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1. Introduction. In this paper, we consider the question of the preservation of

convexity of the Cauchy problem for fully nonlinear integro-differential equation

(1.1) ut = F (∇2u,∇u, u, x, t) + Bu, (x, t) ∈ R
n × [0, T ],

where F = F (r, p, u, x, t) is a given function in Γ = Sn × R
n × R × R

n × [0, T ], Sn

denotes the space of real symmetric n × n matrices, and Bu is a integro-differential

operator as follows

(1.2) Bu = λ(t)

∫

1

0

(u(x+ ψ(x, t, η), t) − u(x, t) − ψ(x, t, η) · ∇u(x, t))dη,

here λ(t) is a given nonnegative function, ψ(x, t, η) is a given function in R
n× [0, T ]×

[0, 1].

Equations (1.1) are second order fully nonlinear integro-differential equations of

parabolic type. These equations are derived from the pricing problem of financial

derivatives and optimal portfolio selection problem in a market where underlying as-

sets prices are modeled by a Lévy process S(τ) (Chapter 9 in [14], see also [6], [16] and

[3]). A typical example for the European option pricing problem in one-dimensional

is as follows. Let (Wτ )τ≥0 be the standard Brownian motion, (Nτ )τ≥0 be Poisson

process with parameter λ and (Uj)j≥1 be a sequence of square integrable indepen-

dent, identically distributed random variables, with values in (−1,+∞). Assume the

Lévy process S(τ) evolves according to the following stochastic differential equation

(1.3) dS(τ) = S(τ)(µdτ + σdWτ + d(

Nτ
∑

j=1

Uj)),

where µ, σ are the drift and volatility respectively. Furthermore, we assume the

processes (Wτ )τ≥0, (Nτ )τ≥0, (Uj)j≥1 are independent. Let p̂(ξ) be the probability

density function of random variable U1, thus price function V (s, τ) of European option

with finite horizon T satisfies the following linear equation

(1.4)
∂V

∂τ
+
σ2

2
s2
∂2V

∂s2
+ (r − λk)s

∂V

∂s
− (r + λ)V + λ

∫ ∞

−1

V (s(1 + ξ), τ)p̂(ξ)dξ = 0,
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(s, τ) ∈ (0,∞) × [0, T ), where k =
∫ ∞

−1
ξp̂(ξ)dξ and V (s, T ) = payoff. Moreover, if we

change variables to x = ln s, t = T − τ and u(x, t) = V (s, τ) we get

(1.5)
∂u

∂t
=
σ2

2

∂2u

∂x2
+ (r − λk − σ2

2
)
∂u

∂x
− (r + λ)u + λ

∫ ∞

−∞

u(x+ η, t)p(η)dη,

(x, t) ∈ R × (0, T ], here p(η) = eηp̂(eη − 1).

When we consider the option pricing with transaction costs and the optimal

portfolio selection problem, the related equations become nonlinear equations, such

as Hamilton-Jacobi-Bellman equations ([17], [2] and [3]).

The convexity preserving is connected to certain monotonicity properties of the

option price with respect to volatility and other parameters in model ([7], [8] and

references therein). This robustness properties motivates the study of convexity pre-

serving. On the other hand, convexity of solution has important applications in the

financial market completeness and super-replication ([15], [18]). We refer [11, 5, 4] for

applications of convexity principles in differential geometry.

The problem of convexity preserving for solutions of linear equations has been

studied extensively ([12], [7], [8] and references therein). In [12], S. Janson and J.

Tysk obtained convexity preserving for linear parabolic differential equations. In [7]

and [8], E. Ekstrom and J. Tysk discussed convexity preserving in the case of one

spatial variable and several spatial variables for linear parabolic integro-differential

equations. S. Lenhart [13] discussed the a-priori estimate and existence for strong

solutions of linear parabolic integro-differential equations.

The main focus of this paper is to study the preservation of convexity of fully
nonlinear parabolic integro-differential equation (1.1). We address both macro and

micro convexity properties of solution to equation (1.1). We assume F = F (r, p, u, x, t)
is elliptic in the sense that

(1.6) (
∂F

∂rαβ
(∇2u,∇u, u, x, t)) > 0, ∀(x, t) ∈ R

n × [0, T ].

