mathematics Subject Classification. 47A63, 47A64 and 47B15.

Key words and phrases. Kantorovich inequality, reverse inequality, operator mean.

Moreover a reverse of Kadison's Schwarz inequality is known as follows:

(4)
$$\Phi(A) \le \frac{(M+m)^2}{4Mm} \Phi(A^{-1})^{-1}$$

if A satisfies $0 < m \le A \le M$ for some constants m < M, cf. [4, Theorem 1.32] and [3]. Thus it follows that

(5)
$$A\nabla_{\mu}B \le \frac{(M+m)^2}{4Mm}A!_{\mu}B$$

for A,B with $0 < m \le A,B \le M$. It is nothing but the noncommutative Kantorovich inequality introduced in [1] (for the case $\mu = \frac{1}{2}$), cf. [3]. We here remark the following facts:

(1) The Kantorovich constant $\frac{(M+m)^2}{4Mm}$ is understood as the ratio of $M\nabla m$ by M!m, that is,

$$\frac{(M+m)^2}{4Mm} = \frac{M\nabla m}{M!m}.$$

(2) The Kantorovich constant is the maximum among $\{\frac{M\nabla_{\mu}m}{M!_{\mu}m}; \mu \in [0,1]\}$. That is,

$$\frac{(M+m)^2}{4Mm} = \frac{M\nabla m}{M!m} \geq \frac{M\nabla_{\mu}m}{M! ... m}$$

for all $\mu \in [0, 1]$.

Based on these facts, we prove the following improvement:

Theorem 1. If A, B satisfy $0 < m \le A, B \le M$, then for each $\mu \in [0, 1]$

(6)
$$A\nabla_{\mu}B \leq \frac{M\nabla_{\mu}m}{M!_{\mu}m}A!_{\mu}B.$$

Proof. We put $K_{\mu} = \frac{M\nabla_{\mu}m}{M!_{\mu}m}$, $C = A^{-\frac{1}{2}}BA^{-\frac{1}{2}}$ and $h = \frac{M}{m}$. Then it suffices to show that

$$1\nabla_{\mu}C \le K_{\mu} \ 1!_{\mu}C,$$

by the transformer inequality, or equivalently,

$$1\nabla_{\mu}t \le K_{\mu} \ 1!_{\mu}t \text{ for } t \in [h^{-1}, h].$$

This follows from $K_{\mu} = \max\{\frac{1\nabla_{\mu}t}{1 \mid_{\mu} t}; t \in [h^{-1}, h]\}.$

2. Reverse inequalities of difference type. A difference version of the noncommutative Kantorovich inequality is also introduced by

(7)
$$A\nabla B - A ! B \le (\sqrt{M} - \sqrt{m})^2$$

for all positive invertible $A, B \in B(H)$ with $0 < m \le A, B \le M$, cf. [1, Theorem 6]. More generally, it has already known in [4, Theorem 1.32] that

(8)
$$\Phi(A) - \Phi(A^{-1})^{-1} \le (\sqrt{M} - \sqrt{m})^2$$

for all positive invertible $A \in B(H)$ with $0 < m \le A \le M$.

On the other hand, the optimality of the constant $(\sqrt{M} - \sqrt{m})^2$ has been discussed. It is shown by the following example in [2, Example 2.4]:

Example 2. Let A and B be 2×2 matrices defined by

$$A = \begin{pmatrix} 4 & 0 \\ 0 & 1 \end{pmatrix} \quad \text{and} \quad B = \frac{1}{3} \begin{pmatrix} 4 & 2\sqrt{2} \\ 2\sqrt{2} & 11 \end{pmatrix}.$$

Then we can take m=1 and M=4 because spectra of both A and B are $\{1,4\}$. Furthermore we have

$$A\nabla B = \frac{1}{3} \begin{pmatrix} 8 & \sqrt{2} \\ \sqrt{2} & 7 \end{pmatrix}$$

and

$$A ! B = \frac{2}{9} \begin{pmatrix} 8 & \sqrt{2} \\ \sqrt{2} & 7 \end{pmatrix}.$$

We pay our attention to the fact that

$$A ! B = \frac{2}{3}A\nabla B$$

in this example, and show that it happens often in the following way:

