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$C^{*}$-algebras of type $R$ or non type $R$

by $K$-theory and Fredholm index

TAKAHIRO SUDO

Abstract

We introduce a notion for $C^{*}$ -algebras to divide them into two classes by
using K-theory of $C^{*}$-algebras. The index map of the six term exact sequence
of K-groups for extensions by $C^{*}$-algebras plays a key role. Also, we introduce
another notion for $C^{*}$-algebras to divide them into two classes by using the
Fredholm index of Fredholm operators. We establish some basic properties
for these notions and give some illustrative examples such as the group $C^{*}-$

algebras of (solvable) Lie groups of type $R$ or non type R.

2000 Mathematics Subject Classification: Primary $46L05$ .
Keywords: C’-algebra, K-theory, Type $R$ , Group $C^{*}$-algebra,

Introduction
Lie groups have been divided into two classes. One is the class of Lie groups of

type $R$ , and the other is the class of Lie groups of non type R. In particular, simply
connected solvable Lie groups of type $R$ or non type $R$ have been of some interest
(see L. Auslander and C.C. Moore [1]). It is also well known that the unitary repre-
sentation theory of Lie or locally compact groups corresponds to the representation
theory of their group $C^{*}$-algebras (see Dixmier [3] or Pedersen [11]). Actually, an
irreducible unitary representation $\pi$ of a locally compact group $G$ corresponds to an
irreducible representation $\Pi$ of its (full) group $C^{*}$-algebra $C^{*}(G)$ as follows:

$\pi\leftrightarrow\Pi$ , $\Pi(f)=\int_{G}f(g)\pi_{g}dg$

for $g\in G$ and $dg$ the Haar measure on $G$ , and $f\in L^{1}(G)$ the $Banach*$-algebra of
all integrable measurable functions on $G$ with convolution and involution. Also, the
group $C^{*}$-algebra $C^{*}(G)$ is defined to be the norm closure of $\Phi(L^{1}(G))$ in $B(L^{2}(H_{\Phi}))$ ,
where $\Phi$ is the universal representation of $L^{1}(G)$ and $B(H_{\Phi})$ is the C’-algebra of all
bounded operators on the Hilbert space $H_{\Phi}$ of $\Phi$ . Furthermore, the unitary dual
of $G$ is identified with the spectrum of $C^{*}(G)$ that consists of unitary equivalence
classes of irreducible representaions of $C^{*}(G)$ .
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Therefore, it is very natural to study group $C^{*}$-algebras of Lie groups to divide
them into two classes that should correspond to the classes of Lie groups above. Our
first attempt for this study $h$as been made in [16] to show that the unitizations of
the group $C^{*}$-algebras of all simply connected solvable Lie groups of non type $R$ are
not ASH, where ASH means approximately subhomogeneous or inductive limits of
subhomogeneous $C^{*}$-algebras. For the proof, we use both a result of Auslander and
Moore [1] for simply connected solvable Lie groups of non type $R$ and a method by
Fredholm index of Fredholm operators for the group $C^{*}$-algebras of certain simply
connected solvable Lie groups of non type $R$ such as the real or complex $ax+b$

groups (see Rosenberg [13]). Moreover, it is shown in [19] that all CCR $C^{*}$-algebras
that contain the group $C^{*}$-algebras of connected nilpotent or semi-simple Lie groups
are ASH.

This paper is organized as follows. In Preliminaries below we review some def-
initions and facts about Lie groups of type $R$ or non type $R$ and the K-theory of
$C^{*}$-algebras for the covenience to readers. In Section 1 we introduce a notion for
$C^{*}$-algebras to divide them into two classes by using the K-theory of $C^{*}$-algebras.
The index map of the six term exact sequence of K-groups of $C^{*}$-algebras plays
an important role in our theory. We consider some $C^{*}$-algebras of non type $R$ by
K-theory in our definition. In particular, we prove that the group $C^{*}$-algebras of all
simply connected solvable Lie groups of non type $R$ are of non type $R$ by K-theory.
In Section 2 we consider some $C^{*}$-algebras of type $R$ by K-theory. In Section 3 we
consider more examples. From our considerations in these sections we understand
that the class of $C^{*}$-algebras of type $R$ by K-theory is very close to the class of
$C^{*}$-algebras with stable rank one, where the stable rank for $C^{*}$-algebras was intro-
duced by Rieffel [12]. It also turns out that our type $R$ or non type $R$ by K-theory
for $C^{*}$-algebras are not fit to type $R$ or non type $R$ of Lie groups. However, our
intension to define type $R$ or non type $R$ of $C^{*}$-algebras is to define a (topological)
notion in terms of $C^{*}$-algebras generalizing non type $R$ of Lie groups. Since (topo-
logical) K-theory has been a standard tool for $C^{*}$-algebras, our attempt here would
be some significant and useful in the future research. In Section 4 we introduce
another notion for $C^{*}$-algebras to divide them into two classes by using Redholm
index of Redholm operators, and study its some properties. It turns out that this
(analytical) notion (since Fredholm index is an analytical notion in the literature)
is quite fit to type $R$ or non type $R$ of Lie groups. However, some main parts of this
section has been considered in [16] and [19].

Preliminaries
Lie groups of type $R$ or non type R Recall that a Lie group $G$ is said to be of
type $R$ if its Lie algebra 6 is type $R$ , that means that for any $ X\in\emptyset$ , the adjoint
operator ad(X) on $\emptyset$ has pure imaginary eigenvalues (that may be zero). If $G$ is
connected, then $G$ is of type $R$ if for any $g\in G$ , the adjoint operator $Ad(g)$ on $G$

$h$as eigenvalues the absolute values one (see [1] or Onishchik-Vinberg [10]).
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Recall that a locally compact group $G$ is CCR (or liminal) if its group $C^{*}-$

algebra $C^{*}(G)$ is CCR (or liminal), i.e., for any irreducible representation $\pi$ of
$C^{*}(G)$ , we have $\pi(C^{*}(G))=K(H_{\pi})=K$ the $C^{*}$-algebra of compact operators on
the representation Hilbert space $H_{\pi}$ of $\pi$ . Also, $G$ is of type I (or GCR) if $C^{*}(G)$

is of type I (or GCR), i.e., for any irreducible representation $\pi$ of $C^{*}(G)$ , we have
$\pi(C^{*}(G))\supset K(H_{\pi})=K$ . See [3] or [11].

It is shown by [1] that CCR groups are of type $R$ , and connected solvable Lie
groups of type $R$ are CCR if and only if they are GCR. It is also known that con-
nected nilpotent Lie groups, connected semi-simple Lie groups and compact groups
are all of type $R$ since they are CCR (cf. [3]). Some simply connected solvable Lie
groups of non type I such as Mautner group and Dixmier group are known to be of
type R. On the other hand, the real (or complex) $ax+b$ group is of non type R.
Moreover, a Lie group that has the $ax+b$ group as a quotient is also of non type $R$

([1]).

K-theory of $C^{*}$-algebras Let $\mathfrak{U}$ be a unital $C^{*}$-algebra. The $K_{0}$-group $K_{0}(\mathfrak{U})$ of
$\mathfrak{U}$ is defined to be the abelian group of stable equivalence classes of projections of
the union $\bigcup_{n=1}^{\infty}M_{n}(\mathfrak{U})$ of matrix algebras $M_{n}(\mathfrak{U})$ over $\mathfrak{U}$ , that is,

$K_{0}(\mathfrak{U})=$ { $[p]-[q]|p,$ $q\in\bigcup_{n=1}^{\infty}M_{n}(\mathfrak{U})$ projections},

where $[p],$ $[q]$ are stable equivalence classes of $p,$ $q$ (cf. [23]). For a nonunital $C^{*}-$

algebra $\mathfrak{U}$ , its $K_{0}$-group $K_{0}(\mathfrak{U})$ is defined from the following short exact sequence:

$0\rightarrow K_{0}(\mathfrak{U})\rightarrow K_{0}(\mathfrak{U}^{+})\rightarrow K_{0}(\mathbb{C})\rightarrow 0$

associated with: $0\rightarrow \mathfrak{U}\rightarrow \mathfrak{U}^{+}\rightarrow \mathbb{C}\rightarrow 0$ the splitting extension with $\mathfrak{U}^{+}$ the
unitization of $\mathfrak{U}$ by $\mathbb{C}$ . Note that $K_{0}(\mathfrak{U}^{+})\cong K_{0}(\mathfrak{U})\oplus K_{0}(\mathbb{C})$ and $K_{0}(\mathbb{C})\cong \mathbb{Z}$ .

The $K_{1}$-group $K_{1}(\mathfrak{U})$ of a $C^{*}$-algebra $\mathfrak{U}$ (or its unitization by $\mathbb{C}$ ) is defined by

$K_{1}(\mathfrak{U})=$ { $[u]|u\in\bigcup_{n=1}^{\infty}M_{n}(\mathfrak{U})$ unitaries (or invertible)},

where $[u]$ is the homotopy class of $u$ in the union of the unitary groups $U_{n}(\mathfrak{U})$ (or
$GL_{n}(\mathfrak{U}))$ of unitary (or invertible) matrices of $M_{n}(\mathfrak{U})$ , where $U_{n}(\mathfrak{U})$ is embedded
in $U_{n+1}(\mathfrak{U})$ canonically (respectively). Also, $K_{1}(\mathfrak{U})$ is isomorphic to the inductive
limit of the quotient groups $U_{n}(\mathfrak{U})/U_{n}(\mathfrak{U})_{0}$ (or $GL_{n}(\mathfrak{U})/GL_{n}(\mathfrak{U})_{0}$ ) by $U_{n}(\mathfrak{U})_{0}$ (or
$GL_{n}(\mathfrak{U})_{0})$ connected components containing the identify matrices. Note that $[u]$ .
$[v]=[uv]=[u\oplus v],$ $where\oplus means$ the diagonal sum.

