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1. Introduction. In this paper, we consider the question of the preservation of
convexity of the Cauchy problem for fully nonlinear integro-differential equation

(1.1) uy = F(V?u, Vu,u,z,t) + Bu, (2,t) € R" x [0,T],

where F' = F(r,p,u,x,t) is a given function in I' = §" x R” x R x R™ x [0,T], S"
denotes the space of real symmetric n x n matrices, and Bu is a integro-differential
operator as follows

1
(1.2) Bu = )\(t)/o (u(x + Y (x,t,n),t) —u(z,t) —Y(x,t,n) - Vulz,t))dn,

here A(t) is a given nonnegative function, ¥ (z, t,n) is a given function in R™ x [0, T] x
[0, 1].

Equations (1.1) are second order fully nonlinear integro-differential equations of
parabolic type. These equations are derived from the pricing problem of financial
derivatives and optimal portfolio selection problem in a market where underlying as-
sets prices are modeled by a Lévy process S(7) (Chapter 9 in [14], see also [6], [16] and
[3]). A typical example for the European option pricing problem in one-dimensional
is as follows. Let (W;)r>0 be the standard Brownian motion, (N-);>¢ be Poisson
process with parameter A and (Uj);>1 be a sequence of square integrable indepen-
dent, identically distributed random variables, with values in (—1,+00). Assume the
Lévy process S(7) evolves according to the following stochastic differential equation

N.
(1.3) dS(r) = S(7)(udr + cdW, +d(>_U;)),

j=1

where p, o are the drift and volatility respectively. Furthermore, we assume the
processes (W:)r>0, (N7)r>0, (Uj);>1 are independent. Let p(§) be the probability
density function of random variable Uy, thus price function V' (s, 7) of European option
with finite horizon T satisfies the following linear equation

oV o? ,0°V e

0
(1.4) 3 + 55 57 +(r— /\k:)sa—‘s/ —(r+ M)V + /\/71 V(s(1+¢),m)p(&)d¢ =0,
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(s,7) € (0,00) x [0,T), where k = [ £p(€)d¢ and V (s, T) = payoff. Moreover, if we
change variables to z =1Ins, t =T — 7 and u(x,t) = V (s, T) we get

2 92 2 oo
(1.5) % = %% +(r—Xe— %)% —(r+MNu+ )\/_OO u(x +n,t)p(n)dn,
(z,t) € R x (0,T], here p(n) = e"p(e" — 1).

When we consider the option pricing with transaction costs and the optimal
portfolio selection problem, the related equations become nonlinear equations, such
as Hamilton-Jacobi-Bellman equations ([17], [2] and [3]).

The convexity preserving is connected to certain monotonicity properties of the
option price with respect to volatility and other parameters in model ([7], [8] and
references therein). This robustness properties motivates the study of convexity pre-
serving. On the other hand, convexity of solution has important applications in the
financial market completeness and super-replication ([15], [18]). We refer [11, 5, 4] for
applications of convexity principles in differential geometry.

The problem of convexity preserving for solutions of linear equations has been
studied extensively ([12], [7], [8] and references therein). In [12], S. Janson and J.
Tysk obtained convexity preserving for linear parabolic differential equations. In [7]
and [8], E. Ekstrom and J. Tysk discussed convexity preserving in the case of one
spatial variable and several spatial variables for linear parabolic integro-differential
equations. S. Lenhart [13] discussed the a-priori estimate and existence for strong
solutions of linear parabolic integro-differential equations.

The main focus of this paper is to study the preservation of convexity of fully
nonlinear parabolic integro-differential equation (1.1). We address both macro and
micro convexity properties of solution to equation (1.1). We assume F = F(r,p, u, x,t)
is elliptic in the sense that

oF
8Ta5

(1.6) ( (V2u, Vu,u, z,t)) >0, V(z,t) € R™ x [0,T].