Suppose the function ψ = ψ(x, t, η) ∈ C2
(R

n
) and ψ satisfies conditions

(1.7) ψtAψzz ≥ 0

for any semi-positive definite matrix A and for any unit direction z ∈ R
n

(where ψt

is the transport of ψ and ψzz = ψxixj
zizj), and

(1.8) |ψ(x, t, η)| ≤M(1 + |x|), |∇xψ(x, t, η)| ≤M, |∇2

xxψ(x, t, η)| ≤ M

1 + |x| .

In this paper, we consider the Cauchy problem for equation (1.1) with given initial

date u(x, 0), x ∈ R
n
. Define

Cpol = ∪m,M>0{u ∈ C(R
n × [0, T ])||u(x, t)| ≤M(1 + |x|m)}.

We would like to find conditions on the functions F (r, p, u, x, t) and ψ(x, t, η) that

guarantee that Cpol solutions to the equation (1.1) remain convex if the initial condi-

tion is a convex function. Throughout this paper, we say u(x, t) is convex means that

u(x, t) is a convex function in the spatial variable x for each t fixed.

We now state our main results. The first is of macro nature.
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Theorem 1.1. Assume (1.7) and (1.8) hold. Suppose the function F =

F (r, p, u, x, t) ∈ C2,1
(Γ) satisfies conditions (1.6) and

n = 1, F (0, p, u, x, t) is locally convex in (p, u, x) for each t fixed, or

n ≥ 2, F (r, p, u, x, t) is locally convex in (r, p, u, x) for each t fixed.(1.9)

If u ∈ C4,2 is a solution of equation (1.1), ∇2u ∈ Cpol, and there are constant M
such that

|F rij (∇2u,∇u, u, x, t)| ≤M(1 + |x|2), |F pk(∇2u,∇u, u, x, t)| ≤M(1 + |x|),
Fu

(∇2u,∇u, u, x, t) ≤M.(1.10)

Then u(x, t) is convex provided the initial date u(x, 0) is convex.

The following is a micro-convexity result for solutions of equation (1.1). In this

case, conditions in Theorem 1.1 can be relaxed.

Theorem 1.2. Suppose F = F (r, p, u, x, t) ∈ C2,1
(Sn ×R

n ×R×Ω× (0, T )) for
some domain Ω ⊂ R

n and for some T > 0, and suppose F satisfies conditions (1.6),
(1.9) and (1.7). Let u ∈ C4,2 be a convex solution of equation (1.1), then at each
time t > 0, rank of ∇2

xu(x, t) is constant. If let l(t) = minx∈Ω{rank of ∇2

xu(x, t)},
then l(s) ≤ l(t) for any s ≤ t < T .

The rest of this paper is organized as follows. In section 2, we prove Theorem 1.2

following arguments in [4]. We prove Theorem 1.1 in section 3. The last section is

devoted to preservation of convexity of solutions for parabolic Bellman equations.

Acknowledgements. We would like to thank the referee for valuable sugges-

tions.

2. A Constant Rank Theorem. In this section, we consider second order fully

nonlinear differential equations of parabolic type

(2.1) ut = F (∇2u,∇u, u, x, t), (x, t) ∈ Ω × [0, T ],

where Ω ⊂ R
n

is a domain. We assume u ∈ C4,2
(Ω × [0, T ]) is a convex solution of

equation (2.1) and will prove a constant rank theorem.

LetW (x, t) = ∇2u(x, t) and l = min
(x,t)∈Ω×[0,T ]

rank(∇2u(x, t)). We may assume

l ≤ n− 1. We define for W = (uij) ∈ Sn

q(W ) =

{

σl+2(W )

σl+1(W )
, if σl+1(W ) > 0

0, if σl+1(W ) = 0
(2.2)

and

(2.3) φ = σl+1(W ) + q(W ).

As in [4], we have

Proposition 2.1. Let u ∈ C4,2
(Ω × [0, T ]) be a convex function and

W (x, t) = (uij(x, t)). Let l = min
(x,t)∈Ω×[0,T ]

rank(W (x, t)), then the function
q(x, t) = q(W (x, t)) defined in (2.2) is in C1+1,0+1

(Ω × [0, T ]).
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For any n, we denote Sn
to be the set of all real symmetric n× n matrices, and

denote Sn
+
⊂ Sn

to be the set of all positive definite symmetric n × n matrices. Let

On be the space consisting all n× n orthogonal matrices. Let 0 ≤ l ≤ n we define

Sl = {Q
(

0 0

0 B

)

QT | ∀Q ∈ On, ∀B ∈ Sl },

and for given Q ∈ On,

Sl(Q) = {Q
(

0 0

0 B

)

