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REVERSES OF OPERATOR INEQUALITIES
ON OPERATOR MEANS

MASATOSHI FUJII* , RITSUO NAKAMOTO** AND SATIYO SUGIYAMA*

ABSTRACT. In this note, we improve the non-commutative Kantorovich inequality
as follows: If $A,$ $B$ satisfy $0<m\leq A,$ $B\leq M$ , then for each $\mu\in[0,1]$

$A\nabla_{\mu}B\leq\frac{M\nabla_{\mu}m}{M!_{\mu}m}A!_{\mu}B$ ,

where $A!_{\mu}B$ is the $\mu$-harmonic mean and $A\nabla_{\mu}B$ is the $\mu$-arithmetic mean. Next
we discuss the optimality of the constant $(\sqrt{M}-\sqrt{m})^{2}$ in the difference reverse
inequality

$A\nabla B-A$ ! $B\leq(\sqrt{M}-\sqrt{m})^{2}$

for all positive invertible $A,$ $B$ with $0<m\leq A,$ $B\leq M$ .
In addition, we compare the $\mu$-geometric mean $A\#_{\mu}B$ with $A\nabla_{\mu}B,$ $A!_{\mu}B$

and - $(A\nabla_{\mu}B+A!_{\mu}B)$ for positive operators $A$ and $B$ .

1. Noncommutative Kantorovich inequality. Let $\Phi$ be a unital positive
linear map on $B(H)$ , the $C^{*}$-algebra of all bounded linear operators on a Hilbert
space $H$ . Then Kadison’s Schwarz inequality asserts

(1) $\Phi(A^{-1})^{-1}\leq\Phi(A)$

for all positive invertible $A\in B(H)$ .

If $\Phi$ is defined on $B(H)\oplus B(H)$ by

(2) $\Phi(A\oplus B)=\frac{1}{2}(A+B)$ for $A,$ $B\in B(H)$ ,

then $\Phi$ satisfies

(3) $\Phi((A\oplus B)^{-1})^{-1}=A$ ! $B$ , $\Phi(A\oplus B)=A\nabla B$

for all positive invertible $A,$ $B\in B(H)$ , where $A$ ! $B$ is the harmonic operator
mean and $A\nabla B$ is the arithmetic operator mean in the sense of Kubo-Ando [5].
Consequently, Kadison’s Schwarz inequality implies the arithmetic-harmonic mean
inequality, i.e., $A$ ! $B\leq A\nabla B$ , cf. [1] and [3].

By the same discussion as in above, the weighted arithmetic-harmonic mean in-
equality, i.e., $A!_{\mu}B\leq A\nabla_{\mu}B$ for $\mu\in[0,1]$ , is proved.
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Moreover a reverse of Kadison’s Schwarz inequality is known as follows:

(4) $\Phi(A)\leq\frac{(M+m)^{2}}{4Mm}\Phi(A^{-1})^{-1}$

if $A$ satisfies $0<m\leq A\leq M$ for some constants $m<M$ , cf. [4, Theorem 1.32] and
[3]. Thus it follows that

(5) $A\nabla_{\mu}B\leq\frac{(M+m)^{2}}{4Mm}A!_{\mu}B$

for $A,$ $B$ with $0<m\leq A,$ $B\leq M$ . It is nothing but the noncommutative Kan-
torovich inequality introduced in [1] (for the case $\mu=\frac{1}{2}$ ), cf. [3]. We here remark
the following facts:

(1) The Kantorovich constant $\frac{(M+m)^{2}}{4Mm}$ is understood as the ratio of $M\nabla m$ by
$M!m$ , that is,

$\frac{(M+m)^{2}}{4Mm}=\frac{M\nabla m}{M!m}$ .

(2) The Kantorovich constant is the maximum among $\{\frac{M\nabla}{M!}R^{m}\mu m;\mu\in[0,1]\}$ . That
is,

$\frac{(M+m)^{2}}{4Mm}=\frac{M\nabla m}{M!m}\geq\frac{M\nabla_{\mu}m}{M!_{\mu}m}$

for all $\mu\in[0,1]$ .

Based on these facts, we prove the following improvement:

Theorem 1. If $A,$ $B$ satisfy $0<m\leq A,$ $B\leq M$ , then for each $\mu\in[0,1]$

(6) $A\nabla_{\mu}B\leq\frac{M\nabla_{\mu}m}{M!_{\mu}m}A!_{\mu}B$ .

