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1. Introduction. In this note, we consider the following nonlinear problem

(1)







u′′ +
n − 1

r
u′ + β2u + f(u) = 0, r > 0

u(r) → 0, as r → ∞,

where n ≥ 2,

f ∈ C1,σ(−δ0, δ0), for some δ0 > 0, σ > 0 and f(0) = f ′(0) = 0.(2)

The main goal of this note is to show the asymptotic behavior of solutions of (1) and
improve the results in [6]. In [6], one of the following conditions















































a) : f(u) ∈ C1,σ(−δ0, δ0),f(0) = f ′(0) = 0,

σ >
2

n − 1
if n > 3, or

b) : f(u) ∈ C2,σ(−δ0, δ0),f(0) = f ′(0) = f ′′(0) = 0,

σ > 0 if n = 3, or

c) : f(u) ∈ C3,σ(−δ0, δ0),f(0) = f ′(0) = f ′′(0) = f (3)(0) = 0,

σ > 0 if n = 2,

is assumed, and the existence and asymptotic behavior of oscillatory radial solutions
are proven. We replace the conditions by a more general condition (2), therefore
equation (1) can be applied to Allen-Cahn equation

(3) △u + u − u3 = 0, x ∈ R
n,

for all n ≥ 2, and thin film problems

(4) u′′ +
n − 1

r
u′ = f(u) in R+, u(0) = α > 0, u′(0) = 0,

where f ∈ C1(0,∞) satisfies the following general conditions:
(i) f has a single zero t0 in (0,∞) satisfying f ′(t0) < 0;
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(ii) f is nonincreasing near 0 and limt→0+ f(t) = ∞.
These two equations appear in several applications in mechanics and physics. In-
terested readers can refer [1], [2]-[4], [10], [13], [14], etc. for more detailed physics
background. Some recent mathematical analysis can be found in [5, 6, 7, 8, 9, 11, 12]
and the references therein.

Remark 1. We note that oscillating solutions to thin film problems may not
always exist when n = 2. It is shown in [9] that the unique solution either oscillates
or increases to infinity as r goes to infinity. The existence of non-blowup solution
may depend on the initial value and the nonlinear term f .

In [9], a recent paper concerning thin film problems (see also [12]), it was proven
that in dimension N ≥ 3, for each α ∈ (0, t0), (4) has a unique positive solution uα.
Moreover, uα oscillates around the constant t0. It is also shown that there exists a
singular (or so-called rupture) radial solution u0(r) to (4) such that u0 ∈ C(RN ),
u0(0) = 0, u0(r) > 0 for r ∈ (0,∞) and f(u0) ∈ L1

loc(R
N ). Moreover, any singular

radial solution to (4) is oscillatory around t0 and converges to t0 as r → ∞.
It is natural to ask whether we can obtain more accurate asymptotic behaviors

of the radial solutions. The similar question also arises in the study of Allen-Cahn
equation (3).

The main result in this note is stated below:

Theorem 1. Assume f satisfies (2) and equation (1) has a solution u(r), then

u(r) is oscillating and |u(r)| ≤ Cr
1−n

2 . Furthermore,

(5) u(r) = r
1−n

2 (A sin (βr) + B cos (βr) + o(1)),

as r → ∞, for some constants A, B.

This note is organized as follows: In Section 2, the proof of the main result will be
given; Section 3 will be devoted to applying the main result to Allen-Cahn equations
and thin film equations to get a more accurate asymptotic behaviors.

2. Proof of Theorem 1. First, we claim that the solution, if it converges to 0
as r → +∞, must be oscillatory.

Lemma 1. Assume that f satisfies condition (2). Then the solution to equation
(1) is oscillatory around 0.

Proof. Suppose that the solution is not oscillatory. Without loss of generality,
we may assume u(r) > 0, r > r̃, for some r̃ > 0. By (2), we may choose r̃ so large

that f(u(r))
u(r) > −β2

2 , for r > r̃. Then u(r) is decreasing for r > r̃, by the maximum

principle. Then we define ω(r, r0) := u(r+r0)
u(r0)

, for r ≥ 0 and any fixed r0 > r̃. Then

ω(r, r0) satisfies

ωrr +
n − 1

r + r0
ωr + β2ω +

f(u(r + r0))

u(r0)
= 0,

for r ≥ 0. Letting r0 → +∞, we know that ω(r, r0) → ω(r,∞) in C2[0,∞) and

{

ωrr(r,∞) + β2ω(r,∞) = 0,

ω(0,∞) = 1, 0 ≤ ω(r,∞) ≤ 1,
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for all r > r̃. This contradicts the Sturm-Liouville Theorem. Similarly we can exclude
the case u(r) < 0 for r sufficiently large.