QT | ∀B ∈ Sl },

therefore Sl, Sl(Q) ⊂ Sn
and S0 = 0, Sn = Sn

. For any function F (r, p, u, x, t), we

denote

Fαβ
=

∂F

∂rαβ
, F pk =

∂F

∂pk
, Fu

=
∂F

∂u
, F xi =

∂F

∂xi
,

Fαβ,γη
=

∂2F

∂rαβ∂rγη
, Fαβ,pk =

∂2F

∂rαβ∂pk
, Fαβ,u

=
∂2F

∂rαβ∂u
,

Fαβ,xk =
∂2F

∂rαβ∂xk
, F pk,pl =

∂2F

∂pk∂pl
, F pk,u

=
∂2F

∂pk∂u
,

F pk,xj =
∂2F

∂pk∂xj
, Fu,u

=
∂2F

∂2u
, Fu,xi =

∂2F

∂u∂xi
, F xi,xj =

∂2F

∂xi∂xj
.(2.4)

Let 0 ≤ l ≤ n− 1, B ∈ Sl
+
, A = B−1

and

B̃ =

(

0 0

0 B

)

, Ã =

(

0 0

0 A

)

.

For any fixed Q ∈ On and X̃ = (X,Y, z) ∈ Sl(Q) × R × R
n
, we define a quadratic

form

Q∗
(X̃, X̃) =

n
∑

i,j,k,l=1

[F ij,klXijXkl + 2F ij
(QÃQT

)klXikXjl] − 2

n
∑

i,j=1

F ij,uXijY

−2

n
∑

i,j,k=1

F ij,xkXijzk + Fu,uY 2

+ 2

n
∑

i=1

Fu,xiY zi +

n
∑

i,j=1

F xi,xjzizj ,(2.5)

where F ij,kl, F ij , Fu,u, F ij,u, F ij,xk , Fu,xi , F xi,xj are evaluated at

(QB̃QT ,∇u(x, t), u, x, t). We assume

(2.6) Q∗
= Q∗

(X̃m, X̃m
) ≥ 0, m = 1, · · · , n− l,

for any fixed 0 ≤ l ≤ n − 1, B̃, Ã, Q, X̃m = (X,Y, zm
) ∈ Sl(Q) × R × R

n
and

zm
= (Q1m, · · · , Qnm).

Remark 2.2. Condition (2.6) is weaker than condition (1.9). In particular (2.6)

is empty condition in r when n = 1.

Theorem 2.3. Suppose F = F (r, p, u, x, t) ∈ C2,1
(Γ) and F satisfies conditions

(1.6) and (2.6). Let u ∈ C4,2 be a convex solution of equation (2.1) in Ω × [0, T ).
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For each T > t > 0, let l(t) be the minimal rank of ∇2u(x, t) in Ω. Then, the rank of
∇2u(x, t) is constant for each T > t > 0 and l(s) ≤ l(t) for all s ≤ t < T .

Proof. The proof is similar to the proof of Theorem 3.2 in [4] with some minor

modifications.

Let u ∈ C4,2
be a convex solution of equation (2.1) and W (x, t) = (uij(x, t)).

For each t0 > 0, suppose W = ∇2u(x, t0) attains minimal rank l at some point

x0 ∈ Ω. We may assume l ≤ n−1, otherwise there is nothing to prove. By continuity,

σl(uij(x, t)) > 0 in a neighborhood of (x0, t0). As in [4], we pick an open neighborhood

O ⊂ Ω × [0, T ) of (x0, t0), for any (x, t) ∈ O, let G = {n− l + 1, n− l + 2, ..., n} and

B = {1, ..., n− l} be the “good” and “bad” sets of indices for eigenvalues of ∇2u(x, t)
respectively.

Setting φ as (2.3), then we see from Proposition (2.1) that φ ∈ C1+1,0+1
(O) ,

φ(x, t) ≥ 0, φ(x0, t0) = 0

and there is a constant C > 0 such that for all (x, t) ∈ O,

1

C
σ1(B)(x, t) ≤ σl+1(W )(x, t) ≤ Cσ1(B)(x, t),

1

C
σ1(B)(x, t) ≤ φ(x, t) ≤ Cσ1(B)(x, t).

We will derive the following differential inequality (2.7) for φ. Then this theorem

follows from the strong maximum principle.

(2.7)

∑

Fαβφαβ(x, t) − φt(x, t) ≤ C1φ(x, t) + C2|∇φ(x, t)|.