For a short exact sequence: $0\rightarrow 2\rightarrow \mathfrak{U}\rightarrow \mathfrak{D}\rightarrow 0$ of $C^{*}$-algebras, its six term
exact sequence of K-groups is:

$ K_{0}(3)\partial\uparrow$ $\rightarrow K_{0}(\mathfrak{U})\rightarrow K_{0}(\mathfrak{U}/2)\downarrow$

$ K_{1}(\mathfrak{U}/?)\leftarrow K_{1}(\mathfrak{U})\leftarrow$ $K_{1}(2)$
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where $\partial$ is the index map defined by

$\partial([u])=[v1_{n}v^{*}]-[1_{n}]$ ,

where $[u]\in K_{1}(\mathfrak{U}/?)$ for $u\in U_{n}(\mathfrak{U}/?),$ $v\in U_{2n}(\mathfrak{U})$ a unitary lift of $u\oplus u^{*}$ , and $1_{n}$

is the $n\times n$ identity matrix. See Murphy [7] or Wegge-Olsen [23] for more details.

1 $C^{*}$-algebras of non type $R$ by K-theory
Definition 1.1 Let $\mathfrak{U}$ be a $C^{*}$-algebra. We say that $\mathfrak{U}$ is of non type $R$ by K-theory
if there exists a quotient C’-algebra $\mathfrak{B}$ that is decomposed into an extension:

$0\rightarrow?\rightarrow \mathfrak{B}\rightarrow \mathfrak{D}\rightarrow 0$

such that the index map from the $K_{1}$-group $K_{1}(\mathfrak{D})$ of the quotient $\mathfrak{D}$ to the $K_{0}$-group
$K_{0}(\mathcal{D})$ of the closed ideal 7 is nonzero, where we allow the case $\mathfrak{B}=\mathfrak{U}$ .

If $\mathfrak{U}$ is not of non type $R$ by K-theory, then we say that $\mathfrak{U}$ is of type $R$ by
K-theory.

In particular,

Definition 1.2 We say that the extension $0\rightarrow?\rightarrow \mathfrak{U}\rightarrow \mathfrak{D}\rightarrow 0$ of $C^{*}$-algebras
(or the extension for $\mathfrak{U}$) is of non type $R$ by K-theory if the index map $homK_{1}(\mathfrak{D})$

of $\mathfrak{D}$ to $K_{0}(2)$ of 7 is nonzero.
If the extension for $\mathfrak{U}$ is not of non type $R$ by K-theory, then we say that the

extension for $\mathfrak{U}$ is of type $R$ by K-theory.

Remark. A $C^{*}$-algebra extension for a $C^{*}$-algebra of non type $R$ by K-theory in our
sense is not necessarily of non type $R$ by K-theory. See examples below. We may
define a $C^{*}$-algebra to be of non type $R$ if it is a $C^{*}$-algebra extension of non type
$R$ (and it might be better in other situations), but our Definition 1.1 is the main
notion in our theory in this paper and we are interested in more than extensions so
that we use this for $C^{*}$-algebras to be of type $R$ or non type R.

Anyhow, first of all, we consider some examples by extensions.

Example 1.3 Let $K$ be the $C^{*}$-algebra of compact operators on a separable infinite
dimensional Hilbert space $H$ and $B$ the $C^{*}$-algebra of bounded operators on $H$ . Then
we have the following exact sequence:

$0\rightarrow K\rightarrow B\rightarrow B/K\rightarrow 0$ ,

where $B/K$ is called Calkin algebra, and its six term exact sequence of K-groups
implies

$\mathbb{Z}$ $\rightarrow 0\rightarrow K_{0}(B/K)$

$\partial\uparrow$ $\downarrow$

$ K_{1}(B/K)\leftarrow 0\leftarrow$ $0$
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since $K_{0}(K)\cong \mathbb{Z},$ $K_{1}(K)\cong 0$ , and $K_{j}(B)\cong 0$ for $j=0,1$ . Hence, the index map
$\partial$ is nonzero. Therefore, the extension for $B$ is of non type $R$ by K-theory and $B$ is
of non type $R$ by K-theory. In fact, the index map $\partial$ corresponds to the Fredholm
index of Fredholm operators contained in B.

Example 1.4 Let $\mathfrak{T}$ be the Toeplitz algebra, which is dePned to be the $C^{*}$-algebra
generated by the shift on the Hilbert space(s). It is known that $\mathfrak{T}$ is decomposed
into the following exact sequence:

$0\rightarrow K\rightarrow \mathfrak{T}\rightarrow C(\mathbb{T})\rightarrow 0$ ,

where $C(\mathbb{T})$ is the $C^{*}$-algebra of continuous functions on the torus $\mathbb{T}$ , and its six
term exact sequence of K-groups implies

$\mathbb{Z}\rightarrow \mathbb{Z}\rightarrow \mathbb{Z}$

$\partial\uparrow$ $\downarrow$

$\mathbb{Z}\leftarrow 0\leftarrow 0$

since $K_{0}(\mathfrak{T})\cong \mathbb{Z},$ $K_{1}(\mathfrak{T})\cong 0$ , and $K_{j}(C(\mathbb{T}))\cong \mathbb{Z}$ for $j=0,1$ . Hence. the index map
$\partial$ is nonzero. Therefore, the extension for $\mathfrak{T}$ is of non type $R$ by K-theory and $\mathfrak{T}$ is
of non type $R$ by K-theory. In fact, the index map $\partial$ corresponds to the Fhredholm
index of Fredholm operators contained in $\mathfrak{T}$ .

Example 1.5 Let $A_{2}$ be the real $ax+b$ group defined by

$A_{2}=\{g=\left(\begin{array}{ll}e^{t} & s\\0 & 1\end{array}\right)|t, s\in \mathbb{R}\}$ .

Then $A_{2}$ is isomorphic to the semi-direct product $R\rangle\triangleleft R$ via the identffication:
$g=(s,t)$ . Let $C^{*}(A_{2})$ be the group $C^{*}$-algebra of $A_{2}$ . Then $C^{*}(A_{2})$ is isomorphic to
the crossed product $C_{0}(\mathbb{R})x\mathbb{R}$ , where $C_{0}(\mathbb{R})$ is the $C^{*}$-algebra of continuous functions
on $R$ vanishing at infinity. Moreover, we have the following exact sequence:

$0\rightarrow K\oplus K\rightarrow C^{*}(A_{2})\rightarrow C_{0}(\mathbb{R})\rightarrow 0$ ,

which follows from that the origin of $\mathbb{R}$ is fixed, and $C_{0}(R_{+})xR\cong K$ . Then the six
term exact sequence of K-groups from the extension above:

$K_{0}(K\oplus K)\rightarrow K_{0}(C^{*}(A_{2}))\rightarrow K_{0}(C_{0}(\mathbb{R}))$

$\partial\uparrow$ $\downarrow$

$K_{1}(C_{0}(\mathbb{R}))\leftarrow K_{1}(C^{*}(A_{2}))\leftarrow K_{1}(K\oplus K)$

implies
$\mathbb{Z}^{2}\rightarrow \mathbb{Z}\rightarrow 0$

$\partial\uparrow$ $\downarrow$

$\mathbb{Z}\leftarrow 0\leftarrow 0$
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where $K_{j}(C_{0}(\mathbb{R}))\cong K_{j+1}(\mathbb{C})$ and $K_{j}(C_{0}(\mathbb{R}))\triangleleft \mathbb{R})\cong K_{j+1}(C_{0}(\mathbb{R}))$ for $j=0,1$ mod 1
by Connes’ Thom isomorphism for crossed products of $C^{*}$-algebras by actions of $\mathbb{R}$ .
The diagram above shows that the index map $\partial$ is nonzero. Hence, the extension
for $C^{*}(A_{2})$ is of non type $R$ by K-theory and $C^{*}(A_{2})$ is of non type $R$ by K-theory.

Example 1.6 Let $A_{2}\times R$ be the product of the real $ax+b$ group and $\mathbb{R}$ , and
$C^{*}(A_{2}\times R)$ its group $C^{*}$-algebra. Then we have $C^{*}(A_{2}\times \mathbb{R})\cong C^{*}(A_{2})\otimes C_{0}(R)$ , and
it follows from the example above that

$0\rightarrow(K\oplus K)\otimes C_{0}(R)\rightarrow C^{*}(A_{2}\times \mathbb{R})\rightarrow C_{0}(\mathbb{R}^{2})\rightarrow 0$ .

Its six term exact sequence of K-groups gives:

$0\rightarrow 0\rightarrow \mathbb{Z}$

$\partial\uparrow 0\leftarrow \mathbb{Z}\leftarrow \mathbb{Z}^{2}\downarrow$

from which the index map $\partial$ is zero. Therefore, the above extension for $C^{*}(A_{2}\times R)$

is not of non type R. However, we have the quotient from $C^{*}(A_{2}\times \mathbb{R})$ to $C^{*}(A_{2})$ .
Since $C^{*}(A_{2})$ is of non type $R$ by K-theory, $C^{*}(A_{2}\times R)$ is of non type $R$ by K-theory.

More generally, we obtain

Theorem 1.7 Let $G$ be a simply connected solvable Lie group of non type R. Then
its group $C^{*}$ -algebra $C^{*}(G)$ is of non type $R$ by K-theory.