Suppose the function ¢ = 9 (z,t,1) € C?(R"™) and 1 satisfies conditions
(1.7) YA, >0

for any semi-positive definite matrix A and for any unit direction z € R™ (where 9"
is the transport of ¢ and ,, = (P zizj), and

M
1+ |z|

(1.8) (e, t,n)l < M+ al), [Vot(a,t,n)| < M, [Vi 0, t,n)| <

In this paper, we consider the Cauchy problem for equation (1.1) with given initial
date u(z,0),x € R™. Define

Cpot = U mr>0{u € C(R™ x [0, T))||u(z, t)| < M(1+ |z|™)}.

We would like to find conditions on the functions F(r,p,u,z,t) and 1 (x,t,n) that
guarantee that Cpy solutions to the equation (1.1) remain convex if the initial condi-
tion is a convex function. Throughout this paper, we say u(z,t) is convex means that
u(zx,t) is a convex function in the spatial variable x for each ¢ fixed.

We now state our main results. The first is of macro nature.
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THEOREM 1.1. Assume (1.7) and (1.8) hold. Suppose the function F =
F(r,p,u,z,t) € C*Y(T) satisfies conditions (1.6) and

n=1, F(0,p,u,z,t) is locally convex in (p,u,x) for each t fized, or
(1.9) n>2, F(r,p,u,x,t) 1is locally convex in (r,p,u,x) for each t fized.

If u € C*? is a solution of equation (1.1), V?u € Cpoi, and there are constant M
such that

[F7 (V2 Vu,u, 2, )| < M(L+[2]?),  |[FP(VPu, Vu,u, 2, 6)] < M1 [2)),
(LAA“(V?u, Vu,u, z,t) < M.

Then u(x,t) is convex provided the initial date u(z,0) is conver.

The following is a micro-convexity result for solutions of equation (1.1). In this
case, conditions in Theorem 1.1 can be relaxed.

THEOREM 1.2. Suppose F = F(r,p,u,z,t) € C*1(8" x R" x R x Q x (0,T)) for
some domain Q C R"™ and for some T > 0, and suppose F satisfies conditions (1.6),
(1.9) and (1.7). Let u € C*? be a convex solution of equation (1.1), then at each
time t > 0, rank of VZu(z,t) is constant. If let I(t) = mingcq{rank of VZu(z,t)},
then 1(s) <I(t) for any s <t <T.

The rest of this paper is organized as follows. In section 2, we prove Theorem 1.2
following arguments in [4]. We prove Theorem 1.1 in section 3. The last section is
devoted to preservation of convexity of solutions for parabolic Bellman equations.

Acknowledgements. We would like to thank the referee for valuable sugges-
tions.

2. A Constant Rank Theorem. In this section, we consider second order fully
nonlinear differential equations of parabolic type

(2.1) uy = F(VZu, Vu,u,2,t), (2,t) € Qx[0,T],

where 2 C R" is a domain. We assume u € C*2(Q x [0,T]) is a convex solution of
equation (2.1) and will prove a constant rank theorem.

Let W(w,t) = VZu(x,t) and | = ming, yeax[o,7] rank(V2u(x,t)). We may assume
I <n—1. We define for W = (u;;) € S

(2.2 o) :{ A () >0
and
(2.3) ¢ =011 (W) + q(W).
As in [4], we have
PROPOSITION 2.1. Let u € C*2(Q x [0,T]) be a convexr function and

Wiz, t) = (ui(2,t)). Let | = ming neaxo,r)rank(W(z,t)), then the function
q(x,t) = q(W (x,t)) defined in (2.2) is in C1T1OH(Q x [0, T)).
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For any n, we denote 8™ to be the set of all real symmetric n x n matrices, and

denote S C 8™ to be the set of all positive definite symmetric n x n matrices. Let
0,, be the space consisting all n x n orthogonal matrices. Let 0 <[ < n we define