Without loss of generality, we may assume that |u(r)| ≤ δ0, ∀r > 0. Let sk be the
kth zero of u(r) and rk is the maximum point of |u| in (sk, sk+1). Set mk := |u(rk)|.
We claim that mk is decreasing in k, when k > k̃, for some k̃ > 0, and tends to 0 as
k goes to infinity. In fact, on the one hand, we multiply u′ on both sides of the first
equation of (1), then

{1

2
u′2 +

1

2
β2u2 +

∫ u

0

f(s)ds}′ = −n − 1

r
u′2 ≤ 0,(6)

which implies that 1
2u′2 + 1

2β2u2 +
∫ u

0
f(s)ds is decreasing in r > 0. Take r =

rk and rk+1, we get

1

2
β2m2

k+1 +

∫ mk+1

0

f(s)ds ≤ 1

2
β2m2

k +

∫ mk

0

f(s)ds

∫ mk+1

mk

f(s)ds ≤ 1

2
β2(m2

k − m2
k+1).

On the other hand, we have f ∈ C1,σ(−δ0, δ0), σ > 0, then

|
∫ mk+1

mk

f(s)ds| ≤
∫ mk+1

mk

|f(s)|ds ≤ C

∫ mk+1

mk

|s|1+σds ≤ C(mσ+2
k+1 − mσ+2

k ),

if mk+1 > mk. Suppose that no matter how large k is, there always exist some k such
that mk+1 > mk, then

C(m2+σ
k − m2+σ

k+1) ≤ −|
∫ mk+1

mk

f(s)ds| <

∫ mk+1

mk

f(s)ds ≤ 1

2
β2(m2

k − m2
k+1).

Hence

m2
k+1 − m2

k ≤ C(m2+σ
k+1 − m2+σ

k ),

where C is independent of k. This contradicts with the fact that mk → 0, as k → +∞.
Therefore, mk+1 ≤ mk, for k > k̃.

Next, we state a simple fact as a lemma, which will be used later.

Lemma 2. The problem,

φ′′(s) + p(s)φ(s) = 0,(7)

where 0 < a2 < p(s) < b2 < ∞, a, b are some constants, for s ∈ I, where I is a finite
or infinite interval, have solutions with

π

b
≤ sk+1 − sk ≤ π

a
and

π

b
≤ tk+1 − tk ≤ π

a
,

for sk, tk ∈ I, where sk is the kth zero of φ in I, tk is the maximum point of |φ| in
the interval (sk, sk+1).

Proof. The lemma basically follows from the Sturm Comparison Theorem. For
the convenience, we present a direct proof here. Without loss of generality, we may
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assume φ(tk) > 0. We claim sk+1 − tk ≤ π
2a

. Choose a solution v(r) = cos(a(r − tk))
of v′′ + a2v = 0. If sk+1 > tk + π

2a
, then

∫ π
2a

+tk

tk

(vφ′ − φv′)′dr = aφ(tk +
π

2a
) > 0.

On the other hand, by equations we obtain

∫ π
2a

+tk

tk

(vφ′ − φv′)′dr =

∫ π
2a

+tk

tk

(a2 − p(r))φvdr < 0.

This is a contradiction and proves the claim. Similarly, we can show tk − sk ≤ π
2a

.
Then sk+1 − sk ≤ π

a
and tk+1 − tk ≤ π

a
. Similar arguments also show sk+1 − sk ≥ π

b

and tk+1 − tk ≥ π
b
.

With the simple observation, we see that making the following transformation

u(r) = r
1−n

2 φ(r),(8)

equation (1) can be rewritten as the equation of φ in the form of (7), where p(s) =

β2 − (n−1)(n−3)
4 s−2 + f(u)

u
= β2 + O(sα), for some α < 0, when s sufficiently large,

since f ∈ C1,σ(−δ0, δ0), for some δ0 > 0 and |u(r)| < Cr
1−n

2
+ǫ in [6]. It is easy to see

that the kth zero of u is also that of φ, denoted as sk, but the maximum point rk of
|u| in (sk, sk+1) are different from that tk of |φ|.

