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REEH-SCHLIEDER THEOREM FOR ULTRAHYPERFUNCTIONAL

WIGHTMAN THEORY∗

DANIEL H.T. FRANCO†

Abstract. It will be shown that the Reeh-Schlieder property holds for states of quantum
fields for ultrahyperfunctional Wightman theory. As by product, it is shown that the Reeh-Schlieder
property also holds for states of quantum fields on a non-commutative Minkowski space in the setting
ultrahyperfunctional.
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1. Introduction. In recent years a considerable effort has been made to clar-
ify the structural aspects of non-commutative quantum field theories (NCQFT). The
first paper on quantum field theory by exploring the non-commutativity of a space-
time manifold was proposed a long time ago as a generalization of the phase space
of quantum mechanics by Snyder [1], who used this idea to give a solution for the
problem of ultraviolet divergences which had plagued quantum field theories from
very beginning. Since then, due to the success of the renormalization theory, this
subject was abandoned. Only recently the plan of investigating field theories on
non-commutative space-times has been revived. In a fundamental paper Doplicher-
Fredenhagen-Roberts [2] have shown that a model quantum space-time can be de-
scribed by a non-commutative algebra whose commutation relations do imply un-
certainty relations motivated by Heisenberg’s uncertainty principle and by Einstein’s
theory. Later, in a different context, NCQFT appear directly related with the string
theory [3], when was found that a non-commutative Yang-Mills theory induced by
the Moyal product can be seen as a vestige, in the low-energy limit, of open strings
in the presence of a constant magnetic field, Bµν (for a review see [4, 5]).

From an axiomatic standpoint, a language has been developed which, in prin-
ciple, ought to enable one to extend the Wightman axioms to this context [6]-[12].
However, the axiomatic approach to local quantum field theory built up by Streater-
Wightman [13], Jost [14], Bogoliubov et al. [15], Haag [16] and others turned out
to be too narrow for theoretical physicists, who are interested in handling situations
involving a NCQFT. In particular, some very important evidences to expect that the
traditional Wightman axioms must be somewhat modified for the setting of NCQFT
are:

• NCQFT incorporate nonlocal effects, but in a controllable way. This is
reminiscent of its stringy origin where the gravitational sector was decoupled
but still left some traces through the non-commutativity.

• The existence of hard infrared singularities in the non-planar sector of the
theory can destroy the tempered nature of the Wightman functions.
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• The commutation relations [xµ, xν ] = iθµν also imply uncertainty relations for
space-time coordinates ∆xµ∆xν ∼

∣∣θµν

∣∣, indicating that the notion of space-
time point loses its meaning. Space-time points are replaced by cells of area
of size

∣∣θµν

∣∣. This suggests the existence of a finite lower limit to the possible
resolution of distance. The nonlocal structure of NCQFT manifests itself in
a indeterminacy of the interaction regions, which spread over a space-time
domain whose size is determined by the existence of a fundamental length

ℓ related to the scale of nonlocality ℓ ∼
√∣∣θµν

∣∣.
In Ref. [12] has been suggested that tempered ultrahyperfunctions corresponding

to tubular radial domains are well adapted for their use in the axiomatic description
of NCQFT. The space of tempered ultrahyperfunctions has the advantage of being
representable by means of holomorphic functions. It is the dual space of the space of
entire functions rapidly decreasing in any horizontal strip and generalizes the notion
of hyperfunctions on Rn, but can not be localized as hyperfunctions. In the frame-
work of this approach, fundamental results, as the CPT and Spin-Statistics theorems,
the Borchers class of a non-commutative field and the Reconstruction theorem, were
proven [12].

In this article we prove that the Reeh-Schlieder-type property [17] holds for states
of quantum fields for ultrahyperfunctional Wightman theory. Then, as by product, it
is shown that the Reeh-Schlieder property also holds for states of quantum fields on
a non-commutative Minkowski space in the setting ultrahyperfunctional. According
to the standard arguments, the Reeh-Schlieder property concerns with the cyclicity
and separability of the vacuum sector in the context of local quantum field theories in
Minkowski space-time. However, it holds equally well for a quantum field theory on
curved space-times [18]-[20], as well as for thermal states [21] as a direct consequence
of locality, additivity and the relativistic KMS condition. Once one has the concept
of fundamental length incorporated in NCQFT, a natural problem is to recognize
whether the Reeh-Schlieder property can also be established for a non-commutative
quantum field theory. We show that this is feasible since a crucial mathematical
tool leading to the Reeh-Schlieder property in the case of NCQFT is a tempered
ultrahyperfunction version of Edge of the Wedge theorem [36].