Proof. We put $K_{\mu}=\frac{M\nabla}{M!}\mapsto^{m},$$C\mu m=A^{-\frac{1}{2}}BA^{-\frac{1}{2}}$ and $h=\frac{M}{m}$ . Then it suffices to show
that

$1\nabla_{\mu}C\leq K_{\mu}1!_{\mu}C$,

by the transformer inequality, or equivalently,

$1\nabla_{\mu}t\leq K_{\mu}1!_{\mu}t$ for $t\in[h^{-1}, h]$ .

This follows $homK_{\mu}=\max\{\frac{1\nabla}{1!}A_{\frac{t}{t};t}\mu\in[h^{-1}, h]\}$ .

2. Reverse inequalities of difference type. A difference version of the
noncommutative Kantorovich inequality is also introduced by

(7) $A\nabla B-A$ ! $B\leq(\sqrt{M}-\sqrt{m})^{2}$
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for all positive invertible $A,$ $B\in B(H)$ with $0<m\leq A,$ $B\leq M$ , cf. [1, Theorem
6]. More generally, it has already known in [4, Theorem 1.32] that

(8) $\Phi(A)-\Phi(A^{-1})^{-1}\leq(\sqrt{M}-\sqrt{m})^{2}$

for all positive invertible $A\in B(H)$ with $0<m\leq A\leq M$ .

On the other hand, the optimality of the constant $(\sqrt{M}-\sqrt{m})^{2}$ has been dis-
cussed. It is shown by the following example in [2, Example 2.4]:

Example 2. Let $A$ and $B$ be $2\times 2$ matrices defined by

$A=\left(\begin{array}{ll}4 & 0\\0 & 1\end{array}\right)$ and $B=\frac{1}{3}(_{2\sqrt{2}}42\sqrt{2}11)$ .

Then we can take $m=1$ and $M=4$ because spectra of both $A$ and $B$ are {1, 4}.
Furthermore we have

$AVB=\frac{1}{3}(_{\sqrt{2}}8$ $\sqrt{2}7)$

and
$A$ ! $B=\frac{2}{9}$ ( $8$

$\sqrt{2}7$).
We pay our attention to the fact that

$A$ ! $B=\frac{2}{3}AVB$

in this example, and show that it happens often in the following way:

Lemma 3. Let $A$ and $B$ be $2\times 2$ matrices satisfying $|A|=|B|\neq 0and|A\nabla_{\mu}B|\neq 0$ .
Then

(9) $A!_{\mu}B=\frac{|A|}{|A\nabla_{\mu}B|}A\nabla_{\mu}B$ .

Proof. We put $ v=1-\mu$ and denote by $\tilde{X}$ the cofactor matrix of a matrix X, i.e.,

$\tilde{X}=\left(\begin{array}{ll}d & -b\\-c & a\end{array}\right)$ for $X=\left(\begin{array}{ll}a & b\\c & d\end{array}\right)$ . Then we have

$A!_{\mu}B$ $=$ $(vA^{-1}+\mu B^{-1})^{-1}=(\frac{v}{|A|}\tilde{A}+\frac{\mu}{|B|}\tilde{B})^{-1}$

$\frac{|A|}{|v\tilde{A}+\mu\tilde{B}|}(v\tilde{A}+\mu\tilde{B})^{\sim}=\frac{|A|}{|vA+\mu B|}(vA+\mu B)$ ,

as required.

In the below, we fix matrices $A$ and $B$ for a given $M>0$ as follows:
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(10) $A=(^{M}0^{+1}$ $01)=(_{0}^{M}$ $oo)+1$ and $B=UAU^{*}$ ,

where $U=\left(\begin{array}{ll}u & v\\w & z\end{array}\right)$ is unitary.

Lemma 4. Let $A,$ $B,$ $\mu$ and $\nu$ be as in above. Then the spectrum and deteminant
of A $V_{\mu}B$ are as follows:

$\sigma(A\nabla_{\mu}B)=\{1+\frac{M}{2}(1\pm\sqrt{1-4v\mu|w|^{2}})\}$

$|A\nabla_{\mu}B|=1+M+M^{2}v\mu|w|^{2}$ .