Proof. It is known by [1, Proposition 2.2, p. 172] that if $G$ is a simply connected
solvable Lie group of non type $R$ , then there exists a quotient that is isomorphic to
one of the following: the real $ax+b$ group $A_{2}$ , the semi-direct product $B_{3}=\mathbb{R}^{2}x_{\alpha^{c}}\mathbb{R}$

and $B_{4}=\mathbb{R}^{2}\rangle\triangleleft\beta \mathbb{R}^{2}$ , where the actions $\alpha^{c},$ $\beta$ are defined by

$\alpha_{t}^{c}=e^{ct}\left(\begin{array}{ll}cost & -sint\\sint & cost\end{array}\right)$ , $\beta_{(s,t)}=e^{s}\left(\begin{array}{ll}cost & -sint\\sint & cost\end{array}\right)$

for $c\in R\backslash \{0\},$ $s,$ $t\in R$ .
It follows from the fact above that the group $C^{*}$-algebra $C^{*}(G)$ of $G$ non type

$R$ has a quotient that is isomorphic to one of the following: $C^{*}(A_{2}),$ $C^{*}(B_{3})$ and
$C^{*}(B_{4})$ . By Example 1.4, $C^{*}(A_{2})$ is of non type $R$ by K-theory.

We now consider the structure of $C^{*}(B_{3})$ . Since $B_{3}$ is the semi-direct product
$\mathbb{R}^{2}x_{\alpha^{c}}\mathbb{R},$ $C^{*}(B_{3})$ is isomorphic to the crossed product $C_{0}(R^{2})x_{\alpha^{c}}$ R. IFUrthermore,
we have

$0\rightarrow C_{0}(\mathbb{R}^{2}\backslash \{0\})x_{\alpha^{c}}R\rightarrow C^{*}(B_{3})\rightarrow C_{0}(R)\rightarrow 0$

since the origin of $\mathbb{R}^{2}$ is fixed under the action $\alpha^{c}$ . Moreover,

$C_{0}(R^{2}\backslash \{0\}))\triangleleft\alpha^{c}R\cong C(\mathbb{T})\otimes C_{0}(R_{+})\rangle\triangleleft \mathbb{R}\cong C(\mathbb{T})\otimes K$ ,

–32–



where we use that the orbit space of $\mathbb{R}^{2}\backslash \{0\}$ by $\mathbb{R}$ is homeomorphic to $\mathbb{T}$ and the
action $\alpha^{c}$ on each orbit in $\mathbb{R}^{2}\backslash \{0\}$ is identified with the shift action on $\mathbb{R}_{+}$ . Then
the six term exact sequence of K-groups of the extension above implies

$\mathbb{Z}\rightarrow 0\rightarrow 0$

$\partial\uparrow$ $\downarrow$

$\mathbb{Z}\leftarrow \mathbb{Z}\leftarrow \mathbb{Z}$

from which the index map $\partial$ is nonzero. Hence, $C^{*}(B_{3})$ is of non type $R$ by K-theory.
We next consider the structure of $C^{*}(B_{4})$ . Since $B_{4}$ is the semi-direct product

$\mathbb{R}^{2}\rangle\triangleleft\beta R^{2}$ , we have $C^{*}(B_{4})\cong C_{0}(\mathbb{R}^{2})\rangle\triangleleft\beta \mathbb{R}^{2}$ . Furthermore, we have

$0\rightarrow C_{0}(\mathbb{R}^{2}\backslash \{0\})n_{\beta}\mathbb{R}^{2}\rightarrow C^{*}(B_{4})\rightarrow C_{0}(\mathbb{R})\rightarrow 0$

since the origin of $\mathbb{R}^{2}$ is fixed under the action $\beta$ . By the identification $\mathbb{R}^{2}\backslash \{0\}=$

$\mathbb{R}_{+}\times \mathbb{T}$ where the action $\beta_{(s,0)}$ is the shift on $\mathbb{R}_{+}$ , and the action $\beta_{(0,t)}$ is the rotation
on $\mathbb{T}$ , we obtain

$C_{0}(\mathbb{R}^{2}\backslash \{0\})\rangle\triangleleft\beta \mathbb{R}^{2}\cong(C_{0}(\mathbb{R}_{+})n\mathbb{R})\otimes(C(\mathbb{T})\rangle\triangleleft \mathbb{R})$ .

Furthermore, we have $C_{0}(\mathbb{R}_{+})\rangle\triangleleft \mathbb{R}\cong K$ and

$C(\mathbb{T})\rangle\triangleleft \mathbb{R}\cong C(\mathbb{R}/\mathbb{Z})\rangle\triangleleft \mathbb{R}\cong C^{*}(\mathbb{Z})\otimes K$

by the imprimitivity theorem, and $C^{*}(\mathbb{Z})\cong C(\mathbb{T})$ . Therefore, the structure of
$C^{*}(B_{4})$ as an extension is the same as $C^{*}(B_{3})$ . Thus, $C^{*}(B_{4})$ is of non type $R$ by
K-theory.

It follows from the arguments above that $C^{*}(G)$ is of non type $R$ by K-theory
$\square as$

desired.
Remark. In fact, we introduced our definition for $C^{*}$-algebras to be of non type
$R$ by K-theory to imply the theorem above. However, we see below later that our
definition is somewhat weak and loose to divide the group $C^{*}$-algebras of solvable
Lie groups into two classes of typeR or of non type R.

We next consider some basic properties of $C^{*}$-algebras of non type $R$ by K-theory.

Proposition 1.8 Let $\mathfrak{U}$ be a $C^{*}$ -algebra of non type $R$ by K-theory. Then $\mathfrak{U}\otimes$

$M_{n}(\mathbb{C})$ and $\mathfrak{U}\otimes K$ are also non type $R$ by K-theory, where $K$ is the $C^{*}$ -algebra of
compact operators on a separable infinite dimensional Hilbert space. Furthermore,
the unitization $\mathfrak{U}^{+}$ of $\mathfrak{U}$ by $\mathbb{C}$ is also of non type $R$ by K-theory.

Proof. By definition, there exists a quotient $C^{*}$-algebra $\mathfrak{B}$ of $\mathfrak{U}$ that is decomposed
into an extension: $0\rightarrow 2\rightarrow \mathfrak{B}\rightarrow \mathfrak{D}\rightarrow 0$ such that the index map from $K_{1}(\mathfrak{D})$

to $K_{0}(2)$ is nonzero. Then it is clear that $\mathfrak{B}\otimes M_{n}(\mathbb{C})\cong M_{n}(\mathfrak{B})$ and $\mathfrak{B}\otimes K$ are
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quotient $C^{*}$-algebras of $\mathfrak{U}\otimes M_{n}(\mathbb{C})\cong M_{n}(\mathfrak{U})$ and $\mathfrak{U}\otimes K$ respectively, and they are
decomposed into the following extensions:

$0\rightarrow 3\otimes M_{n}(\mathbb{C})\rightarrow \mathfrak{B}\otimes M_{n}(\mathbb{C})\rightarrow \mathfrak{D}\otimes M_{n}(\mathbb{C})\rightarrow 0$ ,
$0\rightarrow \mathcal{D}\otimes K\rightarrow \mathfrak{B}\otimes K\rightarrow \mathfrak{D}\otimes K\rightarrow 0$ .

The conclusion follows $hom$ that $K_{j}(C)\cong K_{j}(C\otimes M_{n}(\mathbb{C}))\cong K_{j}(C\otimes K)$ for $j=0,1$

and a $C^{*}$-algebra $C$ in general.
Furthermore, the unitization $\mathfrak{B}^{+}$ of $\mathfrak{B}$ by $\mathbb{C}$ is a quotient $C^{*}$-algebra of $\mathfrak{U}^{+}$ that

is decomposed into an extension: $0\rightarrow 2\rightarrow \mathfrak{B}^{+}\rightarrow \mathfrak{D}^{+}\rightarrow 0$ . The conclusion follows
from that $K_{1}(\mathfrak{D}^{+})\cong K_{1}(\mathfrak{D})$ and $K_{0}(\mathfrak{B}^{+})\cong K_{0}(\mathfrak{B})\oplus \mathbb{Z}$ , which implies that the
index map is the same as before taking the unitization by $\mathbb{C}$ . $\square $

Proposition 1.9 Let $\mathfrak{U}$ be a $C^{*}$ -algebm. If $\mathfrak{U}$ has a quotient $C^{*}$ -algebra of non type
$R$ by K-theory, then $\mathfrak{U}$ is also of non type $R$ by K-theow $\cdot$

Proof. It is evident. $\square $

In particular,

Proposition 1.10 Let $\Gamma_{0}(X, \{\mathfrak{U}_{t}\}_{t\in X})$ be the $C^{*}$ -algebm of a continuous field on a
locally compact Hausdorff space $X$ with fibers $\mathfrak{U}_{t}$ . If there exists a fiber $\mathfrak{U}_{t}$ that is of
non type $R$ by K-theory, then $\mathfrak{U}$ is also of non type $R$ by K-theory.

Proposition 1.11 Let $\mathfrak{U}$ be a $C^{*}$ -algebm of non type $R$ by K-theory and $\mathfrak{B}$ a $C^{*}-$

algebra that has a quotient that is isomorphic to either $\mathbb{C},$ $M_{n}(\mathbb{C})$ or $K$ , that is,
an elementary quotient. Then the tensor product $\mathfrak{U}\otimes \mathfrak{B}$ is also of non type $R$ by
K-theory.

Remark. In particular, we can take $\mathfrak{B}$ as a type I $C^{*}$-algebra, which has a compo-
sition series such that its subquotients are of continuous trace, and a $C^{*}$-algebra of
continuous trace has an elementary quotient (see [3] or [11]).

2 $C^{*}$-algebras of type $R$ by K-theory
Proposition 2.1 Let $\mathfrak{U}$ be a simple $C^{*}$ -algebra. Then $\mathfrak{U}$ is of type $R$ by K-theory.