We outline the content of this contribution as follows. In Section 2, for the conve-
nience of the reader, we shall present briefly some definitions and basic properties of
the tempered ultrahyperfunction space of Sebastião e Silva [22, 23] and Hasumi [24]
(we indicate the Refs. [22]-[36] for more details). Section 3 contains some needed re-
sults concerning with the proof of the Reeh-Schlieder theorem for ultrahyperfunctional
Wightman Theory. In Section 4, we give Reeh-Schlieder theorem for ultrahyperfunc-
tional Wightman Theory and for NCQFT. We consider for simplicity a theory with
only one basic field, a neutral scalar field. Section 5 contains the final considerations.

2. Tempered ultrahyperfunctions: Some basic properties. Tempered ul-
trahyperfunctions were introduced in papers of Sebastião e Silva [22, 23] and Ha-
sumi [24] (orginally called tempered ultradistributions) as the strong dual of the space
of test functions of rapidly decreasing entire functions in any horizontal strip. While
Sebastião e Silva [22] used extension procedures for the Fourier transform combined
with holomorphic representations and considered the 1-dimensional case, Hasumi [24]
used duality arguments in order to extend the notion of tempered ultrahyperfunc-
tions for the case of n dimensions (see also [23, Section 11]). In a brief tour, Mari-
moto [26, 27] gave some more precise informations concerning the work of Hasumi.
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More recently, the relation between the tempered ultrahyperfuntions and Schwartz
distributions and some major results, as the kernel theorem and the Fourier-Laplace
transform have been established by Brüning and Nagamachi in [33]. Earlier, some pre-
cisions on the Fourier-Laplace transform theorem for tempered ultrahyperfunctions
were given by Carmichael [30] (see also [35, 36]), by considering the theorem in its
simplest form, i.e., the equivalence between support properties of a distribution in a
closed convex cone and the holomorphy of its Fourier-Laplace transform in a suitable
tube with conical basis. In this more general setting, which includes the results of
Sebastião e Silva and Hasumi as special cases, Carmichael obtained new represen-
tations of tempered ultrahyperfunctions which were not considered by Sebastião e
Silva [22, 23] or Hasumi [24]. In this section, we include the definitions and basic
properties of the tempered ultrahyperfunction space which are the most important in
applications to quantum field theory.

Next, we shall introduce briefly here some definitions and basic properties of
the tempered ultrahyperfunction space of Sebastião e Silva [22, 23] and Hasumi [24]
(we indicate the Refs. for more details). To begin with, we introduce the following
multi-index notation. Let Rn (resp. Cn) be the real (resp. complex) n-space whose
generic points are denoted by x = (x1, . . . , xn) (resp. z = (z1, . . . , zn)), such that
x+ y = (x1 + y1, . . . , xn + yn), λx = (λx1, . . . , λxn), x ≥ 0 means x1 ≥ 0, . . . , xn ≥ 0,
〈x, y〉 = x1y1 + · · ·+ xnyn and ‖x‖2 = 〈x, x〉. Moreover, we define α = (α1, . . . , αn) ∈
N

n
o , where No is the set of non-negative integers, such that the length of α is the

corresponding ℓ1-norm |α| = α1 + · · · + αn, α + β denotes (α1 + β1, . . . , αn + βn),
α ≥ β means (α1 ≥ β1, . . . , αn ≥ βn), α! = α1! · · ·αn!, xα = xα1

1 . . . xαn
n , and

Dαϕ(x) =
∂|α|ϕ(x1, . . . , xn)

∂xα1

1 ∂xα1

2 . . . ∂xαn
n

.

Let Ω be a set in Rn. Then we denote by Ω◦ the interior of Ω and by Ω the closure
of Ω. For r > 0, we denote by B(xo; r) =

{
x ∈ Rn | |x− xo| < r

}
a open ball and by

B[xo; r] =
{
x ∈ Rn | |x− xo| ≤ r

}
a closed ball, with center at point xo and of radius

r, respectively.
We consider two n-dimensional spaces – x-space and ξ-space – with the Fourier

transform defined

f̂(ξ) = F [f(x)](ξ) =

∫

Rn

f(x)ei〈ξ,x〉dnx ,

while the Fourier inversion formula is

f(x) = F
−1[f̂(ξ)](x) =

1

(2π)n

∫

Rn

f̂(ξ)e−i〈ξ,x〉dnξ .

The variable ξ will always be taken real while x will also be complexified – when it
is complex, it will be noted z = x + iy. The above formulas, in which we employ
the symbolic “function notation,” are to be understood in the sense of distribution
theory.