Lemma 3. Let A and B be 2×2 matrices satisfying $|A| = |B| \neq 0$ and $|A\nabla_{\mu}B| \neq 0$. Then

(9)
$$A!_{\mu}B = \frac{|A|}{|A\nabla_{\mu}B|}A\nabla_{\mu}B.$$

Proof. We put $\nu=1-\mu$ and denote by \tilde{X} the cofactor matrix of a matrix X, i.e., $\tilde{X}=\begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$ for $X=\begin{pmatrix} a & b \\ c & d \end{pmatrix}$. Then we have

$$A!_{\mu}B = (\nu A^{-1} + \mu B^{-1})^{-1} = \left(\frac{\nu}{|A|}\tilde{A} + \frac{\mu}{|B|}\tilde{B}\right)^{-1}$$
$$= \frac{|A|}{|\nu\tilde{A} + \mu\tilde{B}|}(\nu\tilde{A} + \mu\tilde{B}) = \frac{|A|}{|\nu A + \mu B|}(\nu A + \mu B),$$

as required.

In the below, we fix matrices A and B for a given M > 0 as follows:

(10)
$$A = \begin{pmatrix} M+1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} M & 0 \\ 0 & 0 \end{pmatrix} + 1 \quad \text{and} \quad B = UAU^*,$$

where $U = \begin{pmatrix} u & v \\ w & z \end{pmatrix}$ is unitary.

Lemma 4. Let A, B, μ and ν be as in above. Then the spectrum and determinant of $A \nabla_{\mu} B$ are as follows:

$$\sigma(A \nabla_{\mu} B) = \{1 + \frac{M}{2} (1 \pm \sqrt{1 - 4\nu\mu|w|^2})\}$$
$$|A \nabla_{\mu} B| = 1 + M + M^2\nu\mu|w|^2.$$

Thus it follows that

$$\begin{split} A\nabla_{\mu}B - A &!_{\mu} B &= \frac{|A\nabla_{\mu}B| - |A|}{|A\nabla_{\mu}B|} A\nabla_{\mu}B \\ &\leq \frac{M^{2}\nu\mu|w|^{2}}{1 + M + M^{2}\nu\mu|w|^{2}} (1 + \frac{M}{2}(1 + \sqrt{1 - 4\nu\mu|w|^{2}})) \\ &= \frac{M^{2}\nu\mu|w|^{2}}{1 + \frac{M}{2}(1 - \sqrt{1 - 4\nu\mu|w|^{2}})}. \end{split}$$

Summing up, we have

Lemma 5. Let A, B, μ and ν be as in above. Then

$$A\nabla_{\mu}B - A \mid_{\mu} B \le \frac{M^2 \nu \mu |w|^2}{1 + \frac{M}{2}(1 - \sqrt{1 - 4\nu \mu |w|^2})}.$$

Under such preparation, we have the following conclusion:

Theorem 6. Let A, B, μ and ν be as in above. That is, they satisfy $1 \leq A$, $B \leq M+1$. If $M \geq \frac{4\delta}{(1-\delta)^2}$ for $\delta = \sqrt{1-4\nu\mu}$, then the optimal upper bound $(\sqrt{M}+1-1)^2$ of $A\nabla_{\mu}B - A!_{\mu}B$ can be attained.

In particular, if $\mu = \frac{1}{2}$, then the optimal upper bound $(\sqrt{M+1}-1)^2$ can be attained for all M>0.

Proof. For convenience, we put

$$t = 4\nu\mu|w|^2$$
, $s = \sqrt{1-t}$ and $N = M/2$.