Sl:{Q(g g)QT | VQ€0,,VBeS'},
and for given @ € Oy,

s@=1a(y j)e | vses',

N—

therefore §;, §;(Q) C 8™ and Sy = 0, S,, = §™. For any function F(r,p,u,x,t), we
denote

pas _ OF . OF L OF . OF
Orap’ opr,’ ou’ ox;’
2 2 2
FoeBan — oF Fobpr — OF af,u _ OFF
OrapOrsy’ Irappi’ Irapou’
2 2 2
Fobire — aiF PPl — OF FProu — 6_F
Iraplxy’ OpiOp;’ Opiou’
O R S )
' -~ OpiOz;’ RGETE T udz;’ - 0x;0z;

LetOSlgn—l,BESi,AzB_l and

~ 0 0 - 0 0
B_(o B)’ A_(o A)'
For any fixed Q € O, and X = (X,Y,2) € §(Q) xR
form

x R™, we define a quadratic

n

QX X)= Y [FIMX;Xp + 2P (QAQT )X Xj] —2 Y FX;;Y

1,5,k =1 i,j=1
n n n
(2.5) —2 > FUTR Xz FUUY2 42 FUTY g+ Y PRz
i,4,k=1 i=1 i,j=1
where Fipkl pij puu piju fize Pt [T are evaluated at

(QBQT,Vu(z,t),u,z,t). We assume
(26) Q*:Q*(XW,XW)ZO, mzlvan_la

for any fixed 0 < 1 < n—1, B,A, Q, X™ = (X,Y,2™) € 8§(Q) x R x R" and
Zm:(lea"' aQnm)-

REMARK 2.2. Condition (2.6) is weaker than condition (1.9). In particular (2.6)
is empty condition in r when n = 1.

THEOREM 2.3. Suppose F = F(r,p,u,z,t) € C**(T) and F satisfies conditions
(1.6) and (2.6). Let u € C*? be a convex solution of equation (2.1) in Q x [0,T).
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For each T >t > 0, let l(t) be the minimal rank of V?u(x,t) in Q. Then, the rank of
V2u(z,t) is constant for each T >t >0 and I(s) < I(t) for all s <t < T.

Proof. The proof is similar to the proof of Theorem 3.2 in [4] with some minor
modifications.

Let u € C*? be a convex solution of equation (2.1) and W (x,t) = (u;;(z,t)).
For each tq > 0, suppose W = VZ2u(z,tp) attains minimal rank [ at some point
o € 2. We may assume [ < n— 1, otherwise there is nothing to prove. By continuity,
o1(usj(z,t)) > 0in aneighborhood of (x¢,to). As in [4], we pick an open neighborhood
O CQx|[0,T) of (xo,t0), for any (z,t) € O, let G ={n—1+1,n—1+2,..,n} and
B ={1,...,n—1} be the “good” and “bad” sets of indices for eigenvalues of V2u(z,t)
respectively.

Setting ¢ as (2.3), then we see from Proposition (2.1) that ¢ € C*+1.0T1(Q) |

¢(‘I7t) > 07 QZS(CC(),to) =0
and there is a constant C' > 0 such that for all (z,t) € O,

Z01(B)(w1) < o1 (W), 1) < Cor(B)(a, 1),

S0 (B)(w,1) < 6(21) < Cor(B)(w,1).

We will derive the following differential inequality (2.7) for ¢. Then this theorem
follows from the strong maximum principle.

(2.7) D FPgap(w,t) — ¢il,t) < Crigla, t) + Co|Ve(a, t)].

We shall fix a point (y,7) € O and prove inequality (2.7) at (y,7). For each
(y,7) € O fixed, letting A\ < Ag... < A, be the eigenvalues of W(y,7) = (ui;(y, 7)),
we can rotate coordinate so that W(y,7) = (ui;(y,7)) is diagonal, and w;(y,7) =
Aiyi =1,--- ,n. We note that all quantities involving ¢, ¢ and ¢ are invariant under
rotation.