We shall consider the function

hK(ξ) = sup
x∈K

|〈ξ, x〉| , ξ ∈ R
n ,

where K is a compact set in Rn. One calls hK(ξ) the supporting function of K. We
note that hK(ξ) < ∞ for every ξ ∈ Rn since K is bounded. For sets K =

[
−k, k

]n
,
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0 < k <∞, the supporting function hK(ξ) can be easily determined [24]:

hK(ξ) = sup
x∈K

|〈ξ, x〉| = k|ξ| , ξ ∈ R
n , |ξ| =

n∑

i=1

|ξi| .

Let K be a convex compact subset of Rn, then Hb(R
n;K) (b stands for bounded)

defines the space of all functions ∈ C∞(Rn) such that ehK(ξ)Dαϕ(ξ) is bounded in R
n

for any multi-index α. One defines in Hb(R
n;K) seminorms

‖ϕ‖K,N = sup
ξ∈R

n

α≤N

{
ehK(ξ)|Dαϕ(ξ)|

}
<∞ , N = 0, 1, 2, . . . . (2.1)

If K1 ⊂ K2 are two compact convex sets, then hK1
(ξ) ≤ hK2

(ξ), and thus the
canonical injection Hb(R

n;K2) →֒ Hb(R
n;K1) is continuous. Let O be a convex open

set of Rn. To define the topology of H(Rn;O) it suffices to let K range over an
increasing sequence of convex compact subsets K1,K2, . . . contained in O such that
for each i = 1, 2, . . ., Ki ⊂ K◦

i+1 and O =
⋃∞

i=1Ki. Then the space H(Rn;O) is the
projective limit of the spaces Hb(R

n;K) according to restriction mappings above, i.e.

H(Rn;O) = limproj
K⊂O

Hb(R
n;K) , (2.2)

where K runs through the convex compact sets contained in O.
Theorem 2.1 ([24, 26, 33]). The space D(Rn) of all C∞-functions on Rn with

compact support is dense in H(Rn;K) and H(Rn;O). Moreover, the space H(Rn; Rn)
is dense in H(Rn;O) and H(Rm; Rm) ⊗H(Rn; Rn) is dense in H(Rm+n; Rm+n).

From Theorem 2.1 we have the following injections [26]:

H ′(Rn;K) →֒ H ′(Rn; Rn) →֒ D
′(Rn) ,

and

H ′(Rn;O) →֒ H ′(Rn; Rn) →֒ D
′(Rn) .

A distribution V ∈ H ′(Rn;O) may be expressed as a finite order derivative of a
continuous function of exponential growth

V = Dγ
ξ [ehK(ξ)g(ξ)] ,

where g(ξ) is a bounded continuous function. For V ∈ H ′(Rn;O) the following result
is known:

Lemma 2.2 ([26]). A distribution V ∈ D ′(Rn) belongs to H ′(Rn;O) if and only
if there exists a multi-index γ, a convex compact set K ⊂ O and a bounded continuous
function g(ξ) such that

V = Dγ
ξ [ehK(ξ)g(ξ)] .

In the space Cn of n complex variables zi = xi + iyi, 1 ≤ i ≤ n, we denote by
T (Ω) = Rn + iΩ ⊂ Cn the tubular set of all points z, such that yi = Im zi belongs
to the domain Ω, i.e., Ω is a connected open set in Rn called the basis of the tube
T (Ω). Let K be a convex compact subset of Rn, then Hb(T (K)) defines the space of



REEH-SCHLIEDER THEOREM 37

all continuous functions ϕ on T (K) which are holomorphic in the interior T (K◦) of
T (K) such that the estimate

|ϕ(z)| ≤ M
K,N

(ϕ)(1 + |z|)−N (2.3)

is valid. The best possible constants in (2.3) are given by a family of seminorms in
Hb(T (K))

‖ϕ‖K,N = sup
z∈T (K)

{
(1 + |z|)N |ϕ(z)|

}
<∞ , N = 0, 1, 2, . . . . (2.4)

If K1 ⊂ K2 are two convex compact sets, then Hb(T (K2)) →֒ Hb(T (K1)). Given
that the spaces Hb(T (Ki)) are Fréchet spaces, the space H(T (O)) is characterized as
a projective limit of Fréchet spaces

H(T (O)) = limproj
K⊂O

Hb(T (K)) , (2.5)

where K runs through the convex compact sets contained in O and the projective
limit is taken following the restriction mappings above.