Proof. It is evident $hom$ that $\mathfrak{U}$ has no quotient $C^{*}$-algebras. $\square $

Proposition 2.2 Let $\mathfrak{U},$
$\mathfrak{B}$ be C’-algebras of type $R$ by K-theory. Then their direct

sum $\mathfrak{U}\oplus \mathfrak{B}$ is of type $R$ by K-theory.

Proposition 2.3 Let $\mathfrak{U}$ be a $C^{*}$ -algebra of type $R$ by K-theory. Then any quotient
$C^{*}$ -algebra of $\mathfrak{U}$ is also of type $R$ by K-theory.

–34–



Proof. If there exists a quotient $C^{*}$-algebra of $\mathfrak{U}$ that is of non type $R$ by K-theory,
then we have the contradiction to that $\mathfrak{U}$ is of type $R$ by K-theory. $\square $

Proposition 2.4 Let $\mathfrak{U}$ be an $AFC^{*}$ -algebra, that is, an inductive limit of finite
dimensional $C^{*}$ -algebras. Then $\mathfrak{U}$ is of type $R$ by K-theory.

Proof. Note that any quotient $C^{*}$-algebra of $\mathfrak{U}$ is also AF. Since $K_{1}$-groups of AF
algebras are always zero, the index maps of K-groups associated with AF quotients
are always zero. Thus, $\mathfrak{U}$ can not be of non type $R$ by K-theory. $\square $

Example 2.5 Let $G$ be a compact group and $C^{*}(G)$ its group $C^{*}$-algebra. Then
$C^{*}(G)$ can be written as a $c_{0}$-direct sum of matrix algebras over $\mathbb{C}$ . Actually, note
also that since $G$ is compact, its dual group is discrete, and any irreducible repre-
sentation of $G$ is finite dimensional. Thus, $C^{*}(G)$ is AF. Hence, $C^{*}(G)$ is of type $R$

by K-theory.

More generally, we obtain

Theorem 2.6 Let $\mathfrak{U}$ be a $C^{*}$ -algebra. If $\mathfrak{U}$ has stable rank one, then it is of type $R$

by K-theory.

Proof. Recall that a $C^{*}$-algebra $\mathfrak{U}$ has stable rank one (denoted by $sr(\mathfrak{U})=1$ ) if the
set of invertible elements of $\mathfrak{U}$ is dense in $\mathfrak{U}$ (see [12]).

Suppose that there exists a quotient $C^{*}$-algebra $\mathfrak{B}$ such that

$0\rightarrow 2\rightarrow \mathfrak{B}\rightarrow \mathfrak{D}\rightarrow 0$ .

Since $sr(\mathfrak{U})=1$ , it follows that $sr(\mathfrak{B})=1$ by [12, Theorem 4.3] that implies sr(B) $\leq$

$sr(\mathfrak{U})$ . Since sr(B) $=1$ , it follows that sr(7) $=1$ by [12, Theorem 4.4], $sr(\mathfrak{D})=1$ ,
and the index map from $K_{1}(\mathfrak{D})$ to $K_{0}(2)$ must be zero by Nistor [9, Lemma 3] or
Nagy [8, Corollary 2]. $\square $

Remark. See Rieffel [12] for the stable rank theory of $C^{*}$-algebras. The converse of
the statement above is false in general. Indeed, it is shown by Villadsen [22] that
there exist simple $C^{*}$-algebras that have stable rank (any) $n\geq 2$ , and they are of
type $R$ by K-theory since they are simple.

We now collect some $C^{*}$-algebras with stable rank one.

Example 2.7 Al the $C^{*}$-algebras below have stable rank one:
$\bullet$ $C(X)$ the $C^{*}$-algebra of continuous functions on a compact Hausdorff space $X$

with dimension $\leq 1$ , and $M_{n}(C(X))$ for any $n\geq 1$ if dim $X\leq 1$ (see [12, Theorem
6.1]).

$\bullet$ $M_{n}(\mathbb{C}),$ $K$ and AF $C^{*}$-algebras ([12, Proposition 3.5]).
$\bullet$ The irrational rotaion $C^{*}$-algebra, which is the universal $C^{*}$-algebra generated

by unitaries $U,$ $V$ satisfying $VU=e^{2\pi i\theta}UV$ for $\theta$ an irrational number.
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$\bullet$ AT algebras, i.e., inductive limits of finite direct sums of matrix algebras over
$C(\mathbb{T})$ ([12]) ([12, Theorem 5.1]). It is shown by Elliott-Evans [6] that the irrational
rotation $C^{*}$-algebra is a simple AT algebra.

$\bullet$ The group $C^{*}$-algebras of compact groups, the group $C^{*}$-algebras of motion
groups ([18]), and the reduced group $C^{*}$-algebra of $SL_{2}(\mathbb{R})$ ([14]).

$\bullet$ The reduced group $C^{*}$-algebras of the free groups $F_{n}$ $(n\geq 2)$ (Dykema,
Haagerup, $R\emptyset rdam[4]$ and Dykema, de la Harpe [5]).

$\bullet$ The class of $C^{*}$-algebras with stable rank one is closed under taking quotients,
closed ideals, and inductive limits ([12, Theorems 4.3, 4.4 and 5.1]). The class is also
closed under tensor products with matrix algebras over $\mathbb{C}$ and stable isomorphism
([12, Theorems 3.3 and 3.6]). Note also that a hereditary $C^{*}$-subalgebra $\mathfrak{B}$ of a
$\sigma$-unital $C^{*}$-algebra $\mathfrak{U}$ is stably isomorphic to the closed ideal generated by $\mathfrak{B}$ in $\mathfrak{U}$ .

Remark. $C^{*}$-algebras of non type $R$ by K-theory may have closed ideals of type $R$

by K-theory. Indeed, by Example 1.3, $B$ is of non type $R$ by K-theory while $K$ is of
type $R$ by K-theory since $K$ is AF, and by Example 1.4, the Toeplitz algebra $\mathfrak{T}$ is
of non type $R$ by K-theory but $K$ is of type $R$ by K-theory. See also Example 1.5
for the group $C^{*}$-algebra $C^{*}(A_{2})$ of the real $ax+b$ group $A_{2}$ .

On the other hand, it should be true that the class of $C^{*}$-algebras of type $R$ by
K-theory is closed under taking their closed ideals. However, the situation seems to
be subtle. For example, it is known in the general topology that there exists a locally
compact Hausdorff space $X$ with dim $X=1$ but dim $X^{+}=0$ , where $X^{+}$ is the one
point compactification of $X$ . Also, there exists a locally compact Hausdorff space
$Y$ with dim $Y=1$ but dim $\beta Y=0$ , where $\beta Y$ is the Stone-\v{C}ech compactification
of Y. Fortunately, in these cases, $C(X^{+})$ and $C(\beta Y)$ are AF since dim $X^{+}=0$ and
dim $\beta Y=0$ and hence they are of type $R$ by K-theory, but their closed ideals $C_{0}(X)$

and $C_{0}(Y)$ are not AF. Anyway, $C_{0}(X)^{+}\cong C(X^{+})$ and $C_{0}(Y)^{+}$ (and $C(\beta Y)$ ) have
stable rank one and hence they are all of type $R$ by K-theory.

3 More examples
For checking out how weak our definition for $C^{*}$-algebras to be of non type $R$ by
K-theory is, we consider the case of commutative $C^{*}$-algebras. First of all,

Example 3.1 Let $C_{0}(R)$ be the commutative $C^{*}$-algebra of continuous functions
on the real line $\mathbb{R}$ vanishing at infinity. Since an open subset $U$ of $R$ is a union of
disjoint open intervals $\{U_{j}\}_{j=1}^{n}$ ( $n$ finite or infinite) of $\mathbb{R}$ , we have the following exact
sequence:

$0\rightarrow\oplus_{j=1}^{n}C_{0}(U_{j})\rightarrow C_{0}(\mathbb{R})\rightarrow C_{0}(K)\rightarrow 0$ ,

where the closed subset $K$ of $\mathbb{R}$ is the complement of $U$ in $R$ , and its six term exact
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sequence of K-groups implies

$\oplus_{j=1}^{n}K_{0}(C_{0}(U_{j}))\rightarrow K_{0}(C_{0}(\mathbb{R}))\rightarrow$ $K_{0}(C_{0}(K))$

$\partial\uparrow$ $\downarrow$

$K_{1}(C_{0}(K))$ $\leftarrow K_{1}(C_{0}(\mathbb{R}))\leftarrow\oplus_{j=1}^{n}K_{1}(C_{0}(U_{j}))$

and $K_{0}(C_{0}(\mathbb{R}))\cong K_{1}(\mathbb{C})\cong 0$ , and $K_{0}(C_{0}(U_{j}))\cong K_{0}(C_{0}(\mathbb{R}))\cong 0$ since $U_{j}$ is homeo-
morphic to $\mathbb{R}$ . Hence, the index map $\partial$ is zero. Thus, any extension for $C_{0}(\mathbb{R})$ is of
type $R$ by K-theory.

Moreover, let $C_{0}(K)$ be any quotient $C^{*}$-algebra of $C_{0}(\mathbb{R})$ (as above) that is
decomposed into the exact sequence:

$0\rightarrow C_{0}(V\cap K)\rightarrow C_{0}(K)\rightarrow C_{0}(V^{c}\cap K)\rightarrow 0$ ,

where $V$ is an open subset of $\mathbb{R}$ , and $V^{c}$ means the complement of $V$ in $\mathbb{R}$ . Since
$V^{c}\cap K$ is a disjoint union $\bigcup_{k=1}^{l}W_{k}$ ( $l$ finite or infinite) of $W_{k}$ either closed intervals
or half closed intervals, we have

$K_{1}(C_{0}(V^{c}\cap K))\cong\oplus_{k=1}^{l}K_{1}(C_{0}(W_{k}))\cong\oplus_{k=1}^{l}K_{1}(\mathbb{C})\cong 0$

since $C_{0}(W_{k})=C(W_{k})$ for closed intervals $W_{k}$ are contractible, and $C_{0}(W_{k})$ for half
closed intervals $W_{k}$ has the following splitting exact sequence:

$0\rightarrow C_{0}(W_{k})\rightarrow C(W_{k}^{+})\rightarrow \mathbb{C}\rightarrow 0$

where $W_{k}^{+}$ is the one point compactfication that is also a closed interval, which
implies that

$0\cong K_{1}(C(W_{k}^{+}))\cong K_{1}(C_{0}(W_{k}))\oplus K_{1}(\mathbb{C})\cong K_{1}(C_{0}(W_{k}))$ .