Again, as in [4], we will avoid to deal with o;41(W) = 0 by considering for
W, for € > 0 sufficient small, with W, = W + €I, G = (A—i41 + € ...; A + €),
B = (A1 + €., -1 +€). We note that W, is the Hessian of function u.(z,t) =
u(z,t) + §|2|>. This function u(x,t) satisfies equation

(2.8) (ue)e — F(V?ue, Ve, ue, ,t) = —Re,

where R, = R.(z,t) = F(V?uc, Ve, ue, v, t) — F(V?u, Vu,u, z,t). Since u € C*2, we
have

(2.9) |R| < Ce, |VR|<Ce, |V?R]|<Ce V(zt)eO.
We will work on equation (2.8) to obtain a differential inequality for ¢.
(2.10) > F6as(y,m) — ¢y, 7) < C16(y,7) + C2|Vo(y, 7)| + OCe).

The differential inequality (2.7) will follow from (2.10) by letting e — 0. Set v = wu,,
in the rest of this section, we will write ¢ for ¢., W for W, G for G, and B for B,
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with the understanding that all the estimates will be independent of e. We note that
v satisfies equation (2.8).
We differentiate equation (2.8) in z;, by (2.9), thereby obtaining equation

(2.11) > P g+ ZF”’“vk + FYv; + F% = v;; + O(e),
af

and differentiate equation (2.8) twice with respect to the variables z; and x;, we have

ZFQﬁvaﬁw Zvam ZFQM% i ZFaﬁ’p"vk + FOOty; 4 FeBi)

+ZFpkvli+ka ZFPkQﬁUB +ZFPkPlvl —‘erkv’U +Fpk$])

k af
+F”Uij + Ui(z Fv’aﬁva@j + Z Fv’plvlj + FU’UUj + Fv’xj)
af l
(212) 4 FPuag + Y FUPhy + F™y; 4 FU% = 0,5, 4 O(e).
af k

A simple computation yields

96 )
¢a = % = gf)”vija
«
P . :
Pop = 0xa0r5 O vijap + 6TV VEms,
«

and accordingly
Y F%as =) FP¢vas+ Y FOPGI 05000
= PPy vk — Y Y PRy
= G [FUvy 2 PPy ggg + > FPEP
2D PP + 2y FPR )
= PO Mg + 2 FO P uagiv; +23  FOPTing
(2.13) D FUvu 42 U+ > P14 0(e) + > ¢,

We note that ¢ = Y ¢¥v;;+, equation (2.13) can be written as

D FPap— e =D FPGI M 00 vpms — Y ¢ PRy,

= G F i 42 F PR uggion + > FPEP oy

23 PP Vugv; 42 FPRTy]

= PO Mg + 2 FO P uagin; +23 O Ting
(2.14) + 3 F v+ 2 FUe + > FU] 4+ O(e).
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We estimate for i € B

1
Ji = [ Z F‘lﬁf)’nviaﬁvi’yn +2 Z Faﬁ Z T’Uijﬂtvijﬁ
a,B,7,mEG a,BEG jeaq ™Y
2.15)  +2 FoP,050; + 2 FoPig, 5+ FVV0? 4+ 2FV iy, + F7%),
B B i
a,BEG a,BEG

where functions F@-k [ Fuu Fiju Rijhts Futi FPTaTi are evaluated at

(Vu(y,7), Voly, 7),v(y. 7), 9, 7).

Since F' € C*! and v;; = §;;\; at (y,7) , we conclude that

Ji=1 Y FPaguin+2 > FPA L viayvigy +2 Y 00
a,B,v,meCG a,B,v,meG a,feCG
+2 ) FOP T + FU00] 4 2FY i + FP0] 4+ 0(9),
a,BeG
where Fipkl pij puu piju figee Pt [P are evaluated at

(B,Vu(y,7),v(y,7),y,7) and B = diag(0, - ,0, An_i41, - s An). Now let’s set
Xap =0, € Bor B € B, Xo38 = Vjng Otherwise, Y = —v; and 2z = —dy;. Then
(Xap) € Si(identity matrix). Noting all quantities are under a rotation (. By
condition (2.6), we infer that

J; > —Cé.