For any element U ∈ H′, its Fourier transform is defined to be a distribution V
of exponential growth, such that the Parseval-type relation

〈V, ϕ〉 = 〈U,ψ〉 , ϕ ∈ H , ψ = F [ϕ] ∈ H , (2.6)

holds. In the same way, the inverse Fourier transform of a distribution V of exponen-
tial growth is defined by the relation

〈U,ψ〉 = 〈V, ϕ〉 , ψ ∈ H , ϕ = F
−1[ψ] ∈ H . (2.7)

Proposition 2.3 ([26]). If f ∈ H(Rn;O), the Fourier transform of f belongs to
the space H(T (O)), for any open convex non-empty set O ⊂ Rn. By the dual Fourier
transform H ′(Rn;O) is topologically isomorphic with the space H′(T (−O)).

Definition 2.4. A tempered ultrahyperfunction is a continuous linear functional
defined on the space of test functions H(T (Rn)) of rapidly decreasing entire functions
in any horizontal strip.

The space of all tempered ultrahyperfunctions is denoted by U (Rn). As a mat-
ter of fact, these objects are equivalence classes of holomorphic functions defined
by a certain space of functions which are analytic in the 2n octants in Cn and
represent a natural generalization of the notion of hyperfunctions on Rn, but are
non-localizable. The space U (Rn) is characterized in the following way [24]: Let
Hω be the space of all functions f(z) such that (i) f(z) is analytic for {z ∈ Cn |
|Im z1| > p, |Im z2| > p, . . . , |Im zn| > p}, (ii) f(z)/zp is bounded continuous in
{z ∈ C

n | |Im z1| ≧ p, |Im z2| ≧ p, . . . , |Im zn| ≧ p}, where p = 0, 1, 2, . . . depends on
f(z) and (iii) f(z) is bounded by a power of z, |f(z)| ≤ M(1+ |z|)N , where M and N
depend on f(z). Define the kernel of the mapping f : H(T (Rn)) → C by Π, as the set
of all z-dependent pseudo-polynomials, z ∈ Cn (a pseudo-polynomial is a function of z
of the form

∑
s z

s
jG(z1, ..., zj−1, zj+1, ..., zn), with G(z1, ..., zj−1, zj+1, ..., zn) ∈ Hω).

Then, f(z) ∈ Hω belongs to the kernel Π if and only if 〈f(z), ψ(x)〉 = 0, with
ψ(x) ∈ H(T (Rn)) and x = Re z. Consider the quotient space U = Hω/Π. The set
U is the space of tempered ultrahyperfunctions. Thus, we have the
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Theorem 2.5 (Hasumi [24], Proposition 5). The space of tempered ultrahyper-
functions U is algebraically isomorphic to the space of generalized functions H′.

Theorem 2.6 (Kernel theorem for tempered ultrahyperfunctions [33]). Let M
be a separately continuous multilinear functional on [H(T (R4))]n. Then there is a
unique functional F ∈ H′(T (R4n)), for all fi ∈ H(T (R4)), i = 1, . . . , n such that
M(f1, . . . , fn) = F (f1 ⊗ · · · ⊗ fn).

Theorem 2.7 ([26, 33]). The space H(T (Rn)) is dense in H(T (O)) and the space
H(T (Rm+n)) is dense in H(T (O)).

3. Tempered ultrahyperfunctions corresponding to a proper convex

cone. In order to prove the theorem Reeh-Schlieder theorem for NCQFT in terms of
tempered ultrahyperfuncions, we shall recall some needed results taken from Refs. [35,
36]. We now shall define the space of holomorphic functions with which this paper
is concerned. We start by introducing some terminology and simple facts concerning
cones. An open set C ⊂ Rn is called a cone if C (unless specified otherwise, all cones
will have their vertices at zero) is invariant under positive homoteties, i.e., if for all
λ > 0, λC ⊂ C. A cone C is an open connected cone if C is an open connected
set. Moreover, C is called convex if C + C ⊂ C and proper if it contains no any
straight line. A cone C′ is called compact in C – we write C′ ⋐ C – if the projection

prC
′ def

= C
′
∩ Sn−1 ⊂ prC

def
= C ∩ Sn−1, where Sn−1 is the unit sphere in Rn. Being

given a cone C in y-space, we associate with C a closed convex cone C∗ in ξ-space
which is the set C∗ =

{
ξ ∈ R

n | 〈ξ, y〉 ≥ 0, ∀ y ∈ C
}
. The cone C∗ is called the dual

cone of C. In the sequel, it will be sufficient to assume for our purposes that the open
connected cone C in Rn is an open convex cone with vertex at the origin and proper.
By T (C) we will denote the set Rn + iC ⊂ Cn. If C is open and connected, T (C)
is called the tubular radial domain in Cn, while if C is only open T (C) is referred
to as a tubular cone. In the former case we say that f(z) has a boundary value
U = BV (f(z)) in H′ as y → 0, y ∈ C or y ∈ C′ ⋐ C, respectively, if for all ψ ∈ H the
limit