Hence Lemma 5 ensures that it suffices to estimate

$$\max\left\{\frac{(M/2)^2t}{1+M/2\cdot(1-\sqrt{1-t})}; t\in[0,1]\right\} = \max\left\{\frac{N^2(1-s^2)}{1+N(1-s)}; s\in[0,1]\right\}.$$

Since $g'(s) = \frac{N^2(Ns^2-2(1+N)s+N)}{(1+N(1-s))^2}$ for $g(s) = \frac{N^2(1-s^2)}{1+N(1-s)}$ $(s \in [0,1))$, the solution of g'(s) = 0 is $\{\frac{1}{N}(N+1\pm\sqrt{2N+1})\}$. So we adopt

$$s_0 = \frac{1}{N}(N+1-\sqrt{2N+1}) \in [0,1].$$

Then it is easily seen that $g(s_0) = (\sqrt{2N+1}-1)^2 = (\sqrt{M+1}-1)^2$. Incidentally it is clear that $\delta \leq s \leq 1$ by $|w|^2 \in [0,1]$. So we need the condition $\delta \leq s_0 \leq 1$ to be attained the optimal constant, and it is equivalent to $M \geq \frac{4\delta}{(1-\delta)^2}$.

For convenience, we rephrase Theorem 6 in a general setting:

Theorem 7. Suppose that $0 < r \le A$, $B \le R$ and $0 < \mu < 1$. If $\frac{R}{r} \ge \left(\frac{1+\delta}{1-\delta}\right)^2$ for $\delta = \sqrt{1-4\nu\mu}$, then the optimal upper bound $(\sqrt{R}-\sqrt{r})^2$ of $A\nabla_{\mu}B - A!_{\mu}B$ can be attained.

In particular, if $\mu = \frac{1}{2}$, then the optimal upper bound $(\sqrt{R} - \sqrt{r})^2$ can be attained.

Remark. We mention that the second half of Theorem 7 has been discussed in the further observation after [2, Example 2.4].

3. Comparison with the geometric mean. The μ -geometric mean $A \sharp_{\mu} B$ for positive (invertible) operators A and B is defined by

$$A \sharp_{\mu} B = A^{\frac{1}{2}} (A^{-\frac{1}{2}} B A^{-\frac{1}{2}})^{\mu} A^{\frac{1}{2}},$$

and we denote by $A \sharp B = A \sharp_{\frac{1}{2}} B$ simply, see [5].

It is well-known that

$$A!_{\mu} B \leq A \sharp_{\mu} B \leq A \nabla_{\mu} B$$

for positive operators A and B.

In this section, we compare the μ -geometric mean $A \sharp_{\mu} B$ with $A \nabla_{\mu} B$, $A !_{\mu} B$ and $\frac{1}{2} (A \nabla_{\mu} B + A !_{\mu} B)$ for positive operators A and B. We first discuss the following reverse inequalities:

Theorem 8. If A and B are positive operators $0 < m \le A$, $B \le M$, $h = \frac{M}{m}$ and $\mu \in (0,1)$, then

(11)
$$L(\mu)^{-1} A \nabla_{\mu} B \le A \sharp_{\mu} B \le L(1-\mu) A !_{\mu} B,$$

where

$$L(\beta) = \frac{1 - \beta + \beta h}{h^{\beta}} \quad (0 < \beta \le 1/2), \quad = \frac{1 - \beta + \beta h^{-1}}{h^{-\beta}} \quad (1/2 < \beta < 1).$$

Proof. The representing functions of ∇_{μ} , \sharp_{μ} and $!_{\mu}$ are

$$1 - \mu + \mu t$$
, t^{μ} and $\frac{t}{(1 - \mu)t + \mu}$

respectively. So if we set

$$L_1 = \max_{h^{-1} \le t \le h} \{ \frac{1 - \mu + \mu t}{t^{\mu}} \}$$
 and $L_2 = \max_{h^{-1} < t \le h} \{ \frac{(1 - \mu)t + \mu}{t^{1 - \mu}} \},$

then we have

$$A\nabla_{\mu}B \leq L_1 A \sharp_{\mu} B$$
 and $A \sharp_{\mu} B \leq L_2 A !_{\mu} B$

and L_1 , L_2 are optimal.

Next we determine them exactly. For this, we show that

$$g(t) = \frac{1 - t + th^{-1}}{h^{-t}} - \frac{1 - t + th}{h^t} \ (0 < t < 1)$$

satisfies g(t) < 0 for 0 < t < 1/2 and $g(t) \ge 0$ if $1/2 \le t < 1$. Noting that g(t) = t(1-t)(f(t)-f(1-t)) for

$$f(t) = \frac{h^t - h^{-t}}{t} = \frac{k(t)}{t} \ (0 < t < 1),$$

it suffices to prove that f(t) is an increasing function, which is exhibited as lemma:

Lemma 9. The function $f(t) = \frac{h^t - h^{-t}}{t} = \frac{k(t)}{t}$ for 0 < t < 1 is increasing.