We shall fix a point (y, τ) ∈ O and prove inequality (2.7) at (y, τ). For each

(y, τ) ∈ O fixed, letting λ1 ≤ λ2... ≤ λn be the eigenvalues of W (y, τ) = (uij(y, τ)),
we can rotate coordinate so that W (y, τ) = (uij(y, τ)) is diagonal, and uii(y, τ) =

λi, i = 1, · · · , n. We note that all quantities involving g, q and φ are invariant under

rotation.

Again, as in [4], we will avoid to deal with σl+1(W ) = 0 by considering for

Wǫ for ǫ > 0 sufficient small, with Wǫ = W + ǫI, Gǫ = (λn−l+1 + ǫ, ..., λn + ǫ),
Bǫ = (λ1 + ǫ, ..., λn−1 + ǫ). We note that Wǫ is the Hessian of function uǫ(x, t) =

u(x, t) +
ǫ
2
|x|2. This function uǫ(x, t) satisfies equation

(2.8) (uǫ)t − F (∇2uǫ,∇uǫ, uǫ, x, t) = −Rǫ,

where Rǫ = Rǫ(x, t) = F (∇2uǫ,∇uǫ, uǫ, x, t)−F (∇2u,∇u, u, x, t). Since u ∈ C4,2
, we

have

(2.9) |Rǫ| ≤ Cǫ, |∇Rǫ| ≤ Cǫ, |∇2Rǫ| ≤ Cǫ, ∀(x, t) ∈ O.

We will work on equation (2.8) to obtain a differential inequality for φǫ

(2.10)

∑

Fαβφαβ(y, τ) − φt(y, τ) ≤ C1φ(y, τ) + C2|∇φ(y, τ)| +O(ǫ).

The differential inequality (2.7) will follow from (2.10) by letting ǫ → 0. Set v = uǫ,

in the rest of this section, we will write q for qǫ, W for Wǫ, G for Gǫ and B for Bǫ
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with the understanding that all the estimates will be independent of ǫ. We note that

v satisfies equation (2.8).

We differentiate equation (2.8) in xi, by (2.9), thereby obtaining equation

(2.11)

∑

αβ

Fαβvαβi +

∑

k

F pkvki + F vvi + F xi = vi,t +O(ǫ),

and differentiate equation (2.8) twice with respect to the variables xi and xj , we have

∑

αβ

Fαβvαβij +

∑

αβ

vαβi(

∑

γη

Fαβ,γηvγηj +

∑

k

Fαβ,pkvkj + Fαβ,vvj + Fαβ,xj)

+

∑

k

F pkvkij +

∑

k

vki(

∑

αβ

F pk,αβvαβj +

∑

l

F pk,plvlj + F pk,vvj + F pk,xj)

+F vvij + vi(

∑

αβ

F v,αβvαβj +

∑

l

F v,plvlj + F v,vvj + F v,xj)

+

∑

αβ

F xi,αβvαβj +

∑

k

F xi,pkvkj + F xi,vvj + F xi,xj = vij,t +O(ǫ).(2.12)

A simple computation yields

φα =
∂φ

∂xα
= φijvijα

φαβ =
∂2φ

∂xα∂xβ
= φijvijαβ + φij,kmvijαvkmβ ,

and accordingly

∑

Fαβφαβ =

∑

Fαβφijvijαβ +

∑

Fαβφij,kmvijαvkmβ

=

∑

Fαβφij,kmvijαvkmβ −
∑

φijF pkvkij

−
∑

φij
[F vvij + 2

∑

Fαβ,pkvαβivkj +

∑

F pk,plvkivlj

+2

∑

F pk,vvkivj + 2

∑

F pk,xjvki]

−
∑

φij
[Fαβ,γηvαβivγηj + 2

∑

Fαβ,vvαβivj + 2

∑

Fαβ,xjvαβi

+

∑

F v,vvivj + 2

∑

F v,xjvj +

∑

F xixj ] +O(ǫ) +

∑

φijvij,t.(2.13)

We note that φt =
∑

φijvij,t, equation (2.13) can be written as

∑

Fαβφαβ − φt =

∑

Fαβφij,kmvijαvkmβ −
∑

φijF pkvkij

−
∑

φij
[F vvij + 2

∑

Fαβ,pkvαβivkj +

∑

F pk,plvkivlj

+2

∑

F pk,vvkivj + 2

∑

F pk,xjvki]