〈U,ψ〉 = lim
y→0

y∈C or C′

∫

Rn

f(x+ iy)ψ(x)dnx ,

exists. We will deal with tubes defined as the set of all points z ∈ Cn such that

T (C) =
{
x+ iy ∈ C

n | x ∈ R
n, y ∈ C, |y| < δ

}
,

where δ > 0 is an arbitrary number.
An important example of tubular radial domain used in quantum field theory is

the forward light-cone

V+ =
{
z ∈ C

n | Im z1 >
( n∑

i=2

Im2 zi

) 1

2

, Im z1 > 0
}
.

Let C be an open convex cone, and let C′ ⋐ C. Let B[0; r] denote a closed

ball of the origin in Rn of radius r, where r is an arbitrary positive real number.
Denote T (C′; r) = Rn + i

(
C′ \

(
C′ ∩ B[0; r]

))
. We are going to introduce a space

of holomorphic functions which satisfy certain estimate according to Carmichael [29].
We want to consider the space consisting of holomorphic functions f(z) such that

∣∣f(z)
∣∣ ≤ M(C′)(1 + |z|)NehC∗ (y) , z ∈ T (C′; r) , (3.1)
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where hC∗(y) = supξ∈C∗〈ξ, y〉 is the supporting function of C∗, M(C′) is a constant
that depends on an arbitrary compact cone C′ and N is a non-negative real number.
The set of all functions f(z) which are holomorphic in T (C′; r) and satisfy the estimate
(3.1) will be denoted by H o

c
.

Remark 1. The space of functions H o

c
constitutes a generalization of the space

Ai
ω

of Sebastião e Silva [22] and the space a
ω

of Hasumi [24] to arbitrary tubular
radial domains in C

n.

Lemma 3.1 ([29, 35]). Let C be an open convex cone, and let C′ ⋐ C. Let
h(ξ) = ek|ξ|g(ξ), ξ ∈ Rn, be a function with support in C∗, where g(ξ) is a bounded
continuous function on Rn. Let y be an arbitrary but fixed point of C′ \

(
C′ ∩B[0; r]

)
.

Then e−〈ξ,y〉h(ξ) ∈ L2, as a function of ξ ∈ Rn.

Definition 3.2. We denote by H ′
C∗(Rn;O) the subspace of H ′(Rn;O) of distri-

butions of exponential growth with support in the cone C∗:

H ′
C∗(Rn;O) =

{
V ∈ H ′(Rn;O) | supp(V ) ⊆ C∗

}
. (3.2)

Lemma 3.3 ([29, 35]). Let C be an open convex cone, and let C′ ⋐ C. Let
V = Dγ

ξ [ehK(ξ)g(ξ)], where g(ξ) is a bounded continuous function on Rn and hK(ξ) =

k|ξ| for a convex compact set K =
[
−k, k

]n
. Let V ∈ H ′

C∗(Rn;O). Then f(z) =

(2π)−n
〈
V, e−i〈ξ,z〉

〉
is an element of H o

c
.

We now shall define the main space of holomorphic functions with which this
paper is concerned. Let C be a proper open convex cone, and let C′ ⋐ C. Let B(0; r)
denote an open ball of the origin in Rn of radius r, where r is an arbitrary positive
real number. Denote T (C′; r) = Rn + i

(
C′ \

(
C′ ∩B(0; r)

))
. Throughout this section,

we consider functions f(z) which are holomorphic in T (C′) = Rn + iC′ and which
satisfy the estimate (3.1), with B[0; r] replaced by B(0; r). We denote this space by
H ∗ o

c
. We note that H ∗ o

c
⊂ H o

c
for any open convex cone C. Put Uc = H ∗ o

c
/Π,

that is, Uc is the quotient space of H ∗ o

c
by set of pseudo-polynomials Π.

Definition 3.4. The set Uc is the subspace of the tempered ultrahyperfunctions
generated by H ∗ o

c
corresponding to a proper open convex cone C ⊂ Rn.