Proof. Since $k'(t) = (\log h)(h^t + h^{-t}) > 0$ and $k''(t) = (\log h)^2 k(t) > 0$, k(t) is increasing and convex. Combining it with k(0) = 0, it follows that for $\alpha \in (0, 1)$,

$$\alpha k(t) = \alpha k(t) + (1 - \alpha)k(0) \ge k(\alpha t + (1 - \alpha)0) = k(\alpha t).$$

Therefore we have

$$\frac{t}{t+\epsilon}k(t+\epsilon) \ge k(\frac{t}{t+\epsilon}(t+\epsilon)) = k(t)$$

for $\epsilon > 0$, so that $f(t) = \frac{k(t)}{t}$ is increasing, as desired.

Remark. In the proof of [1, Theorem 11], it is shown that if σ is an operator mean, $0 < m \le A, B < M$ and $h = \frac{M}{m}$, then

(12)
$$A \sigma B \ge \frac{g(h) - g(h^{-1})}{h - h^{-1}} B + \frac{hg(h^{-1}) - h^{-1}g(h)}{h - h^{-1}} A,$$

where g is the representing function of σ , g(t) = 1 σ t for $t \geq 0$. Therefore, if $f(t) = \frac{h^t - h^{-t}}{t}$ (0 < t < 1) as in Lemma 9, then we have

(13)
$$A \sharp_{\mu} B \ge \frac{1}{h - h^{-1}} \{ (1 - \mu)f(1 - \mu)A + \mu f(\mu)B \}.$$

Noting that f(t) is increasing by Lemma 9, it follows from (13) that

$$A \sharp_{\mu} B \ge \begin{cases} \frac{f(\mu)}{h - h^{-1}} A \nabla_{\mu} B & (0 < \mu \le \frac{1}{2}), \\ \frac{f(1 - \mu)}{h - h^{-1}} A \nabla_{\mu} B & (\frac{1}{2} \le \mu \le 1). \end{cases}$$

Unfortunately the above estimation is not better than that of Theorem 8 by Lemma 9. As a matter of fact, if $0 < \mu \le \frac{1}{2}$, then

$$(L(\mu)^{-1} - \frac{f(\mu)}{h - h^{-1}})\mu(h - h^{-1})(1 - \mu + \mu h) = \mu(1 - \mu)(f(1 - \mu) - f(\mu)) \ge 0.$$

Similarly, if $\frac{1}{2} \le \mu \le 1$, then

$$h(L(\mu)^{-1} - \frac{f(1-\mu)}{h-h^{-1}})(1-\mu)(h-h^{-1})(1-\mu+\mu h^{-1}) = \mu(1-\mu)(f(\mu)-f(1-\mu)) \ge 0.$$

Next we compare $A \sharp B$ and $\frac{A \nabla B + A ! B}{2}$.

Theorem 10. If A and B are positive operators, then

$$\frac{A\nabla B + A ! B}{2} \ge A \sharp B.$$

On the other hand, if $0 < m \le A$, $B \le M$ and $K = \frac{m\nabla M + m! M}{2(m \# M)}$, then

$$\frac{A\nabla B + A ! B}{2} \le K A \sharp B.$$

Proof. We put

$$f(t) = 4 \cdot \frac{1\nabla t + 1! t}{2\sqrt{t}}$$
 for $t \in [h^{-1}, h]$, where $h = \frac{M}{m}$.

Then $f'(t) = \frac{(t-1)^3}{2t\sqrt{t}(t+1)^2}$ and f''(t) > 0, so that min f(t) = f(1) = 1. Therefore we have the former.

To prove the latter, we note that f'(t) < 0 for 0 < t < 1, f'(t) > 0 for t > 1 and $f(h) = f(h^{-1})$. It follows that

$$\max f(t) = \max\{f(h^{-1}), f(h)\} = f(h),$$

which implies (15).