Next lemma is devoted to estimate φ(s) and φ′(s) in the interval (tk, tk+1).

Lemma 3. Assume p(s) = β2 + O(sα) for some α < 0 and sk, tk are defined as
before. Then for k large enough, there holds

tk+1 − tk =
π

β
+ O(kα), tk − sk =

π

2β
+ O(kα),

and

φ(s)

φ(tk)
= cos (β(s − tk)) + O(kα), tk < s < tk+1;(9)

φ′(s)

φ(tk)
= −β sin (β(s − tk)) + O(kα), tk < s < tk+1.(10)

Proof. When k is large enough, we choose C so that a2 = β2 − Ckα > 0,
b2 = β2 + Ckα > 0 and a2 < p(s) < b2, tk < s < tk+1. By the Sturm Comparison
Theorem or similar proof of Lemma 2, we have

φ(s)

φ(tk)
≤ cos (

√

β2 − Ckα(s − tk)), tk < s < sk+1(11)

and

φ(s)

φ(tk)
≥ cos (

√

β2 + Ckα(s − tk)), tk < s < tk +
π

2
√

β2 + Ckα
.(12)
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In particular, π

2
√

β2+Ckα
≤ sk+1 − tk ≤ π

2
√

β2−Ckα
. Hence, sk+1 − tk = π

2β
+ O(kα).

Similarly,

φ(s)

φ(tk)
≤ cos (

√

β2 − Ckα(tk − s)), sk < s < tk,(13)

φ(s)

φ(tk)
≥ cos (

√

β2 + Ckα(tk − s)), tk − π

2
√

β2 + Ckα
< s < tk,(14)

and tk − sk = π
2β

+ O(kα). Hence, tk+1 − tk = π
β

+ O(kα).

On the other hand, multiply φ′(s) on both sides of (7) and integrate from tk to
tk+1, we get

∫ tk+1

tk

p(s)φ(s)φ′(s)ds = 0

⇒ φ2(tk+1) = φ2(tk)(1 + O(kα)),(15)

since p(s) = β2 + O(kα) > 0, for k sufficiently large. Combining (11)-(15) for the
interval (tk, tk+1), we conclude (9).

To conclude (10), we multiply the equation (7) by φ′(s) and integrate from tk to
s to get

1

2
(φ′(s))2 +

∫ s

tk

p(s)φ′(s)φ(s)dr = 0, tk < s < sk+1.(16)

Without loss of generality, suppose φ(s) > 0, s ∈ (tk, sk+1). By (16), we have φ′(s) <

0, for s ∈ (tk, sk+1), then

1

2
(φ′(s))2 ≤ (β2 + Ckα)

∫ s

tk

(−φ′(s))φ(s)ds

= (β2 + Ckα)
1

2
(φ2(tk) − φ2(s)), tk < s < sk+1.

Then 1
2 (φ′(s))2 = 1

2β2φ2(tk) sin2 (β(s − tk)) + O(kα), tk < s < sk+1, by using
the lower bound of p(s) together. Combining the equality and its counterpart for
(sk+1, tk+1), we get (10).

Following is a refined version of Lemma 4.3 in [6], which is key to our proof of
the main result.

Lemma 4. Let {ak} be a sequence of nonincreasing positive numbers satisfing

ak ≥ p

∞
∑

i=k

aih(i),

for some positive p, where h(i) = i−1(1 + O(iγ)), γ < 0. Then, for some positive
constant C, there holds

ak ≤ Ck−p,

for k sufficiently large.
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Proof. Define Ak :=
∑∞

i=k aih(i), then

Ak − Ak+1 = akh(k) ≥ ph(k)Ak

⇒ Ak

Ak+1
≥ 1

1 − ph(k)
≥ 1 + ph(k),

for k large enough. Let N0 large fixed. For any integer N > N0, we have

AN0

AN

≥
N−1
∏

k=N0

(1 + ph(k))

⇒ ln (AN0
) − ln (AN ) ≥

N−1
∑

k=N0

(ph(k) + O(h2(k))) ≥ p lnN + O(1),

since h(i) = i−1(1+O(iγ)), γ < 0. Therefore, AN < CN−p. With this fact that {ak}
is a nonincreasing positive sequence, we obtain

Ak ≥ Ak − A2k+1 = p

2k
∑

i=k

aih(i) ≥ pa2k

2k
∑

i=k

h(i) ≥ p ln 2

2
a2k,

since
2k
∑

i=k

h(i) → ln 2, as k → ∞ and h(i) > 0, for i large enough. Therefore, a2k ≤

CAk < Ck−p, for k sufficiently large, where C > 0 is just dependent of p.