Hence, the index map from $K_{1}(C_{0}(V^{c}\cap K))$ to $K_{0}(C_{0}(V\cap K))$ is zero. Therefore,
$C_{0}(\mathbb{R})$ is of type $R$ by K-theory.

However,

Example 3.2 Let $C_{0}(\mathbb{R}^{2})$ be the commutative $C^{*}$-algebra of continuous functions
on the real line $R^{2}$ vanishing at infinity. Since an open subset $U$ of $\mathbb{R}^{2}$ is a union of
disjoint open intervals $\{U_{1j}\times U_{2j}\}_{j=1}^{n}$ ( $n$ finite or infinite) for $U_{1j},$ $U_{2j}$ open intervals
of $\mathbb{R}$ , we have the following exact sequence:

$0\rightarrow\oplus_{j=1}^{n}C_{0}(U_{1j}\times U_{2j})\rightarrow C_{0}(\mathbb{R}^{2})\rightarrow C_{0}(K)\rightarrow 0$ ,

where the closed subset $K$ of $\mathbb{R}$ is the complement of $U$ in $\mathbb{R}$ , and its six term exact
sequence of K-groups implies

$\oplus_{j=1}^{n}K_{0}(C_{0}(U_{1j}\times U_{2j}))\rightarrow K_{0}(C_{0}(\mathbb{R}^{2}))\rightarrow$ $K_{0}(C_{0}(K))$

$\partial\uparrow$ $\downarrow$

$K_{1}(C_{0}(K))$ $\leftarrow K_{1}(C_{0}(\mathbb{R}^{2}))\leftarrow\oplus_{j=1}^{n}K_{1}(C_{0}(U_{1j}\times U_{2j}))$
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and $K_{0}(C_{0}(\mathbb{R}^{2}))\cong K_{0}(\mathbb{C})\cong \mathbb{Z}$ , and $K_{0}(C_{0}(U_{1j}\times U_{2j}))\cong K_{0}(C_{0}(\mathbb{R}^{2}))\cong \mathbb{Z}$ since
$U_{1j}\times U_{2j}$ is homeomorphic to $\mathbb{R}^{2}$ . We now assume $n\geq 2$ . Then, the index map $\partial$

can not be zero. In fact, if $\partial=0$ , then we must have an injection from $\mathbb{Z}^{n}$ to $\mathbb{Z}$ , which
is impossible. If $n=1$ , note that $K_{1}(C_{0}(K))\cong K_{1}(C_{0}(\mathbb{T}\times[1, \infty))\cong K_{1}(C(\mathbb{T}))\cong \mathbb{Z}$

since $K$ is homeomorphic to $\mathbb{T}\times[1, \infty$ ) and $C_{0}([1, \infty))$ (the cone) is contractible.
Hence, the index map $\partial$ can not be zero. Thus, any extension for $C_{0}(\mathbb{R}^{2})$ is of non
type $R$ by K-theory and thus $C_{0}(R^{2})$ is of non type $R$ by K-theory.

More generally,

Theorem 3.3 Let $C_{0}(R^{n})$ be the commutative $C^{*}$ -algebm of continuous functions
on $\mathbb{R}^{n}$ vanishing at infinity. If $n$ is odd, then any extension for $C_{0}(\mathbb{R}^{n})$ is of type
$R$ by K-theory, and if $n$ is even, then any extension for $C_{0}(R^{n})$ is of non type $R$ by
K-theory.

However, $C_{0}(\mathbb{R})$ is of type $R$ by K-theory, but if $n\geq 2$ , then $C_{0}(\mathbb{R}^{n})$ is of non
type $R$ by K-theory.

Proof. Since an open subset $U$ of $R^{n}$ is a union of disjoint open subsets $\{\Pi_{i=1}^{n}U_{ij}\}_{j=1}^{\ell}$

of $\mathbb{R}^{n}$ ( $l$ finite or infinite) for $U_{ij}$ open intervals of $R$ , we have the following exact
sequence:

$0\rightarrow\oplus_{j=1}^{l}C_{0}(\Pi_{i=1}^{n}U_{ij})\rightarrow C_{0}(R^{n})\rightarrow C_{0}(K)\rightarrow 0$ ,

where the closed subset $K$ of $R^{n}$ is the complement of $U$ in $\mathbb{R}^{n}$ , and its six term
exact sequence of K-groups implies

$\oplus_{j=1}^{l}K_{0}(C_{0}(\Pi_{i=1}^{n}U_{ij}))\rightarrow K_{0}(C_{0}(\mathbb{R}^{n}))\rightarrow$ $K_{0}(C_{0}(K))$

$\partial\uparrow$ $\downarrow$

$K_{1}(C_{0}(K))$ $\leftarrow K_{1}(C_{0}(\mathbb{R}^{n}))\leftarrow\oplus_{j=1}^{l}K_{1}(C_{0}(\Pi_{i=1}^{n}U_{ij}))$

and if $n$ is odd, then

$K_{0}(C_{0}(R^{n}))\cong K_{1}(\mathbb{C})\cong 0$ , $K_{0}(C_{0}(\Pi_{i=1}^{n}U_{ij}))\cong K_{0}(C_{0}(R^{n}))\cong 0$

since $U_{ij}$ is homeomorphic to R. Similarly, if $n$ is even, then $ K_{0}(C_{0}(R^{n}))\cong K_{0}(\mathbb{C})\cong$

$\mathbb{Z}$ and $K_{0}(C_{0}(\Pi_{i=1}^{n}U_{ij}))\cong K_{0}(C_{0}(R^{n}))\cong \mathbb{Z}$ . Therefore, by the same reasoning given
as in Examples above, we have the desired conclusion.

If $n\geq 2$ , we have a quotient map from $C_{0}(\mathbb{R}^{n})$ to $C_{0}(\mathbb{R}^{2})$ . Since $C_{0}(R^{2})$ is of non
type $R$ by K-theory, $C_{0}(R^{n})$ is also of non type $R$ by K-theory. $\square $

Similarly, we can obtain

Theorem 3.4 Let $C(\mathbb{T}^{n})$ be the commutative $C^{*}$ -algebra of continuous functions on
the n-torus $\mathbb{T}^{n}$ . If $n$ is odd, then any extension for $C(\mathbb{T}^{n})$ is of type $R$ by K-theory,
and if $n$ is even, then any extension for $C(\mathbb{T}^{n})$ is of non type $R$ by K-theory.

However, $C(\mathbb{T})$ is of type $R$ by $K$-theory, but if $n\geq 2$ , then $C(\mathbb{T}^{n})$ is of non type
$R$ by K-theory.

Moreover, we can replace $C(\mathbb{T}^{n})(n\geq 1)$ with $C([0,1]^{n})$ the $C^{*}$ -algebra of con-
tinuous functions on the product space $[0,1]^{n}$ of the closed interval $[0,1]$ .
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Proof. We use the following exact sequence:

$0\rightarrow\oplus_{j=1}^{l}C_{0}(\Pi_{i=1}^{n}U_{ij})\rightarrow C(\mathbb{T}^{n})\rightarrow C_{0}(K)\rightarrow 0$ ,

where $U_{ij}$ are open intervals of $\mathbb{T}$ such that $\{\Pi_{i=1}^{n}U_{ij}\}_{j=1}^{l}$ are disjoint, and $K$ is the
complement of their union in $\mathbb{T}^{n}$ . Note that $K_{j}(C(\mathbb{T}^{n}))\cong \mathbb{Z}^{2^{n-1}}$ for $j=0,1$ (see
[23]). Also, we can replace $C(\mathbb{T}^{n})$ with $C([0,1]^{n})$ in the exact sequence above, where
$U_{ij}$ are open intervals of $[0,1]$ . If some $U_{ij}$ are half closed at $0$ or 1, then we can
replace them with the intervals that are not half closed. Since $[0,1]^{n}$ is

$contractible\square $ ’

we have $K_{0}(C([0,1]^{n})\cong K_{0}(\mathbb{C})\cong \mathbb{Z}$ and $K_{1}(C([0,1]^{n})\cong K_{1}(\mathbb{C})\cong 0$ .

Corollary 3.5 The class of $C^{*}$ -algebras of type $R$ by K-theory is not closed under
taking tensor products.

Theorem 3.6 Let $G$ be a connected solvable Lie group and $C^{*}(G)$ its group $C^{*}-$

algebra. If $\dim(G/[G, G])^{\wedge}\geq 2$ , then $C^{*}(G)$ is of non type $R$ by K-theow, where
$[G, G]$ is the commutator of $G$ and $(G/[G, G])^{\wedge}$ is the dual group of the quotient
group $G/[G, G]$ .