Now the same argument in the proof of Theorem 3.2 in [4] yields (2.10). Taking
€ — 0 and applying the strong maximum principle for parabolic equation, we conclude
that ¢ vanishes everywhere 2 x [0,?o]. In particular, o;41(ui;(x,t)) = 0in Q x [0, to].
a

Let us come back to prove Theorem 1.2.

Proof of Theorem 1.2. Let
1
(216) F(T,p,u,x,t) = F(T,p,u,:c,t)—l—/\(t)/ (u(x+w(xatvn)at)_u_q/}(‘rvtan)p)dnv
0

then F satisfies conditions conditions (1.6) and (2.6) whenever (1.7) holds and u(z, t)
is a convex function. O

3. Convexity Preserving for Fully Nonlinear Parabolic Integro-
differential Equations. We prove Theorem 1.1 in this section. Since we are dealing
the problem in the whole ambient space R™, we need certain growth conditions spec-
ified in Theorem 1.1 to construct a barrier to gain control at oc.

Proof of Theorem 1.1. Suppose u € C*2(R"™ x [0,T]) is a solution of equation
(1.1), V2u € Cpoi. Let m be an positive constant chosen so large that |[VZu(z,t)| =
O(1+|z™). Set g(z) = (1+ |z[?)Z 1+ a > 0 and w(x,t) = eXlg(z). Let € > 0 and
define

ut(z,t) = u(x,t) + ew(x, t).
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Let A(z,t) = A\c(w,t) be the smallest eigenvalue of V2u¢(x,t) and define
E = {(z,t) € R" x [0, T]|\(z,t) < 0}.
Suppose that F # ). Simple computation yields
V2g(z) > (1 + [2*) +ay)

therefore

Mz, t) > ee®H (1 + [z)?) 2T — O(1 + |=|™).
Hence there is a constant R = R, such that A(z,t) > 0 for || > R. Thus E C
Bpr % [0,T] and is compact. Let

to = min{t > 0|(z,t) € E for some x € R"}.

This minimum is attained and thus (xg,t9) € E and A(zg, tg) < 0 for some xg € Bg.
We have VZu¢(z,0) > eV?g(x) > 0 from the convexity of u(z,0), hence tg > 0
by the continuity. Since A(z,¢) > 0 for all 0 < ¢t < ¢y and z € R", A(z,to) > 0
for all z € R™ by the continuity. Consequently, u®(z,t) is convex in Bg x [0, ] but
A(zo,tp) = 0. Hence the Hessian V?u(x,t) attains minimum rank [ <n — 1 at some
point (x1,to) for some x; € Bp.
Function u€(x,t) satisfies equation

(3.1) u§ = F.(V2us, Vus, us, o, t) + Bu,

where

(3.2) F.(r,p,u,x,t) = F(r — eV?w,p — eVw,u — ew, x,t) + e(w; — Bw).
We need the following lemma.

LEMMA 3.1.  Assume conditions (1.8), (1.6), (1.9) and (1.10) hold. Then we
can choose constant K such that F, satisfies conditions (1.6) and (2.6).

If this lemma is true, applying Theorem 1.2, we deduce that the rank of Hessian
V2uf(z,t) is constant in Bg x (0,t9]. This is a contradiction and hence E = 0.
Therefore VZu¢(z,t) > 0 for all (z,t) € R™ x [0,7] and this implies the convexity of
u(zx,t). Therefore, we need to verify Lemma 3.1.