Now it’s time to refine the decay rate of u(r) as O(r
1−n

2 ) with Lemma 4 and
complete the proof of Theorem 1.

Proof of Theorem 1. Let m̃k := u(tk), while mk := u(rk), where tk, rk are the
maximum points of |φ|, |u| in (sk, sk+1), respectively. First, with Lemma 4, we could
get a sharper estimate of m̃k.

Denote F (u) = − 1
2β2u2 −

∫ u

0
f(s)ds, then

F (0) − F (m̃k) =
1

2
β2m̃k

2 +

∫ m̃k

0

f(s)ds ≤ 1

2
β2m̃k

2 + Cm̃k
2+σ

≤ 1

2
β2m̃k

2 + Ckδ̃,(17)

where δ̃ = (2 + σ)(1−n
2 + ǫ) < 0, for k large enough. In fact, the inequality above

follows by f ∈ C1,σ(−δ0, δ0) and the fact shown in [6] that |u(r)| < Cr
1−n

2
+ǫ, for any

ǫ > 0. Furthermore,

F (0) − F (m̃k) = lim
N→∞

[F (m̃N ) − F (m̃k)]

= lim
N→∞

[−1

2
(u′2(tN ) − u′2(tk)) +

∫ tN

tk

n − 1

r
|u′(r)|2dr], by (6)

=
1

2
u′2(tk) + lim

N→∞

∫ tN

tk

n − 1

r
|u′(r)|2dr

≥ lim
N→∞

∫ tN

tk

n − 1

r
|u′(r)|2dr.(18)
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With the fact that

u′(r) =
1 − n

2
r−

1+n
2 φ(r) + r

1−n
2 φ′(r),(19)

we have

∫ tk+1

tk

n − 1

r
|u′(r)|2dr

=

∫ π
β

+O(kα)

0

n − 1
kπ
β

+ O(kα)

· (1 − n

2
(tk + x)−

1+n
2 φ(tk + x) + (tk + x)

1−n
2 φ′(tk + x))2dx

=

∫ π
β

+O(kα)

0

n − 1
kπ
β

+ O(kα)
m̃k

2β2 sin2(βx)(1 + O(kα))dx

=(n − 1)m̃k
2β2 1

2k
(1 + O(kα)),(20)

by (9), (10) and (19). Here α < 0 changes from line to line. Combining (17), (18)
and (20), we have

(n − 1)

∞
∑

i=k

m̃i
2h(i) − Ckδ̃ ≤ m̃k

2,(21)

where h(i) = 1
i
(1 + O(iα)).

Now, we apply Lemma 4 to (21) to get a more accurate decay rate of m̃k. We
claim that there exists C̃ > 0, such that

ak + bk ≥ (n − 1)

∞
∑

i=k

(ai + bi)h(i),(22)

where ak = m̃k
2, bk = C̃kδ̃. Indeed, from (21), we know that (22) is true, as long as

there exists C̃ > 0 such that

−Ckδ̃ ≥ (n − 1)

∞
∑

i=k

bih(i) − bk,

where bk = C̃kδ̃. In fact,

(n − 1)
∞
∑

i=k

bih(i) − bk = C̃[(n − 1)
∞
∑

i=k

iδ̃h(i) − kδ̃]

= C̃[(n − 1)

∞
∑

i=k

i−1+δ̃(1 + O(iα)) − kδ̃]

= C̃(
1 − n

δ̃
− 1 + o(1))kδ̃

≤ −Ckδ̃,
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provided 1−n

δ̃
− 1 < 0, i.e. δ̃ := (2 + σ)(1−n

2 + ǫ) < 1 − n. Since ǫ > 0 is arbitrary,

then we can choose ǫ small enough, such that δ̃ < 1 − n. Now, we let {ãk}, where
ãk = ak + bk, be the nonincreasing sequence in Lemma 4. By Lemma 4, we get

ãk ≤ Ck1−n

⇒ ak ≤ Ck1−n − C̃kδ̃ ≤ Ck1−n,

since δ̃ < 1 − n. Therefore,

m̃k ≤ Ck
1−n

2 .(23)

Since mk = O(m̃k), we obtain mk < Ck
1−n

2 , moreover, |u(r)| < Cr
1−n

2 . Then (5)
follows immediately.