Proof. Since the quotient group $G/[G, G]$ is isomorphic to $\mathbb{R}^{n}\times T^{s}$ for some $n,$ $s\geq 0$ ,
we have a quotient map from $C^{*}(G)$ to $C^{*}(\mathbb{R}^{n}\times T^{s})\cong C_{0}(\mathbb{R}^{n}\times \mathbb{Z}^{s})$ , where $\mathbb{R}^{n}\times \mathbb{Z}^{s}$

is the dual group of $\mathbb{R}^{n}\times \mathbb{T}^{s}$ . Thus, if $n\geq 1$ , then we have a quotient map from
$C^{*}(G)$ to $C_{0}(\mathbb{R}^{n})$ . Since $C_{0}(\mathbb{R}^{n})$ is of non type $R$ by K-theory for $n\geq 2,$ $C^{*}(G)$ is
also of non typeR by K-theory in this case. $\square $

Theorem 3.7 Let $G$ be a simply connected solvable Lie group. The group $C^{*}-$

algebra $C^{*}(G\times \mathbb{R})$ is of non type $R$ by K-theory.

Proof. If $G$ is noncommutative, then the quotient group $G/[G, G]$ is isomorphic to
$R^{n}$ for some $n\geq 1$ . Thus, we have a quotient map from $C^{*}(G\times \mathbb{R})$ to

$C^{*}(\mathbb{R}^{n+1})\cong\square $

$C_{0}(\mathbb{R}^{n+1})$ .
We now review some facts about the stable rank of $C^{*}$-algebras.

Example 3.8 Let $C_{0}(X)$ be the $C^{*}$-algebra of continuous functions on a locally
compact Hausdorff space $X$ vanishing at infinity. Then

$sr(C_{0}(X))=[\dim X^{+}/2]+1$ ,

where $[x]$ means the maximum integer $\leq x$ , and $X^{+}$ is the one point compactfication
of $X$ ([12, Proposition 1.7]).

The group $C^{*}$-algebra $C^{*}(G)$ of a simply connected solvable Lie group $G$ has
stable rank one if and only if $G\cong \mathbb{R}$ (see [21]).

The group $C^{*}$-algebras of the real 3-dimensional Heisenberg Lie group $ H_{3}(\cong$

$\mathbb{R}^{2}\rangle\triangleleft \mathbb{R}\alpha$ where $\alpha_{a}(c, b)=(c, b+ac)$ for $a,$ $b,$ $c\in \mathbb{R}$), the real $ax+b$ group $A_{2}$ , the
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real 5-dimensional Mautner group $M_{5}(\cong \mathbb{C}^{2}\rangle\triangleleft\alpha \mathbb{R}$ where $\alpha_{t}(z, w)=(e^{2\pi it}z, e^{2\pi i\theta t}w)$

for $t\in \mathbb{R},$ $z,$
$w\in \mathbb{C}$ and $\theta$ an irrational number), and the real 7-dimensional Dixmier

group $D_{7}$ ( $\cong \mathbb{C}^{2}x_{\beta}H_{3}$ where $\beta_{g}(z,$ $w)=(e^{ia}z,$ $e^{ib}w)$ for $z,$ $w\in \mathbb{C},$ $g=(c,$ $b,$ $a)\in H_{3}$ )
all have stable rank two (see [20] for $H_{3},$ $[15]$ for $M_{5}$ and [17] for $D_{7}$ respectively).
Furthermore, we have $H_{3}/[H_{3}, H_{3}]\cong \mathbb{R}^{2},$ $A_{2}/[A_{2}, A_{2}]\cong \mathbb{R},$ $M_{5}/[M_{5}, M_{5}]\cong \mathbb{R}$ , and
$D_{7}/[D_{7}, D_{7}]\cong \mathbb{R}^{2}$ . Therefore, the group $C^{*}$-algebras $C^{*}(H_{3})$ and $C^{*}(D_{7})$ are of non
type $R$ by K-theory.

IFMrthermore,

Theorem 3.9 The group C’-algebra $C^{*}(M_{5})$ of Mautner group $M_{5}$ is of non type
$R$ by K-theory.

Proof. Since $M_{5}\cong \mathbb{C}^{2}\rangle\triangleleft\alpha R$ , we have $C^{*}(M_{5})\cong C^{*}(\mathbb{C}^{2})\rangle\triangleleft\alpha R\cong C_{0}(\mathbb{C}^{2}))\triangleleft \mathbb{R}\hat{\alpha}$ ,
where $\hat{\alpha}$ is the dual action of $\alpha$ via the duality $\mathbb{C}^{2}\cong(\mathbb{C}^{2})^{\wedge}$ (the dual group of $\mathbb{C}^{2}$ ).
Since the subspace $\mathbb{C}\times\{0\}$ in $\mathbb{C}^{2}$ is closed in $\mathbb{C}^{2}$ and invariant under $\hat{\alpha}$ , we obtain
$a*$-homomophism from $C^{*}(M_{5})$ onto the crossed product $C_{0}(\mathbb{C}\times\{0\})x_{\hat{\alpha}}\mathbb{R}$ . Since
the origin $(0,0)$ in $\mathbb{C}\times\{0\}$ is fixed under $\hat{\alpha}$ , we have the following exact sequence:

$(E)$ : $0\rightarrow C_{0}(\mathbb{C}\backslash \{0\})x_{\hat{\alpha}}R\rightarrow C_{0}(\mathbb{C}\times\{0\})x_{\hat{\alpha}}R\rightarrow C^{*}(\mathbb{R})\rightarrow 0$ .

Since the action $\hat{\alpha}$ on $\mathbb{C}\backslash \{0\}$ is the rotation, we have $ C_{0}(\mathbb{C}\backslash \{0\})\rangle\triangleleft\hat{\alpha}\mathbb{R}\cong C_{0}(\mathbb{R})\otimes$

$C(\mathbb{T})\rangle\triangleleft\hat{\alpha}\mathbb{R}$ . Furthermore, the imprimitivity theorem implies

$C(\mathbb{T})x_{\hat{\alpha}}R\cong C(R/\mathbb{Z})\rangle\triangleleft\hat{\alpha}\mathbb{R}\cong C^{*}(\mathbb{Z})\otimes K(L^{2}(\mathbb{T}))$ ,

and $C^{*}(\mathbb{Z})\cong C(\mathbb{T})$ , where $K(L^{2}(\mathbb{T}))=K$ is the $C^{*}$-algebra of compact operators
on the Hilbert space $L^{2}(\mathbb{T})$ . Thus, the six term exact sequence associated with the
exact sequence $(E)$ above is:

$\mathbb{Z}\rightarrow 0\rightarrow 0$

$\partial\uparrow$ $\downarrow$

$\mathbb{Z}\leftarrow \mathbb{Z}\leftarrow \mathbb{Z}$

since $K_{j}(C_{0}(\mathbb{R})\otimes C(\mathbb{T})\otimes K)\cong K_{j+1}(C(\mathbb{T}))\cong \mathbb{Z}$ for $j=0,1(mod 1)$ , and

$K_{0}(C_{0}(\mathbb{C})\aleph R)\cong K_{1}(C_{0}(R^{2}))\cong K_{1}(\mathbb{C})\cong 0$ ,
$K_{1}(C_{0}(\mathbb{C})xR)\cong K_{0}(C_{0}(\mathbb{R}^{2}))\cong K_{0}(\mathbb{C})\cong \mathbb{Z}$ ,

where we are using the Connes’ Thom isomorphism for crossed products of $C^{*}-$

algebras by $\mathbb{R}$ and the Bott periodicity. It follows that the index map $\partial$ is nonzero.
Hence $C^{*}(M_{5})$ is of non type $R$ by K-theory. $\square $

Corollary 3.10 Let $G$ be a locally compact group that has Mautner group $M_{5}$ as a
quotient group. Then $C^{*}(G)$ is of non type $R$ by K-theory.
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Proof. Since there exists a quotient map from $G$ to Mautner group $M_{5}$ , we have a
$*$-homomorphism from $C^{*}(G)$ to $C^{*}(M_{5})$ . $\square $

Moreover, we obtain

Theorem 3.11 Let $ G=\mathbb{R}^{n}\rangle\triangleleft \mathbb{R}^{m}\alpha$ a simply connected solvable Lie group. Then
$C^{*}(G)$ is of non type $R$ by K-theory.

In particular, the group $C^{*}$ -algebra of a generalized Mautner group in the sense
of Auslander-Moore is of non type $R$ by K-theory.

Proof. We have the following exact sequence:

$1\rightarrow \mathbb{R}^{n}\rightarrow G=\mathbb{R}^{n}x_{\alpha}\mathbb{R}^{m}\rightarrow R^{m}\rightarrow 1$ .

Then we have $a*$-homomorphism from $C^{*}(G)$ onto $C^{*}(\mathbb{R}^{m})$ . Thus, if $m\geq 2$ , then
$C^{*}(\mathbb{R}^{m})$ is of non type $R$ by K-theory. Therefore, $C^{*}(G)$ is also of non type $R$ by
K-theory.