A useful property of tempered ultrahyperfunctions corresponding to a proper
cone is the distributional boundary value theorem concerning analytic functions. The
following theorem shows that functions in H ∗ o

c
have distributional boundary values

in H′. Further, it shows that functions in H ∗ o

c
satisfy a strong boundedness property

in H′.
Theorem 3.5 ([36]). Let C be an open convex cone, and let C′ ⋐ C. Let V =

Dγ
ξ [ehK(ξ)g(ξ)], where g(ξ) is a bounded continuous function on Rn and hK(ξ) = k|ξ|

for a convex compact set K =
[
−k, k

]n
. Let V ∈ H ′

C∗(Rn; Rn). Then

(i) f(z) = (2π)−n
〈
V, e−i〈ξ,z〉

〉
is an element of H ∗ o

c
,

(ii)
{
f(z) | y = Im z ∈ C′ ⋐ C, |y| ≤ Q

}
is a strongly bounded set in H′, where

Q is an arbitrarily but fixed positive real number,

(iii) f(z) → F−1[V ] ∈ H′ in the strong (and weak) topology of H′ as y = Im z →
0, y ∈ C′ ⋐ C.
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The functions f(z) ∈ H ∗ o

c
can be recovered as the (inverse) Fourier-Laplace

transform1 of the constructed distribution V ∈ H ′
C∗(Rn; Rn). This result is a gene-

ralization of the Paley-Wiener-Schwartz theorem for the setting of tempered ultrahy-
perfunctions.

Theorem 3.6 ([36]). Let f(z) ∈ H ∗ o

c
, where C is an open convex cone. Then

the distribution V ∈ H ′
C∗(Rn;O) has a uniquely determined inverse Fourier-Laplace

transform f(z) = (2π)−n
〈
V, e−i〈ξ,z〉

〉
which is holomorphic in T (C′) and satisfies the

estimate (3.1), with B[0; r] replaced by B(0; r).

We finish this section with two results proved in Ref. [36], which will be used in
the applications of Section 4.

Theorem 3.7 (Tempered ultrahyperfunction version of edge of the wedge theo-
rem). et C be an open cone of the form C = C1 ∪ C2, where each Cj, j = 1, 2, is a
proper open convex cone. Denote by ch(C) the convex hull of the cone C. Assume
that the distributional boundary values of two holomorphic functions fj(z) ∈ H ∗ o

cj

(j = 1, 2) agree, that is, U = BV (f1(z)) = BV (f2(z)), where U ∈ H′(T (O)) in accor-
dance with the Theorem 3.5. Then there exists F (z) ∈ H o

ch(C) such that F (z) = fj(z)

on the domain of definition of each fj(z), j = 1, 2.

Theorem 3.8. Let C be some open convex cone. Let f(z) ∈ H ∗ o

c
. If the distrib-

utional boundary value BV (f(z)) of f(z) in the sense of tempered ultrahyperfunctions
vanishes, then the function f(z) itself vanishes.

4. Reeh-Schlieder-Type theorem for ultrahyperfunctional quantum

fields.

Definition 4.1. Assume we are given a Hibert space H . According to [33,
Proposition 4.1], we define the space of H valued tempered ultrahyperfunctions to be
the set of all continuous linear mapping from H(T (R4m) to H .

Theorem 4.2. Let Φ be a field operator and Ωo be the vacuum state. For any
non-empty open set X ⊂ R4 the set of vectors of the form

{
Φ(f1) · · ·Φ(fm)Ωo | with fj(x) ∈ H(T (R4)) and x = Re z ∈ X, m ∈ N

}
.

is dense in H .

For our proof of Theorem 4.2, we shall consider analytic functionals in H′(T (R4))
carried by the real space. In this case, every function f(z) ∈ H ∗ o

c
, which for each

y ∈ C′ as a function of x = Re z belongs to H′(T (R4)), is a continuous linear functional
on the space of restrictions to R

4 of functions in H(T (R4)). Then, according to
Theorem 3.5(iii), U = BV (f(z)) the distributional boundary value of f(z) is an
element of H′(T (R4)) carried by R4.

Proof of Theorem 4.2. Denote by Do the minimal common invariant domain,
which is assumed to be dense, of the field operators in the Hilbert space H of states,
i.e., the vector subspace of H that is spanned by the vacuum state Ωo and by the
set of vectors Φ(f1) · · ·Φ(fm)Ωo. Let Ψ ∈ H be orthogonal to all vectors of the form
Φ(f1) · · ·Φ(fm)Ωo ∈ Do. Then, it is required to prove that Ψ is identically zero.