3. Applications to Allen-Cahn equations and thin film equations. Fi-
nally, we apply the main theorem to two typical problems, namely Allen-Cahn equa-
tion and thin film problems, which have been investigated in [9], [6], [12], etc.

We first consider the radial solution to Allen-Cahn equation

(24)







u′′ +
n − 1

r
u′ − F ′(u) = 0, r = |x|, x ∈ R

n,

u(0) = u0, |u0| < 1,

where n ≥ 2, F (u) ∈ C2,σ(−δ0, δ0), for some δ0 > 0, σ > 0, and satisfies


















F ′(1) = F ′(−1) = 0, F (1) = F (−1) = 0

F (u) > 0 if |u| < 1

F ′(0) = 0, F ′′(0) < 0

F ′(u) < 0 if 0 < u < 1, F ′(u) > 0 if − 1 < u < 0.

The existence of the oscillatory radial solution to Allen-Cahn Equation with initial
value |u0| < 1 has been shown in Prop 3.1 and Prop 3.2, [5]. We can obtain the
asymptotic behavior of the solution as follows.

Theorem 2. Assume f(u) = F ′′(0)u−F ′(u) satisfies condition (2). Then when

|u0| < 1, the solution u(r) satisfies |u(r)| ≤ Cr
1−n

2 . Furthermore,

u(r) = r
1−n

2 (A sin (
√

−F ′′(0)r) + B cos (
√

−F ′′(0)r) + o(1)),

as r → ∞, for some constants A, B.

In particular, for the typical Allen-Cahn equation u′′ + 1−n
r

u′ + u− u3 = 0 in R
2,

we have |u(r)| ≤ Cr−
1
2 and sk+1 − sk = π + O(kα), for some α < 0, where sk is the

kth zero of the solution.
Now, we consider the thin film problem

(25)







u′′ +
n − 1

r
u′ = g(u) r > 0

u(0) = u0 > 0, u′(0) = 0,

where the nonlinear term g(u) satisfies

(26)

{

g′(1) < 0, g(1) = 0,

g(u) > 0 for 0 < u < 1, g(u) < 0 for u > 1.
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Let v(r) = u(r) − 1, then it satisfies

v′′ +
n − 1

r
v′ − g′(1)v + f(v) = 0, r > 0,

where f(v) = −g(1 + v) + g′(1)v.
From [6], we know that when n ≥ 3, there always exists a radial solution, for

u0 ∈ (0, 1), which oscillates around 1. However, when n = 2, we have the solution
either asymptotic to 1 or blow up to +∞ as r tends to ∞.

Theorem 3. Assume g(u) satisfies condition (26) and f(v) = −g(1+ v)+ g′(1)v
satisfies condition (2). For n ≥ 3, when u0 ∈ (0, 1), the solution u(r) to (25) satisfies

|u(r)| ≤ Cr
1−n

2 . Furthermore,

u(r) = r
1−n

2 (A sin (
√

−g′(1)r) + B cos (
√

−g′(1)r) + o(1)),

as r → ∞, for some constants A, B.

When it comes to n = 2, we have to pose an extra condition on g to guarantee the
existence of oscillatory solutions. Let G(u) =

∫ u

1 g(s)ds, then G(u) is nonincreasing
for u > 1 and nondecreasing for u < 1.

Theorem 4. When n = 2, u0 ∈ (0, 1), assume g satisfies condition (26) and
lim

u→+∞
G(u) = −∞, additionally, f(v) satisfies condition (2). Then there exists an

oscillatory radial solution u(r) with |u(r)| ≤ Cr−
1
2 . Furthermore,

u(r) = r−
1
2 (A sin (

√

−g′(1)r) + B cos (
√

−g′(1)r) + o(1)),

as r → ∞, for some constants A, B.
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