Suppose that $m=1$ . Then $C^{*}(G)\cong C_{0}(\mathbb{R}^{n})x_{\hat{\alpha}}\mathbb{R}$ . Since the origin of $\mathbb{R}^{n}$ is fixed
under the action $\hat{\alpha}$ , we have the following exact sequence:

$0\rightarrow C_{0}(\mathbb{R}^{n}\backslash \{0\})\rangle\triangleleft \mathbb{R}\rightarrow C_{0}(\mathbb{R}^{n})\rangle\triangleleft\hat{\alpha}\mathbb{R}\rightarrow C^{*}(\mathbb{R})\rightarrow 0$ ,

and its six term exact sequence is:

$ K_{0}(C_{0}(R^{n}\backslash \{0\})n\mathbb{R})\rightarrow K_{0}(C_{0}(\mathbb{R}^{n})x_{\overline{\alpha}}\mathbb{R})\rightarrow$ $K_{0}(C_{0}(\mathbb{R}))\cong 0$

$\partial\uparrow$ $\downarrow$

$K_{1}(C_{0}(\mathbb{R}))\cong \mathbb{Z}$ $\leftarrow K_{1}(C_{0}(R^{n})n_{\hat{\alpha}}\mathbb{R})\leftarrow K_{1}(C_{0}(R^{n}\backslash \{0\})x_{\hat{\alpha}}\mathbb{R})$

and by Connes’ Thom isomorphism and Bott periodicity,

$K_{1}(C_{0}(\mathbb{R}^{n})\aleph_{\hat{\alpha}}\mathbb{R})\cong K_{0}(\mathbb{R}^{n})\cong\left\{\begin{array}{ll}\mathbb{Z} & if n even,\\0 & if n odd.\end{array}\right.$

Hence, if $n$ is odd, the index map $\partial$ is nonzero. Therefore, $C^{*}(G)$ is of non type $R$

by K-theory.
Now suppose that $n\geq 2$ is even. Then

$K_{0}(C_{0}(\mathbb{R}^{n}\backslash \{0\})x\mathbb{R})\cong K_{1}(C_{0}(\mathbb{R}^{n}\backslash \{0\}))\cong K_{1}(C_{0}(R_{+}\times S^{n-1}))$

since $\mathbb{R}^{n}\backslash \{0\}$ is homeomorphic to the product space $\mathbb{R}_{+}\times S^{n-1}$ , where $S^{n-1}$ is the
$(n-1)$-dimensional sphere. Thus,

$K_{1}(C_{0}(\mathbb{R}_{+}\times S^{n-1}))\cong K_{0}(C(S^{n-1}))\cong \mathbb{Z}$

since $n-1$ is odd. Also,

$K_{0}(C_{0}(\mathbb{R}^{n})x_{\hat{\alpha}}\mathbb{R})\cong K_{1}(C_{0}(\mathbb{R}^{n}))\cong K_{1}(\mathbb{C})\cong 0$
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since $n$ is even. It follows that the index map $\partial$ is nonzero. Hence $C^{*}(G)$ is of non
type $R$ by K-theory.

In particular, a generalized Mautner group in the sense of Auslander-Moore is
a simply connected solvable Lie group of the form $\mathbb{R}^{n}x_{\alpha}\mathbb{R}^{m}$ by an action $\alpha$ by
orthogonal matrices acting on $\mathbb{R}^{n}$ such as Mautner group $M_{5}$ . $\square $

Theorem 3.12 Let $G$ be a locally compact group that has a semi-direct product
$\mathbb{R}^{n}x\mathbb{R}^{m}$ as a quotient group. Then $C^{*}(G)$ is non type $R$ by K-theory.

In particular, for $G$ a simply connected solvable Lie group of type $R$, if it is not
semi-simply regular, then $C^{*}(G)$ is non type $R$ by K-theory.

Proof. It is shown by [1] that for $G$ a simply connected solvable Lie group of type
$R$ , if $G$ is not semi-simply regular, then there exists a homomorphism from $G$ to a
generalized Mautner group. $\square $

Remark. Recall that for $G$ a solvable Lie group, there exists a unique nilpotent
Lie group $N$ (the nilradical of $G$) and a unique abelian semi-simple group $S$ of
automorphisms of $N$ such that $G$ is contained in $NS$ . If $S$ is regular, then $G$ is said
to be semi-simply regular. If $G$ is not semi-simply regular, then $N$ is not regularly
embedded in $G$ .

Moreover, in fact we can show the following result:

Theorem 3.13 Let $G$ be a simply connected solvable Lie group that is not isomor-
phic to $\mathbb{R}$ . Then $C^{*}(G)$ is of non type $R$ by K-theory.

Proof. We may assume that $G$ is noncommutative. It is known that $G$ is isomorphic
to a semi-direct product $Hx_{\alpha}R$ for $H$ a simply connected solvable Lie group with
dimension dim $G-1$ . Then $C’(G)\cong C^{*}(H)\lambda_{\alpha}\mathbb{R}$ . Since $H$ is a simply connected
solvable Lie group, it follows that $H/[H, H]$ is isomorphic to $\mathbb{R}^{k}$ for some $k\geq 1$ . Since
the space of l-dimensional representations of $H$ is homeomorphic to $\mathbb{R}^{k}$ and invariant
under the action $\alpha$ , there exists $a*$-homomorphism from $C^{*}(G)$ onto $C_{0}(\mathbb{R}^{k})x_{\alpha}\mathbb{R}$ .
Hence $C^{*}(G)$ is of non type $R$ weakly by K-theory because we have shown above
that the crossed product $C_{0}(R^{k})x_{\alpha}R$ is of non type $R$ by K-theory. $\square $

As for noncompact connected solvable or amenable Lie groups,

Example 3.14 If $G=R\times K$ for a compact group $K$ , then $C’(G)\cong C_{0}(R)\otimes C^{*}(K)$ .
Since $C^{*}(K)$ is AF, it follows that $C^{*}(G)$ (or its unitization by $\mathbb{C}$) has stable rank
one. Therefore, $C^{*}(G)$ is of type $R$ by K-theory.

Let $ G=\mathbb{C}\rangle\triangleleft \mathbb{T}\alpha$

’ where the action $\alpha$ is defined by $\alpha_{z}x=zx$ for $z\in T$ and
$x\in \mathbb{C}$ . Then it is shown by [18] that the group $C^{*}$-algebra $C^{*}(G)$ has stable rank
one. Therefore, by Theorem 2.6 $C^{*}(G)$ is of type $R$ by K-theory.

Moreover, let $G=R^{n}\lambda_{\alpha}SO(n)$ , where the action $\alpha$ is defined by $\alpha_{z}x=zx$ for
$z\in SO(n)$ and $x\in R^{n}$ . The group $G$ is called the motion group and is non-solvable
and amenable if $n\geq 3$ . Then it is shown by [18] that the group $C^{*}$-algebra $C^{*}(G)$

has stable rank one. Therefore, by Theorem 2.6 $C^{*}(G)$ is of type $R$ by K-theory.
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Furthermore, constructed by [18] are some connected successive semi-direct prod-
ucts (solvable or amenable) such that their group $C^{*}$-algebras have stable rank one.
Therefore, they are of type $R$ by K-theory.

As for non-amenable Lie groups,

Theorem 3.15 Let $G$ be a noncompact, connected semi-simple Lie group. If $G$ has
real $rank\geq 2$ , then its reduced group $C^{*}$ -algebra $C_{r}^{*}(G)$ is of non type $R$ by K-theory.

Also, if $G$ has real rank one, then $C_{r}^{*}(G)$ is of type $R$ by K-theory.

Proof. Recall that $G$ has the Iwasawa decomposition $KAN$ . The real rank of $G$ is
defined to be the real dimension of $A$ a simply connected commutative Lie group. It
is known that a quotient space $A^{\wedge}/W$ of the dual group $A^{\wedge}$ of $A$ by the Weyl group
$W$ (a finite group) is identified with a closed and open subset of the spectrum of
$C_{r}^{*}(G)$ (or the reduced dual space of $G$) (see [14]). Thus $C_{r}^{*}(G)$ has a direct summand
$\mathfrak{D}$ that has $A^{\wedge}/W$ as a spectrum. Since $A^{\wedge}/W$ is a locally compact Hausdorff space
and $G$ is CCR, $\mathfrak{D}$ has continuous trace so that $\mathfrak{D}$ is isomorphic to the $C^{*}$-algebra of a
continuous field on $A^{\wedge}/W$ with fibers K. Since $G$ has real rank $\geq 2$ , i.e. dim $A^{\wedge}\geq 2$ ,
we have dim $A^{\wedge}/W\geq 2$ . Thus, there exists a quotient $C^{*}$-algebra $\mathfrak{B}$ of $\mathfrak{D}$ such that
$\mathfrak{B}$ is isomorphic to $C_{0}([0,1]^{s})\otimes K$ for $s=\dim A^{\wedge}$ . Hence it follows that $C_{r}^{*}(G)$ is of
non type $R$ by K-theory since $\mathfrak{B}$ is so.

It is shown that if $G$ has real rank one, then $C_{r}^{*}(G)$ has stable rank one ([14]).
Therefore, $C_{r}^{*}(G)$ is of type $R$ by K-theory. $\square $

Corollary 3.16 Let $G$ be a noncompact, locally compact group that has a connected
semi-simple Lie group $S$ of real $rank\geq 2$ as a quotient group and as a semi-simple
part. If the kernel for the quotient map from $G$ to $S$ is amenable, then $C^{*}(G)$ and
$C_{r}^{*}(G)$ are of non type $R$ by K-theory.

In particular, if $G$ is a noncompact, connected reductive Lie group whose semi-
simple part is $SL_{n}(\mathbb{R})(n\geq 3)$ , then $C^{*}(G)$ and $C_{r}^{*}(G)$ are of non type $R$ by K-theory.

Proof. If $G$ has such $S$ as a quotient, then $G$ is nonamenable. Then we have $the*-$

homomorphism from $C^{*}(G)$ onto $C_{r}(G)$ (see [11, Sections 7.2 and 7.3]). Since there
exists a quotient map from $G$ to $S$ whose kernel is amenable, the reduced dual of $S$

is contained in that of $G$ (this is standard in the unitary representation of locally
compact groups) so that we have $a*$-homomorphism from $C_{r}(G)$ onto $C_{r}^{*}(S)$ . $\square $

Example 3.17 Let $GL_{n}(\mathbb{R})_{0}$ be the connected component of $GL_{n}(\mathbb{R})$ cotaining the
identity matrix. Since $GL_{n}(\mathbb{R})_{0}$ is a reductive Lie group and has a qutient map
onto $SL_{n}(\mathbb{R})$ , it follows that there exists a $*$-homomorphism from $C_{r}^{*}(GL_{n}(\mathbb{R})_{0})$

onto $C_{r}^{*}(SL_{n}(\mathbb{R}))$ . Thus, if $n\geq 3$ , then $C_{r}^{*}(GL_{n}(\mathbb{R})_{0})$ is of non type $R$ by K-theory.
Hence $C^{*}(GL_{n}(\mathbb{R})_{0})$ is also of non type $R$ by K-theory.