Thus it follows that

$A\nabla_{\mu}B-A!_{\mu}B$ $=$ $\frac{|A\nabla_{\mu}B|-|A|}{|A\nabla_{\mu}B|}AV_{\mu}B$

$\leq$ $\frac{M^{2}\nu\mu|w|^{2}}{1+M+M^{2}v\mu|w|^{2}}(1+\frac{M}{2}(1+\sqrt{1-4v\mu|w|^{2}}))$

$M^{2}v\mu|w|^{2}$

$\overline{1+\frac{M}{2}(1-\sqrt{1-4\nu\mu|w|^{2}})}$

Summing up, we have

Lemma 5. Let $A,$ $B,$ $\mu$ and $\nu$ be as in above. Then

$A\nabla_{\mu}B-A!_{\mu}B\leq\frac{M^{2}v\mu|w|^{2}}{1+\frac{M}{2}(1-\sqrt{1-4v\mu|w|^{2}})}$ .

Under such preparation, we have the following conclusion:

Theorem 6. Let $A,$ $B,$ $\mu$ and $\nu$ be as in above. That is, they satish $1\leq A,$ $ B\leq$

$M+1$ . If $M\geq\frac{4\delta}{(1-\delta)^{2}}$ for $\delta=\sqrt{1-4v\mu}$, then the optimal upper bound $(\sqrt{M+1}-1)^{2}$

of $A\nabla_{\mu}B-A!_{\mu}B$ can be attained.

In particular, if $\mu=\frac{1}{2}$ then the optimal upper bound $(\sqrt{M+1}-1)^{2}$ can be
attained for all $M>0$ .

Proof. For convenience, we put
$t=4v\mu|w|^{2},$ $s=\sqrt{1-t}$ and $N=M/2$ .

Hence Lemma 5 ensures that it suffices to estimate

max $\{\frac{(M/2)^{2}t}{1+M/2\cdot(1-\sqrt{1-t})};t\in[0,1]\}=\max\{\frac{N^{2}(1-s^{2})}{1+N(1-s)}$ ; $s\in[0,1]\}$ .
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Since $g^{\prime}(s)=\frac{N^{2}(Ns^{2}-2(1+N)s+N)}{(1+N(1-s))^{2}}$ for $g(s)=\frac{N^{2}(1-s^{2})}{1+N(1-s)}(s\in[0,1))$ , the solusion of
$g^{\prime}(s)=0$ is $\{\frac{1}{N}(N+1\pm\sqrt{2N+1})\}$ . So we adopt

$s_{0}=\frac{1}{N}(N+1-\sqrt{2N+1})\in[0,1]$ .

Then it is easily seen that $g(s_{0})=(\sqrt{2N+1}-1)^{2}=(\sqrt{M+1}-1)^{2}$ . Incidentally
it is clear that $\delta\leq s\leq 1$ by $|w|^{2}\in[0,1]$ . So we need the condition $\delta\leq s_{0}(\leq 1)$ to
be attained the optimal constant, and it is equivalent to $M\geq\frac{4\delta}{(1-\delta)^{2}}$

For convenience, we rephrase Theorem 6 in a general setting:

Theorem 7. Suppose that $0<r\leq A,$ $B\leq R$ and $0<\mu<1$ . If $\frac{R}{r}\geq(\frac{1+\delta}{1-\delta})^{2}$ for
$\delta=\sqrt{1-4v\mu}$ , then the optimal upper bound $(\sqrt{R}-\sqrt{r})^{2}$ of $A\nabla_{\mu}B-A!_{\mu}B$ can
be attained.

In particular, if $\mu=\frac{1}{2}$ , then the optimal upper bound $(\sqrt{R}-\sqrt{r})^{2}$ can be attained.

Remark. We mention that the second half of Theorem 7 has been discussed in
the further observation after [2, Example 2.4].

3. Comparison with the geometric mean. The $\mu$-geometric mean $A\#\mu B$

for positive (invertible) operators $A$ and $B$ is defined by

$A\#\mu B=A^{\frac{1}{2}}(A^{-\frac{1}{2}}BA^{-\frac{1}{2}})^{\mu}A^{\frac{1}{2}}$ ,

and we denote by $A\# B=A\#\frac{1}{2}B$ simply, see [5].

It is well-known that
$A!_{\mu}B\leq A\#\mu B\leq A\nabla_{\mu}B$

for positive operators $A$ and $B$ .