−
∑

φij
[Fαβ,γηvαβivγηj + 2

∑

Fαβ,vvαβivj + 2

∑

Fαβ,xjvαβi

+

∑

F v,vvivj + 2

∑

F v,xjvj +

∑

F xixj ] +O(ǫ).(2.14)
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We estimate for i ∈ B

Ji = [

∑

α,β,γ,η∈G

Fαβ,γηviαβviγη + 2

∑

α,β∈G

Fαβ
∑

j∈G

1

λj
vijαvijβ

+2

∑

α,β∈G

Fαβ,vviαβvi + 2

∑

α,β∈G

Fαβ,xiviαβ + F v,vv2

i + 2F v,xivi + F xi,xi ],(2.15)

where functions F ij,kl, F ij , Fu,u, F ij,u, F ij,xk , Fu,xi , F xi,xj are evaluated at

(∇2v(y, τ),∇v(y, τ), v(y, τ), y, τ).

Since F ∈ C2,1
and vij = δijλi at (y, τ) , we conclude that

Ji = [

∑

α,β,γ,η∈G

Fαβ,γηviαβviγη + 2

∑

α,β,γ,η∈G

FαβÃγηviαγviβη + 2

∑

α,β∈G

Fαβ,vviαβvi

+2

∑

α,β∈G

Fαβ,xiviαβ + F v,vv2

i + 2F v,xivi + F xi,xi ] +O(φ),

where F ij,kl, F ij , Fu,u, F ij,u, F ij,xk , Fu,xi , F xi,xj are evaluated at

(B̃,∇v(y, τ), v(y, τ), y, τ) and B̃ = diag(0, · · · , 0, λn−l+1, · · · , λn). Now let’s set

Xαβ = 0, α ∈ B or β ∈ B, Xαβ = viαβ otherwise, Y = −vi and zk = −δki. Then

(Xαβ) ∈ Sl(identity matrix). Noting all quantities are under a rotation Q. By

condition (2.6), we infer that

Ji ≥ −Cφ.

Now the same argument in the proof of Theorem 3.2 in [4] yields (2.10). Taking

ǫ→ 0 and applying the strong maximum principle for parabolic equation, we conclude

that φ vanishes everywhere Ω× [0, t0]. In particular, σl+1(uij(x, t)) ≡ 0 in Ω× [0, t0].

Let us come back to prove Theorem 1.2.

Proof of Theorem 1.2. Let

(2.16) F̃ (r, p, u, x, t) = F (r, p, u, x, t)+λ(t)

∫

1

0

(u(x+ψ(x, t, η), t)−u−ψ(x, t, η)·p)dη,

then F̃ satisfies conditions conditions (1.6) and (2.6) whenever (1.7) holds and u(x, t)
is a convex function.

3. Convexity Preserving for Fully Nonlinear Parabolic Integro-

differential Equations. We prove Theorem 1.1 in this section. Since we are dealing

the problem in the whole ambient space R
n
, we need certain growth conditions spec-

ified in Theorem 1.1 to construct a barrier to gain control at ∞.

Proof of Theorem 1.1. Suppose u ∈ C4,2
(R

n × [0, T ]) is a solution of equation

(1.1), ∇2u ∈ Cpol. Let m be an positive constant chosen so large that |∇2u(x, t)| =

O(1+ |x|m). Set g(x) = (1+ |x|2)m
2

+1+α, α > 0 and w(x, t) = eKtg(x). Let ǫ > 0 and

define

uǫ
(x, t) = u(x, t) + ǫw(x, t).
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Let λ(x, t) = λǫ(x, t) be the smallest eigenvalue of ∇2uǫ
(x, t) and define

E = {(x, t) ∈ R
n × [0, T ]|λ(x, t) ≤ 0}.

Suppose that E 6= ∅. Simple computation yields

∇2g(x) ≥ ((1 + |x|2)m
2

+αδij)

therefore

λ(x, t) ≥ ǫeKt
(1 + |x|2)m

2
+α −O(1 + |x|m).

Hence there is a constant R = Rǫ such that λ(x, t) > 0 for |x| ≥ R. Thus E ⊆
BR × [0, T ] and is compact. Let

t0 = min{t ≥ 0|(x, t) ∈ E for some x ∈ R
n}.

This minimum is attained and thus (x0, t0) ∈ E and λ(x0, t0) ≤ 0 for some x0 ∈ BR.