Proof of Lemma 3.1. Tt is clear that F¢ is elliptic. The remainder is to check
condition (2.6) for F, and any given 0 <1 <n—1, B,A, Q€ 0,, X = (X,Y,2) €
S(Q) X RXxR" and z = 2™ = (Qim, ** ,@nm) for all m = 1,--+ n—1. A direct
computation yields

Fi(r,p,u,a,t) = F9(r — eV?w,p — eVw,u — ew, x,t), F*=F"

Fo% = F9(—ewpij) + FP' (—ewp;) + F*(—ewy,) + F™ + e(wy, — (Bw)y,),
other derivatives can be calculated in a similar way. Substituting these into Q* =
Q. (€) defined in (2.5), we get

Q"= Z Feij’leinkl +2 Z Feij(QAQT)leikal -2 Z Féij’"Xin
i,5,k,1=1 0,4,k 1=1 i,j=1
-9 Z Feij’szijZk‘FFeu’uYQ —I—QZF:’%Y%‘"' Z Fo%i 5,2
i,5,k=1 i=1 i,j=1

(3.3) =1L+ 1+ I3,
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where Fipkl i pusu i Fijee pus [reT are evaluated at
(QBQ", Vu(z,t),u,z,t) and

I = Z FiR (X 4 ew,if ) (Xp + ewsn)
i k=1

+2 Z Fidpe (Xij + ewzij)(ewzk) + 2 Z Fij’u(Xij + ewzij)(—Y + ew,)

i,j,k=1 ij=1
42 > P (X + ewsig)(—2k) + Y FPOP (ewsr)(ewsr)
i,5,k=1 k=1

2D PP ewa) (<Y +ews) +2 Y FP (ewar)(—2) + FUH(=Y + ew.)?
k

k,i=1
H2) CFUT(=Y dews)(—z) + Y P (—z)(—2),
i=1 4,j=1
I, =2 Z FI(QAQT ) X X1,
0,5,k I=1

n n
% u
IB = e(wtzz - § F szzij - § Fpszzk - F Wyz — (Bw)zz)v
ij k=1

where functions ~Fij’kl,Fij,F“’“,Fij’“,Fij’“,F“’“,F%W are assumed their values
at the point (QBQT — eV?w,p — eVw,u — ew, x,t). It follows that from conditions
(1.9) and (1.6)

L,>0, I,>0.
Since for |z| =1,
gee > (L |af?) 5+
and
V29| + (1+ |2 V2 + (1 + [2*)[Vig] < C(1 + [2f?) F 5.
We have, from condition (1.8)
(Bg)z: = O((1 +|a*)F*)
and from condition (1.10)

Z |Fijgzzij| + Z |Fpkgzzk:| + Fugzz S C(l + |$|2)%+0¢'
4,J k=1

We consequently obtain

n n
Wtzz — E FUwzzij - § Fpszzk - Fuwzz - (Bw)zz
6,7 k=1

= eKt(ngz - ZFijgzzij - Z Fpkgzzk: - Fugzz - (Bg)zz) Z 0
i, k=1
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if K is large enough. This implies Is > 0 and the lemma is proved. This completes
the proof of Theorem 1.1. O

REMARK 3.2. As we mentioned that most of the conditions imposed in Theorem

1.1 are for the purpose of constructing certain barrier at co. For example equation
(1.5)

(3.4 Bu=A0) [ ulw+n.pndn
Theorem 1.1 is true with conditions (1.7) and (1.8) replaced by
(3.5) / (I+ n)™p(n)dn < o0, ¥m > 0.

It is clear that the result in Theorem 1.1 can be proved under weaker conditions using
the same arguments in the proof, but conditions in Theorem 1.1 are simpler though
not as general.

4. Parabolic Bellman Equations. In this section, we consider parabolic Bell-
man equations

(4.1) up = sup{L% + f*} + Bu, (z,t) € R" x[0,T],
acA

where index set A ={1,2,---} and L® is a linear operator

LY = agiuij + bfu; + c*u.
Assume that aj, f* € C*O(R" x [0,T7]), L is elliptic in the sense
(4.2) a8 (2,066 > MeE, ¥(w, 1) € R x [0,T], € € R”
A > 0 and there is a constant M such that
(43) a3y, )] < ML+ o), [V (@ )] < M1+ ]
for all « € A. We assume that n =1 or n > 2 and

(44) (V5a3)(@QBQT)i; +2 ) (Vaaf) Xy +2 Y af(QAQT)uXaXj > 0,

ij=1 i,k l=1

for any fixed 0 <! <n—-1, BJA, Q € O,, X = (X,Y,2) € S§(Q) x R x R™ and
2™ = (Qim, s Qum), m=1,--- ,n— 1. In addition, suppose
(4.5) b (@, t) = b (t)w;, *(x,t) = c*(t), bf;,c* € C0,T].
and bg;, ¢* are bounded uniformly.