1The convention of signs in the Fourier transform which is used here one leads us to consider the
inverse Fourier-Laplace transform.
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According to Ref. [33],

[
H(T (R4))

]m
∋ (f1, . . . , fm) → 〈Ψ,Φ(f1) · · ·Φ(fm)Ωo〉

is a multilinear functional in each fj ∈ H(T (R4)) separately with all the others
fi ∈ H(T (R4)), i 6= j, kept fixed. However, then the Theorem 2.6 implies that the
functional 〈Ψ,Φ(f1) · · ·Φ(fm)Ωo〉 has a uniquely determined extension to a tempered
ultrahyperfunction F Ψ ∈ Uc(R

4m) such that

F Ψ(f (m)) =

∫
d4z1 · · · d

4zm F
(1)
Ψ (z1, . . . , zm)f (m)(x1, . . . , xm) , (4.1)

for every Ψ ∈ H , where F
(1)
Ψ (z1, . . . , zm) = 〈Ψ,Φ(z1) · · ·Φ(zm)Ωo〉. According to

the arguments of Section IV.C of Ref. [33], the Fourier transform F̂ Ψ vanishes unless
each four-momentum variable lies in the physical spectrum. Hence, we can apply
Theorem 3.6 to conclude that F Ψ is holomorphic in the set T (V ′

+) = R4m + iV ′
+, with

V ′
+ ⋐ V+. Then, by Theorem 3.5, we have that F Ψ|X is the boundary value of F

(1)
Ψ

when V ′
+ ∋ y1 → 0, V ′

+ ∋ (yj − yj−1) → 0, j = 2, . . . ,m. Furthermore the function

F
(2)
Ψ (z1, . . . , zm) = F

(1)
Ψ (z̄1, . . . , z̄m) is holomorphic in the set T (V ′

−) = R4m + iV ′
−,

with V ′
− = −V ′

+ and F Ψ|X is the boundary value of F
(2)
Ψ when V ′

− ∋ y1 → 0, V ′
− ∋

(yj − yj−1) → 0, j = 2, . . . ,m. By hypothesis, F Ψ|X vanishes on a non-empty
open real set x1, . . . , xm ∈ Xm, since Do spans the Hibert space H . Therefore we

can apply the Edge of the Wedge Theorem 3.7 in order to show that F
(1)
Ψ and F

(2)
Ψ

have a common analytic continuation FΨ. Since FΨ vanishes on Xm, it vanishes

together with F
(1)
Ψ identically by Theorem 3.8. This shows that Ψ is even orthogonal

to the set
{
Φ(f1) · · ·Φ(fm)Ωo | fj(x) ∈ H(T (R4)), j = 1, . . . ,m

}
. We conclude that

Ψ ∈ D⊥
o = {0}. This completes the proof of theorem.

In what follows, we give Reeh-Schlieder theorem for NCQFT in the setting of
tempered ultrahyperfunctions. When referring to NCQFT one should have in mind
the deformation of the ordinary product of fields. In terms of complex variables, this
deformation is performed through the star product extended for noncoinciding points
via the functorial relation

ϕ(z1) ⋆ · · · ⋆ ϕ(zn) =
∏

i<j

exp

(
1

2
θµν ∂

∂zµ
i

∂

∂z̄ν
j

)
ϕ(z1) · · ·ϕ(zn) , (4.2)

where the deformation parameter θµν is an antisymmetric tensor, assumed to be a
constant antisymmetric matrix of length dimension 2. This parameter is responsible
by breaking of Lorentz invariance, a basic feature of non-commutative theories.

Remark 2. The functorial relation (4.2) is actually the Moyal-Voros product,
that is more precisely what is used in a holomorphic setting.

For coinciding points z1 = z2 = · · · = zn the product (4.2) becomes identical to
the multiple Moyal ⋆-product. We consider NCQFT in the sense of a field theory
on a non-commutative space-time encoded by a Moyal product. In this point, a few
comments about the NCQFT are in order. Generalizing the Wightman axioms to
NCQFT is not as simple, especially the Poincaré symmetry. It is well known that
due to the constant matrix θ, the Poincaré symmetry is not preserved in NCQFT.
Furthemore, the existence of hard infrared singularities in the non-planar sector of
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the theory can destroy the tempered nature of the Wightman functions. And more,
how can the local commutativity condition be described in a field theory with a
fundamental length? The analysis in Ref. [12] has shown that the sequence of vacuum
expectation values of a NCQFT in terms of tempered ultrahyperfunctions satisfies
a number of specific properties, which actually characterize a NCQFT in terms of
tempered ultrahyperfunctions. We summarize these below (for details see [12]):

P1 W⋆
0 = 1, W⋆

m ∈ H′(T (R4m)) for n ≥ 1, and W⋆
m(f∗) = W⋆

m(f), for all

f ∈ H(T (R4m)), where W⋆
m(z1, . . . , zm)

def
= 〈Ωo | Φ(z1) ⋆ · · · ⋆Φ(zm) | Ωo〉 and

f∗(z1, . . . , zm) = f(z̄1, . . . , z̄m).