We have ∇2uǫ
(x, 0) ≥ ǫ∇2g(x) > 0 from the convexity of u(x, 0), hence t0 > 0

by the continuity. Since λ(x, t) > 0 for all 0 < t < t0 and x ∈ R
n
, λ(x, t0) ≥ 0

for all x ∈ R
n

by the continuity. Consequently, uǫ
(x, t) is convex in BR × [0, t0] but

λ(x0, t0) = 0. Hence the Hessian ∇2uǫ
(x, t) attains minimum rank l ≤ n− 1 at some

point (x1, t0) for some x1 ∈ BR.

Function uǫ
(x, t) satisfies equation

(3.1) uǫ
t = Fǫ(∇2uǫ,∇uǫ, uǫ, x, t) + Buǫ,

where

(3.2) Fǫ(r, p, u, x, t) = F (r − ǫ∇2w, p− ǫ∇w, u− ǫw, x, t) + ǫ(wt − Bw).

We need the following lemma.

Lemma 3.1. Assume conditions (1.8), (1.6), (1.9) and (1.10) hold. Then we
can choose constant K such that Fǫ satisfies conditions (1.6) and (2.6).

If this lemma is true, applying Theorem 1.2, we deduce that the rank of Hessian

∇2uǫ
(x, t) is constant in BR × (0, t0]. This is a contradiction and hence E = ∅.

Therefore ∇2uǫ
(x, t) > 0 for all (x, t) ∈ R

n × [0, T ] and this implies the convexity of

u(x, t). Therefore, we need to verify Lemma 3.1.

Proof of Lemma 3.1. It is clear that Fǫ is elliptic. The remainder is to check

condition (2.6) for Fǫ and any given 0 ≤ l ≤ n − 1, B̃, Ã, Q ∈ On, X̃ = (X,Y, z) ∈
Sl(Q) × R × R

n
and z = zm

= (Q1m, · · · , Qnm) for all m = 1, · · · , n − l. A direct

computation yields

F ij
ǫ (r, p, u, x, t) = F ij

(r − ǫ∇2w, p− ǫ∇w, u− ǫw, x, t), Fu
ǫ = Fu,

F xk
ǫ = F ij

(−ǫwkij) + F pi(−ǫwki) + Fu
(−ǫwk) + F xk + ǫ(wtk − (Bw)xk

),

other derivatives can be calculated in a similar way. Substituting these into Q∗
=

Q∗
m(ǫ) defined in (2.5), we get

Q∗
=

n
∑

i,j,k,l=1

F ij,kl
ǫ XijXkl + 2

n
∑

i,j,k,l=1

F ij
ǫ (QÃQT

)klXikXjl − 2

n
∑

i,j=1

F ij,u
ǫ XijY

−2

n
∑

i,j,k=1

F ij,xk
ǫ Xijzk + Fu,u

ǫ Y 2

+ 2

n
∑

i=1

Fu,xi
ǫ Y zi +

n
∑

i,j=1

F xi,xj
ǫ zizj

= I1 + I2 + I3,(3.3)
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where F ij,kl
ǫ , F ij

ǫ , F
u,u
ǫ , F ij,u

ǫ , F ij,xk
ǫ , Fu,xi

ǫ , F
xi,xj
ǫ are evaluated at

(QB̃QT ,∇u(x, t), u, x, t) and

I1 =

n
∑

i,j,k,l=1

F ij,kl
(Xij + ǫwzij)(Xkl + ǫwzkl)

+2

n
∑

i,j,k=1

F ij,pk(Xij + ǫwzij)(ǫwzk) + 2

n
∑

i,j=1

F ij,u
(Xij + ǫwzij)(−Y + ǫwz)

+2

n
∑

i,j,k=1

F ij,xk(Xij + ǫwzij)(−zk) +

n
∑

k,l=1

F pk,pl(ǫwzk)(ǫwzl)

+2

n
∑

k

F pk,u
(ǫwzk)(−Y + ǫwz) + 2

n
∑

k,i=1

F pk,xi(ǫwzk)(−zi) + Fu,u
(−Y + ǫwz)

2

+2

n
∑

i=1

Fu,xi(−Y + ǫwz)(−zi) +

n
∑

i,j=1

F xi,xj(−zi)(−zj),

I2 = 2

n
∑

i,j,k,l=1

F ij
(QÃQT

)klXikXjl,

I3 = ǫ(wtzz −
n

∑

i,j

F ijwzzij −
n

∑

k=1

F pkwzzk − Fuwzz − (Bw)zz),

where functions F ij,kl, F ij , Fu,u, F ij,u, F ij,xk , Fu,xi , F xi,xj are assumed their values

at the point (QB̃QT − ǫ∇2w, p − ǫ∇w, u − ǫw, x, t). It follows that from conditions

(1.9) and (1.6)

I1 ≥ 0, I2 ≥ 0.