Next we consider the weighted version of the above, in which they are not ordered in the sense that

$$f_{\mu}(t) = \frac{1\nabla_{\mu}t + 1 !_{\mu} t}{2(1 \sharp_{\mu} t)} \not\geq 1.$$

So one of inequalities we can discuss is a reverse one as follows:

Theorem 11. If A and B are positive operators $0 < m \le A$, $B \le M$ and $h = \frac{M}{m}$, then

(16)
$$k_{\mu} A \sharp_{\mu} B \leq \frac{A \nabla_{\mu} B + A !_{\mu} B}{2} \leq K_{\mu} A \sharp_{\mu} B,$$

where $k_{\mu} = f_{\mu}((\frac{\mu}{1-\mu})^2)$, and $K_{\mu} = f_{\mu}(h)$ if $0 < \mu < \frac{1}{2}$, and $K_{\mu} = f_{\mu}(h^{-1})$ if $\frac{1}{2} < \mu < 1$.

Proof. We put $\nu = 1 - \mu$ for convenience. Then

$$f'_{\mu}(t) = \frac{\nu \mu (t-1)^2 (\nu^2 t - \mu^2)}{2t^{\mu+1} (\mu + \nu t)^2}.$$

Noting that $f'_{\mu}(1) = f'_{\mu}(\frac{\mu^2}{\nu^2}) = 0$, $f_{\mu}(t)$ is decreasing in $(0, \frac{\mu^2}{\nu^2})$ and $f_{\mu}(t)$ is increasing in $(\frac{\mu^2}{\nu^2}, \infty)$. Hence it follows that

$$\max\{f_{\mu}(t); t \in [h^{-1}, h]\} = \max\{f_{\mu}(h^{-1}), f_{\mu}(h)\}.$$

If $0 < \mu < \frac{1}{2}$, then $f_{\mu}(h^{-1}) \le f_{\mu}(h)$, and, if $\frac{1}{2} < \mu < 1$, then $f_{\mu}(h^{-1}) \ge f_{\mu}(h)$. As a matter of fact, it is assured as follows: We put $g(h) = \frac{f_{\mu}(h)}{f_{\mu}(h^{-1})}$ for $h \ge 1$. Then g(1) = 1. Since

$$\log g(h) = \log \frac{\mu h + \nu}{\mu + \nu h} + (1 - 2\mu) \log h,$$

it follows that

$$\{\log g(h)\}' = \frac{\mu}{\mu h + \nu} - \frac{\nu}{\mu + \nu h} + \frac{1 - 2\mu}{h} = \frac{\mu \nu (\nu - \mu)(h - 1)^2}{h(\mu h + \nu)(\mu + \nu h)}.$$

Finally the left hand side of (16) follows from $k_{\mu} = \min f_{\mu}(t)$.

REFERENCES

- [1] J.I.FUJII, M.NAKAMURA, J.E.PEČARIĆ AND Y.SEO, Bounds for the ratio and difference between parallel sum and series via Mond-J.E.Pečarić method, Preprint.
- [2] M.FUJII, S.IZUMINO AND R.NAKAMOTO, Upper bounds for the difference between symmetric operator means, Sci. Math. Japon., 63(2006), 103-111.
- [3] M.FUJII AND M.NAKAMURA, Kadison's Schwarz inequality and noncommutative Kantorovich inequality, Sci. Math. Japon., 63(2006), 101-102.
- [4] T.FURUTA, J.MIĆIĆ, J.E.PEČARIĆ AND Y.SEO, Mond-Pečarić Method in Operator Inequalities, Monographs in Inequalities 1, Element, Zagreb, 2005.
- [5] F.Kubo and T.Ando, Means of positive linear operators, Math. Ann., 246(1980), 205-224.

*) Department of Mathematics, Osaka Kyoiku University, Asahigaoka, Kashiwara, Osaka 582-8582, Japan.

 $E ext{-}mail\ address: mfujii@cc.osaka-kyoiku.ac.jp}$

**) FACULTY OF ENGINEERING, IBARAKI UNIVERSITY, HITACHI, IBARAKI 316-8511, JAPAN.

E-mail address: nakamoto@base.ibaraki.ac.jp

Received June 13, 2006 Revised August 12, 2006