In this section, we compare the $\mu$-geometric mean $A\#\mu B$ with $A\nabla_{\mu}B,$ $A!_{\mu}B$ and
$\frac{1}{2}(A\nabla_{\mu}B+A!_{\mu}B)$ for positive operators $A$ and $B$ . We first discuss the following
reverse inequalities:

Theorem 8. If $A$ and $B$ are positive operators $0<m\leq A,$ $B\leq M,$ $h=e$ and
$\mu\in(0,1)$ , then

(11) $L(\mu)^{-1}A\nabla_{\mu}B\leq A\#\mu B\leq L(1-\mu)A!_{\mu}B$ ,

where

$L(\beta)=\frac{1-\beta+\beta h}{h^{\beta}}$ $(0<\beta\leq 1/2)$ , $=\frac{1-\beta+\beta h^{-1}}{h^{-\beta}}$ $(1/2<\beta<1)$ .
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Proof. The representing functions of $V_{\mu},$ $\#_{\mu}$ and $!_{\mu}$ are

$1-\mu+\mu t,$ $t^{\mu}$ and $\frac{t}{(1-\mu)t+\mu}$

respectively. So if we set

$L_{1}=h^{-1}\max_{\leq t\leq h}\{\frac{1-\mu+\mu t}{t^{\mu}}\}$ and $L_{2}=h^{-1}\max_{\leq t\leq h}\{\frac{(1-\mu)t+\mu}{t^{1-\mu}}\}$ ,

then we have
$A\nabla_{\mu}B\leq L_{1}A\#\mu B$ and $A\#\mu B\leq L_{2}A!_{\mu}B$

and $L_{1},$ $L_{2}$ are optimal.

Next we determine them exactly. For this, we show that

$g(t)=\frac{1-t+th^{-1}}{h^{-t}}-\frac{1-t+th}{h^{t}}(0<t<1)$

satisfies $g(t)<0$ for $0<t<1/2$ and $g(t)\geq 0$ if $1/2\leq t<1$ . Noting that
$g(t)=t(1-t)(f(t)-f(1-t))$ for

$f(t)=\frac{h^{t}-h^{-t}}{t}=\frac{k(t)}{t}(0<t<1)$ ,

it suffices to prove that $f(t)$ is an increasing function, which is exhibited as lemma:

Lemma 9. The function $f(t)=\frac{h^{t}-h^{-t}}{t}=k\Delta^{t}t$ for $0<t<1$ is increasing.

Proof. Since $k^{\prime}(t)=(\log h)(h^{t}+h^{-t})>0$ and $k^{\prime\prime}(t)=(\log h)^{2}k(t)>0,$ $k(t)$ is
increasing and convex. Combining it with $k(O)=0$ , it follows that for $\alpha\in(0,1)$ ,

$\alpha k(t)=\alpha k(t)+(1-\alpha)k(O)\geq k(\alpha t+(1-\alpha)O)=k$(at).

Therefore we have
$\frac{t}{t+\epsilon}k(t+\epsilon)\geq k(\frac{t}{t+\epsilon}(t+\epsilon))=k(t)$

for $\epsilon>0$ , so that $f(t)=-k\Omega^{t}t$ is increasing, as desired.

Remark. In the proof of [1, Theorem 11], it is shown that if $\sigma$ is an operator mean,
$0<m\leq A,$ $B<M$ and $h=\frac{M}{m}$ , then

(12) A $\sigma B\geq\frac{g(h)-g(h^{-1})}{h-h^{-1}}B+\frac{hg(h^{-1})-h^{-1}g(h)}{h-h^{-1}}A$ ,

where $g$ is the representing function of $\sigma,$ $g(t)=1\sigma t$ for $t\geq 0$ . Therefore, if
$f(t)=\frac{h^{t}-h^{-t}}{t}(0<t<1)$ as in Lemma 9, then we have

(13) $A\#\mu B\geq\frac{1}{h-h^{-1}}\{(1-\mu)f(1-\mu)A+\mu f(\mu)B\}$ .
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Noting that $f(t)$ is increasing by Lemma 9, it follows from (13) that

$A\#\mu B\geq\left\{\begin{array}{ll}\frac{f(\mu)}{h-h^{-1}}A\nabla_{\mu}B & (0<\mu\leq\frac{1}{2}),\\\frac{f(1-\mu)}{h-h^{-1}}A\nabla_{\mu}B & (\frac{1}{2}\leq\mu\leq 1).\end{array}\right.$

Unfortunately the above estimation is not better than that of Theorem 8 by Lemma
9. As a matter of fact, if $0<\mu\leq\frac{1}{2}$ then

$(L(\mu)^{-1}-\frac{f(\mu)}{h-h^{-1}})\mu(h-h^{-1})(1-\mu+\mu h)=\mu(1-\mu)(f(1-\mu)-f(\mu))\geq 0$ .