Since for |z| = 1,

gzz ≥ (1 + |x|2)m
2

+α

and

|∇2g| + (1 + |x|)|∇3g| + (1 + |x|2)|∇4g| ≤ C(1 + |x|2)m
2

+α.

We have, from condition (1.8)

(Bg)zz = O((1 + |x|2)m
2

+α
)

and from condition (1.10)

n
∑

i,j

|F ijgzzij | +
n

∑

k=1

|F pkgzzk| + Fugzz ≤ C(1 + |x|2)m
2

+α.

We consequently obtain

wtzz −
n

∑

i,j

F ijwzzij −
n

∑

k=1

F pkwzzk − Fuwzz − (Bw)zz

= eKt
(Kgzz −

n
∑

i,j

F ijgzzij −
n

∑

k=1

F pkgzzk − Fugzz − (Bg)zz) ≥ 0
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if K is large enough. This implies I3 ≥ 0 and the lemma is proved. This completes

the proof of Theorem 1.1.

Remark 3.2. As we mentioned that most of the conditions imposed in Theorem

1.1 are for the purpose of constructing certain barrier at ∞. For example equation

(1.5)

(3.4) Bu = λ(t)

∫ ∞

−∞

u(x+ η, t)p(η)dη,

Theorem 1.1 is true with conditions (1.7) and (1.8) replaced by

(3.5)

∫ ∞

−∞

(1 + |η|)mp(η)dη <∞, ∀m > 0.

It is clear that the result in Theorem 1.1 can be proved under weaker conditions using

the same arguments in the proof, but conditions in Theorem 1.1 are simpler though

not as general.

4. Parabolic Bellman Equations. In this section, we consider parabolic Bell-

man equations

(4.1) ut = sup
α∈A

{Lαu+ fα} + Bu, (x, t) ∈ R
n × [0, T ],

where index set A = {1, 2, · · · } and Lα
is a linear operator

Lαu = aα
ijuij + bαi ui + cαu.

Assume that aα
ij , f

α ∈ C3,0
(R

n × [0, T ]), Lα
is elliptic in the sense

(4.2) aα
ij(x, t)ξiξj ≥ λ|ξ|2, ∀(x, t) ∈ R

n × [0, T ], ξ ∈ R
n

λ > 0 and there is a constant M such that

(4.3) |aα
ij(x, t)| ≤M(1 + |x|2), |∇xa

α
ij(x, t)| ≤M(1 + |x|)

for all α ∈ A. We assume that n = 1 or n ≥ 2 and

(4.4) (∇2

zza
α
ij)(QB̃Q

T
)ij + 2

n
∑

i,j=1

(∇za
α
ij)Xij + 2

n
∑

i,j,k,l=1

aα
ij(QÃQ

T
)klXikXjl ≥ 0,

for any fixed 0 ≤ l ≤ n − 1, B̃, Ã, Q ∈ On, X̃ = (X,Y, z) ∈ Sl(Q) × R × R
n

and

zm
= (Q1m, · · · , Qnm), m = 1, · · · , n− l. In addition, suppose

(4.5) bαi (x, t) = bαij(t)xj , c
α
(x, t) = cα(t), bαij , c

α ∈ C[0, T ].

and bαij , c
α

are bounded uniformly.

Theorem 4.1. Assume (1.7) and (1.8) hold. Suppose fα is convex and condi-
tions (4.2), (4.3), (4.4), (4.5) hold. If u ∈ C4,2

(R
n × [0, T ]) is a solution of (4.1),

∇2u ∈ Cpol, then u(x, t) is convex provided the initial date u(x, 0) is convex.

Proof. The proof is similar to the proof of Theorem 1.1, we only indicate some

necessary modifications. Since Bellman operator in (4.1) is not smooth in its argu-

ments, we first need to mollify it as in [10]. We will apply our analysis in the previous
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section on mollified operators to obtain convexity of the solution to these modified

equations. The convexity of the original solution would follow directly by taking the

limit.