We consider the case $n=2$ . Since $GL_{n}(\mathbb{R})_{0}\cong \mathbb{R}+\times SL_{2}(\mathbb{R})$ via the determinant,
we have $C^{*}(GL_{2}(\mathbb{R})_{0})\cong C^{*}(\mathbb{R})\otimes C^{*}(SL_{2}(\mathbb{R}))$ . It follows that $ C_{r}^{*}(GL_{2}(R)_{0})\cong$
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$C^{*}(\mathbb{R})\otimes C_{r}^{*}(SL_{2}(\mathbb{R}))$ . Since $SL_{2}(\mathbb{R})$ has real rank one, it follows that there exists a
quotient $C^{*}$-algebra of $C_{r}^{*}(SL_{2}(\mathbb{R}))$ that is isomorphic to $C([0,1])\otimes K$ . Therefore,
$C_{r}^{*}(GL_{2}(\mathbb{R})_{0})$ has a quotient $C^{*}$-algebra that is isomorphic to $C_{0}(\mathbb{R}\times[0,1])\otimes K$ . Since
this quotient $C^{*}$-algebra is of non type $R$ by K-theory, it follows that $C_{r}^{*}(GL_{2}(\mathbb{R})_{0})$

is of non type $R$ by K-theory.
It is shown by [14] that $C_{r}^{*}(GL_{n}(\mathbb{R})_{0})(n\geq 2)$ have stable rank two.
On the other hand, let $G=\mathbb{R}^{2}x_{\alpha}SL_{2}(\mathbb{R})$ , where $\alpha_{g}x=gx$ for $g\in SL_{2}(\mathbb{R})$ and

$x\in \mathbb{R}^{2}$ . Then it shown by [18] that the reduced group $C^{*}$-algebra $C_{r}^{*}(G)$ of $G$ has
stable rank one. Thus, $C_{r}^{*}(G)$ is of type $R$ by K-theory by Theorem 2.6.

However, let $G=R^{n}x_{\alpha}SL_{n}(R)(n\geq 3)$ , where $\alpha_{g}x=gx$ for $g\in SL_{n}(R)$ and
$x\in \mathbb{R}^{n}$ . Then $C_{r}^{*}(SL_{n}(\mathbb{R}))$ is a quotient of $C_{r}^{*}(G)$ . By the corollary above, $C^{*}(G)$

and $C_{r}^{*}(G)$ are of non type $R$ by K-theory.

4 Another notion
Definition 4.1 Let $\mathfrak{U}$ be a $C^{*}$-algebra. We say that $\mathfrak{U}$ (or its unitization) is of non
type $R$ by Fredholm index if there exists a quotient $C^{*}$-algebra $\mathfrak{B}$ that has a faithful
representation on a Hilbert space under which the image of $\mathfrak{B}$ contains a Fredholm
operator with its Fredholm index nonzero.

If $\mathfrak{U}$ is not of non type $R$ by Redholm index, then we say that $\mathfrak{U}$ is of type $R$ by
Fredholm index.

We have already shown that

Theorem 4.2 [16] Let $G$ be a simply connected solvable Lie group of non type $R$ .
Then the unitization of $C^{*}(G)$ of $G$ is of non type $R$ by Fredholm index.

Moreover, we showed

Theorem 4.3 [16] Let $\mathfrak{U}$ be a $C^{*}$ -algebra of non type $R$ by $f\dagger edholm$ index. Then
$\mathfrak{U}$ is not ASH, where a $C^{*}$ -algebm is ASH if it is isomorphic to an inductive limit
of subhomogeneous $C^{*}$ -algebras.

On the other hand, we showed

Theorem 4.4 [16] Let $\mathfrak{U}$ be a CCR $C^{*}$ -algebra. Then $\mathfrak{U}$ is of type $R$ by Fredholm
index.

Remark. It is shown in [19] that a CCR $C^{*}$-algebra is ASH.
Furthermore, we can show

Theorem 4.5 Any ASH $C^{*}$ -algebra is of type $R$ by Fredholm index. Also, inductive
limits of CCR $C^{*}$ -algebras or ASH $C^{*}$ -algebras are of type $R$ by Fredholm index.
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Proof. Let $\mathfrak{U}$ be an inductive limit of ASH $C^{*}$-algebras $\mathfrak{U}_{j}$ . We may assume that
$\mathfrak{U}$ and $\mathfrak{U}_{j}$ are unital by the common unit. Suppose that $\mathfrak{U}$ is of non type $R$ by
Fredholm index. Then $\mathfrak{U}_{j}$ for $j$ large enough must be of non type $R$ by Fredholm
index. This contradicts to Theorem 4.3. $\square $

Corollary 4.6 Let $G$ be a simply connected solvable Lie group of non type R. Then
the unitization of $C^{*}(G)$ of $G$ is not an inductive limit of ASH $C^{*}$ -algebras. Also,
$C^{*}(G)$ is not.

Proposition 4.7 Let $\mathfrak{U}$ be a $C^{*}$ -algebra. If $\mathfrak{U}$ has a quotient $C^{*}$ -algebra $\mathfrak{B}$ that acts
irreducibly on a Hilbert space $H$ and contains a Fredoholm operator on $H$ with index
nonzero, then $\mathfrak{U}$ is of non type $R$ by K-theory.

Proof. Note that we may assume that $\mathfrak{B}$ is unital. By assumption, let $T$ be a
Redholm operator of $\mathfrak{B}$ with index nonzero. Then the operator $1-TT^{*}$ is a compact
operator on $H$ . Since $\mathfrak{B}$ acts irreducibly on $H,$ $\mathfrak{B}$ must contain $K(H)$ the $C^{*}$-algebra
of all compact operators on $H$ . Therefore, $\mathfrak{B}$ is decomposed into the exact sequence:

$0\rightarrow K(H)\rightarrow \mathfrak{B}\rightarrow \mathfrak{B}/K(H)\rightarrow 0$ ,

and it is easy to see that the index map of its six term exact sequence must be
nonzero. In fact, the index map is just the Fredholm index for Fredholm

$operators\square $

in such a situation.

Proposition 4.8 Let $\mathfrak{U}$ be a $C^{*}$ -algebra. If $\mathfrak{U}$ has an iweducible representation $\pi$

of type I but not of CCR and the image $\pi(\mathfrak{U})$ of $\mathfrak{U}$ contains a $Ph^{\backslash }edoholm$ operator
on the representation space $H_{\pi}$ of $\pi$ with index nonzero, then $\mathfrak{U}$ is of non type $R$ by
K-theory.

Proof. Let $\pi$ be the irreducible representation of $\mathfrak{U}$ in the statement. Since $\pi$ is of
type I, the image $\pi(\mathfrak{U})$ of $\mathfrak{U}$ contains $K(H_{\pi})$ the $C^{*}$-algebra of all compact operators
on the representation space $H_{\pi}$ of $\pi$ . Since $\pi$ is not of CCR, $K(H_{\pi})$ is strictly
contained in $\pi(\mathfrak{U})$ . Thus, we have the following exact sequence:

$0\rightarrow K(H_{\pi})\rightarrow\pi(\mathfrak{U})\rightarrow\pi(\mathfrak{U})/K(H_{\pi})\rightarrow 0$ .

Since $\pi(\mathfrak{U})$ contains a Fredoholm operator on $H_{\pi}$ with index nonzero, we can deduce
the conclusion as proved in the proposition above. $\square $

Theorem 4.9 Let $\mathfrak{U}$ be a $C^{*}$ -algebra. If $\mathfrak{U}$ has stable rank one, then it is of type $R$

by Fredholm index.
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Proof. Note that a $C^{*}$-algebra $\mathfrak{U}$ has stable rank one if and only if the set of invertible
elements of $\mathfrak{U}$ is dense in $\mathfrak{U}$ . Therefore, $\mathfrak{U}$ with stable rank one does not contain
a Fredholm operator with nonzero index. In fact, suppose that $\mathfrak{U}$ has a Fredholm
operator $T$ with nonzero index $n$ on a Hilbert space $H$ . Since the set $F_{n}(H)$ of all
Fredholm operators with index $n$ is open in $B(H)$ , the intersection $F_{n}(H)\cap \mathfrak{U}$ must
be open in $\mathfrak{U}$ . This contradicts to that the set of invertible elements of $\mathfrak{U}$ is dense
in $\mathfrak{U}$ since invertible Fredholm operators have index zero.

Furthermore, since $sr(\mathfrak{U})=1$ , it follows that any quotient $C^{*}$-algebra of $\mathfrak{U}$ has
stable rank one by [12, Theorem 4.3]. $\square $

Furthermore, we give

Definition 4.10 Let $\mathfrak{U}$ be a $C^{*}$ -algebra. We say that $\mathfrak{U}$ is of type $R$ if it is ASH.

Remark. This notion seems to be quite suitable by the following reason. It is known
that CCR groups are of type $R$ , and connected solvable Lie groups of type $R$ are
of type I if and only if they are CCR (see [1]). On the other hand, we obtain that
CCR $C^{*}$-algebras are ASH, and ASH $C^{*}$-algebras are of type I if and only if they
are CCR (see [16] and [19]). Therefore, the notion for groups to be of type $R$ just
corresponds to the notion for $C^{*}$-algebras to be of type $R$ , i.e., ASH. More reasons
might be waiting to be discovered.
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