Similarly, if $\frac{1}{2}\leq\mu\leq 1$ , then

$h(L(\mu)^{-1}-\frac{f(1-\mu)}{h-h^{-1}})(1-\mu)(h-h^{-1})(1-\mu+\mu h^{-1})=\mu(1-\mu)(f(\mu)-f(1-\mu))\geq 0$ .

Next we compare $A\# B$ and $\frac{A\nabla B+A!B}{2}$

Theorem 10. If $A$ and $B$ are positive operators, then

(14) $\frac{A\nabla B+A!B}{2}\geq A\# B$ .

On the other hand, if $0<m\leq A,$ $B\leq M$ and $K=\frac{m\nabla M+m!M}{2(m\# M)}$ , then

(15) $\frac{A\nabla B+A!B}{2}\leq KA\# B$ .

Proof. We put

$f(t)=4\cdot\frac{1\nabla t+1!t}{2\sqrt{t}}$ for $t\in[h^{-1}, h]$ , where $h=\frac{M}{m}$ .

Then $f^{\prime}(t)=\frac{(t-1)^{3}}{2t\sqrt{t}(t+1)^{2}}$ and $f^{\prime\prime}(t)>0$ , so that min $f(t)=f(1)=1$ . Therefore we
have the former.

To prove the latter, we note that $f^{\prime}(t)<0$ for $0<t<1$ , $f^{\prime}(t)>0$ for $t>1$ and
$f(h)=f(h^{-1})$ . It follows that

max $f(t)=\max\{f(h^{-1}), f(h)\}=f(h)$ ,

which implies (15).

Next we consider the weighted version of the above, in which they are not ordered
in the sense that

$f_{\mu}(t)=\frac{1V_{\mu}t+1!_{\mu}t}{2(1\#\mu t)}\not\geq 1$ .

So one of inequalities we can discuss is a reverse one as follows:
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Theorem 11. If $A$ and $B$ are positive opemtors $0<m\leq A,$ $B\leq M$ and $h=\frac{M}{m}f$

then

(16) $k_{\mu}A\#\mu B\leq\frac{A\nabla_{\mu}B+A!_{\mu}B}{2}\leq K_{\mu}A\#\mu B$ ,

where $k_{\mu}=f_{\mu}((\overline{1}A-\overline{\mu})^{2})$ , and $K_{\mu}=f_{\mu}(h)$ if $0<\mu<\frac{1}{2}$ and $K_{\mu}=f_{\mu}(h^{-1})$ if
$\frac{1}{2}<\mu<1$ .

Proof. We put $ v=1-\mu$ for convenience. Then

$f_{\mu}^{\prime}(t)=\frac{\nu\mu(t-1)^{2}(v^{2}t-\mu^{2})}{2t^{\mu+1}(\mu+\nu t)^{2}}$ .

Noting that $f_{\mu}^{\prime}(1)=f_{\mu}^{\prime}(k^{2})=0,$ $f_{\mu}(t)$ is decreasing in $(o, g^{2})$ and $f_{\mu}(t)$ is increasing
in $(g^{2}, \infty)$ . Hence it follows that

$\max\{f_{\mu}(t);t\in[h^{-1}, h]\}=\max\{f_{\mu}(h^{-1}), f_{\mu}(h)\}$ .
If $0<\mu<\frac{1}{2}$ then $f_{\mu}(h^{-1})\leq f_{\mu}(h)$ , and, if $\frac{1}{2}<\mu<1$ , then $f_{\mu}(h^{-1})\geq f_{\mu}(h)$ . As
a matter of fact, it is assured as follows: We put $g(h)=\frac{f_{\mu}(h)}{f_{\mu}(h^{-1})}$ for $h\geq 1$ . Then
$g(1)=1$ . Since

log $g(h)=\log\frac{\mu h+v}{\mu+\nu h}+(1-2\mu)\log h$ ,

it follows that

$\{\log g(h)\}^{\prime}=\frac{\mu}{\mu h+\nu}-\frac{v}{\mu+vh}+\frac{1-2\mu}{h}=\frac{\mu v(v-\mu)(h-1)^{2}}{h(\mu h+v)(\mu+\nu h)}$ .

Finally the left hand side of (16) follows from $k_{\mu}=\min f_{\mu}(t)$ .
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