Let

Gk
0
(y) = max{y1, · · · , yk}

and

Gk
h(y) = h−k

∫

Rk

ρ(
y − z

h
)Gk

0
(z)dz

where ρ is a mollifier on R
k
. Since Gk

0
(y) is convex, it follows that Gk

h(y) is also

convex. Furthermore we have

(4.6) 0 ≤ ∇αG
k
h(y) ≤ 1,

k
∑

α=1

∇αG
k
h(y) = 1.

The convexity of solution of Bellman equation (4.1) can be treated by approximation

of solution uh,k of equation

(4.7) ut = Fh,k(∇2u,∇u, u, x, t) + Bu,

where

Fh,k(r, p, u, x, t) = Gk
h(L1u+ f1, · · · ,Lku+ fk

).

In the rest of this section, we will write G for Gk
h, F for Fh,k and u for uh,k.

We use the same notations as in the proof of Theorem 1.1. As before, we set Fǫ as

in equation (3.2), check conditions on Fǫ and apply Theorem 1.2. It is clear that Fǫ

is elliptic. The remainder is to check (2.6) for any fixed 0 ≤ l ≤ n− 1, B̃, Ã, Q ∈ On,

X̃m = (X,Y, zm
) ∈ Sl(Q) × R × R

n
and zm

= (Q1m, · · · , Qnm), m = 1, · · · , n− l.
We obtain by computation

F ij
= Gαa

α
ij , F

pi = Gαb
α
i , F

u
= Gαc

α, F xk = Gα(aα
ijrij + bαi pi + cαu+ fα

)xk
,

F ij,kl
= Gαβa

α
ija

β
kl, F

ij,pk = Gαβa
α
ijb

β
k , F

ij,u
= Gαβa

α
ijc

β ,

F ij,xk = Gαβa
α
ij(a

α
ijrij + bαi pi + cαu+ fα

)xk
+Gα(aα

ij)xk
,

other derivatives can be calculated in a similar way.

Substitute the above into (3.3) and divide Q∗
= Q∗

m(ǫ) = J1 + J2 + J3 as follows

J1 =

∑

α,β

Gαβ{aα
ij(Xij + ǫwzij) + bαi (ǫwzi) + cα(−Y + ǫwz)

−[(∇za
α
ij)(QB̃Q

T
)ij + (∇zb

α
i )ui + (∇zc

α
)u+ ∇zf

α
]} ×

{aβ
ij(Xij + ǫwzij) + bβi (ǫwzi) + cβ(−Y + ǫwz)

−[(∇za
β
ij)(QB̃Q

T
)ij + (∇zb

β
i )ui + (∇zc

β
)u+ ∇zf

β
]},

J2 =

∑

α

Gα[(∇zza
α
ij)(QB̃Q

T
)ij + (∇zzb

α
i )ui + (∇zzc

α
)u+ ∇zzf

α − 2(∇za
α
ij)Xij

+2(∇zc
α
)(Y − ǫwz) + 2aα

ij(QÃQ
T
)klXikXjl],

J3 = ǫ[wtzz − (Bw)zz −
∑

α

Gα(aα
ijwzzij + bαi wzzi + cαwzz + 2(∇za

α
ij)wzij + (∇zb

α
k )wzk]
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Following the same lines of proof in the last section, we only need to check Ji ≥ 0

for i = 1, 2, 3. By the convexity of G(y), J1 ≥ 0. From (4.5), we deduce

J2 = Gα[(∇2

zza
α
ij)(QB̃Q

T
)ij − 2(∇za

α
ij)Xij + 2aα

ij(QÃQ
T
)klXikXjl + ∇2

zzf
α
].

Consequently, J2 ≥ 0 by (4.4)(note that X can be replaced by −X in (4.4)) and the

convexity of fα
. As in the previous section, by (4.6), (4.3), (4.5), (1.7) and (1.8), we

obtain

Kgzz − (Bg)zz −Gα(aα
ijgzzij + bαkgzzk + cαgzz + 2(∇za

α
ij)gzij + 2(∇zb

α
k )gzk] ≥ 0

if K is large enough. Hence J3 ≥ 0. This completes the proof.

Remark 4.2. Theorem 4.1 is still true if the index set A is a separable metric

space. Moreover, under similar conditions, we can also get the convexity preserving

for following equation

(4.8) ut = sup
α∈A

{Lαu+ fα
+ B

αu}, (x, t) ∈ R
n × [0, T ],

where

B
αu = λα

(t)

∫

1

0

(u(x+ ψα
(x, t, η), t) − u(x, t) − ψα

(x, t, η) · ∇u(x, t))dη.
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