P2 The Wightman functionals W⋆
m are invariant under the twisted Poincaré

group

P3 Spectral condition. Since the Fourier transformation of tempered ultrahy-
perfunctions are distributions, the spectral condition is not so much differ-
ent from that of Schwartz distributions. Thus, for every m ∈ N, there is

Ŵ⋆
m ∈ H ′

V ∗(R4m,R4m) [33], where

H ′
V ∗(R4m,R4m) =

{
V ∈ H ′(R4m,R4m) | supp (Ŵ⋆

m) ⊂ V ∗
}
, (4.3)

with V ∗ being the properly convex cone defined by

{
(p1, . . . , pm) ∈ R

4m
∣∣

m∑

j=1

pj = 0,

k∑

j=1

pj ∈ V +, k = 1, . . . ,m− 1
}
,

where V + = {(p0,p) ∈ R4 | p2 ≥ 0, p0 ≥ 0} is the closed forward light cone.

P4 Extended local commutativity condition.

P5 For any finite set fo, f1, . . . , fN of test functions such that fo ∈ C, fj ∈
H(T (R4j)) for 1 ≤ j ≤ N , one has

N∑

k,ℓ=0

W⋆
k+ℓ(f

∗
k ⊗ fℓ) ≥ 0 .

Remark 3. It should be mentioned that the test function space used is closed
under the ⋆-product and that the tempered ultrahyperfunctions W⋆

m ∈ H′(T (R4m))
have been commonly called non-commutative Wightman functions in [12].

Theorem 4.3 (Reeh-Schlieder Theorem for NCQFT). Suppose that the hypothe-
ses of Theorem 4.2 hold except that instead of vectors of the form Φ(f1) · · ·Φ(fm)Ωo,
we have vectors of the form Φ(f1) ⋆ · · · ⋆Φ(fm)Ωo. Then the conclusions of Theorem
4.2 again hold.

Proof. For this purpose, we consider the functional

〈Ψ,Φ(f1) ⋆ · · · ⋆ Φ(fm)Ωo〉 =
∏

i<j

exp

(
1

2
θµν ∂

∂zµ
i

∂

∂z̄ν
j

)
〈Ψ,Φ(f1) · · ·Φ(fm)Ωo〉
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One first notes that the formula above simplifies considerably the proof of the-
orem in the case of NCQFT in terms of tempered ultrahyperfunctions, since
〈Ψ,Φ(f1) · · ·Φ(fm)Ωo〉 is representable by means of holomorphic functions (the holo-
morphy properties of the functions under consideration are discussed in Ref. [12]).
Thus the star product coincides with the regular product of fields

〈Ψ,Φ(f1) ⋆ · · · ⋆ Φ(fm)Ωo〉 = 〈Ψ,Φ(f1) · · ·Φ(fm)Ωo〉 . (4.4)

This means that a NCQFT in terms of tempered ultrahyperfunctions is unchanged
by the deformation of the product. Therefore, the conclusions of Theorem 4.2 again
hold.

Remark 4. In [10] the Wightman functions were written as follows:

W⋆̃
m(z1, . . . , zm)

def
= 〈Ωo | Φ(z1)⋆̃ · · · ⋆̃Φ(zm) | Ωo〉 ,

where the meaning of ⋆̃ depends on the considered case. In particular, if ⋆̃ = 1,
we obtain the standard form Wm(z1, . . . , zm) = 〈Ωo | Φ(z1) · · ·Φ(zm) | Ωo〉 adopted
in [6]. On the other hand, if ⋆̃ = ⋆, this choice corresponds to the Wightman func-
tions introduced in [7]. In this case, the non-commutativity is manifested not only at
coincident points but also in their neighborhood. The Equation (4.4) reflects the fact
that the axiomatic approach to the NCQFT in terms of tempered ultrahyperfunctions
is independent of the concrete type of the ⋆̃-product (similar conclusion was obtained
in [10]).

5. Final Considerations. In the present paper, we consider a quantum field
theory in terms of the tempered ultrahyperfunctions of Sebastião e Silva corresponding
to a convex cone, within the framework formulated by Wightman. Tempered ultrahy-
perfunctions are representable by means of holomorphic functions. As is well known
there are certain advantages to be gained from the representation of distributions
in terms of holomorphic functions. In particular, for non-commutative theories the
product of fields involving the ⋆-product has the same form as the ordinary product
of fields (effects of non-commutativity are nontrivial in the formula with real vari-
ables). In light of this result, we show that the Reeh-Schlieder property, proved in the
framework of local QFT, also holds for states of quantum fields on non-commutative
space-times.
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