THEOREM 4.1. Assume (1.7) and (1.8) hold. Suppose f¢ is convex and condi-
tions (4.2), (4-3), (4-4), (4.5) hold. If u € CH2(R™ x [0,T]) is a solution of (4.1),
V2u € Cpol, then u(z,t) is convex provided the initial date u(z,0) is convez.

Proof. The proof is similar to the proof of Theorem 1.1, we only indicate some
necessary modifications. Since Bellman operator in (4.1) is not smooth in its argu-
ments, we first need to mollify it as in [10]. We will apply our analysis in the previous
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section on mollified operators to obtain convexity of the solution to these modified
equations. The convexity of the original solution would follow directly by taking the
limit.

Let

Glé(y) =max{y, -, Yk}

and

Ghln) =17 [ o6k )

where p is a mollifier on R¥. Since GE(y) is convex, it follows that Gf(y) is also
convex. Furthermore we have

k
(4.6) 0< VaGE(y Z

The convexity of solution of Bellman equation (4.1) can be treated by approximation
of solution wuy, i of equation

(4.7) uy = Fi, 1 (V2u, Vu, u, z,t) + Bu,
where
Fnk(r,p,u,x,t) = GZ(Elu—F fi-- LR+ fk)

In the rest of this section, we will write G for wa F for Fj, , and u for uy, k.
We use the same notations as in the proof of Theorem 1.1. As before, we set F; as
in equation (3.2), check conditions on F, and apply Theorem 1.2. It is clear that F.
is elliptic. The remainder is to check (2.6) for any fixed 0 <1 <n-—1, B, A, Q € 0,,
Xm=(X,Y,2") € Si(Q) xR xR™ and 2™ = (Qum,--* »Qum), m=1,--- ,n—L.
We obtain by computation

ZJ’
FUM = Gupaialy, FIP = Gogalbl, F" = Gapalc?,
Fo = Gagafy(agiri + bipi + ut f*)a, + Galaf)a,,

F9 = Gaafy, FP' = Gabf!, F* = Gac®, F™ = Galafiryj + bipi + cu+ f*)a,,

other derivatives can be calculated in a similar way.
Substitute the above into (3.3) and divide Q* = Q},(¢) = J1 + J2 + J3 as follows

Ji= Z Gaplad;(Xij + ewsij) + 07 (ew;) + (=Y + ew,)
a,B

—[(V2a$)(QBQT)ij + (Vb )u; + (Vac™)u+ V. fo]} x

{al(Xij + ewsij) + b (ewsi) + (=Y + ew.)

=[(V. afj)(QBQT)-- + (VabD)ui + (VocPyu+ V. 9]},

Z Gal(V22a8)(QBQT)ij + (Vaebf )i + (Vo™ u+ Voo f — 2(V.afy) Xy

F2(Voe) (Y = ew.) + 2055 (QAQT) Xt X 1),
J3 = €[wiz, — (Bw),, — Z Ga(a%wzzij + 0§ w0 + Cw,s + 2(Vza%)wzij + (V05w ]
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Following the same lines of proof in the last section, we only need to check J; > 0
for i = 1,2,3. By the convexity of G(y), J; > 0. From (4.5), we deduce

J2 = Ga[(V2.a55)(QBQ")ij — 2(V:af) Xij + 2a55(QAQT ) X Xjo + V2.1,
Consequently, Jz > 0 by (4.4)(note that X can be replaced by —X in (4.4)) and the
convexity of f*. As in the previous section, by (4.6), (4.3), (4.5), (1.7) and (1.8), we
obtain

ngz - (Bg)zz - Ga (a%gzzij + bggzzk + Cagzz + 2(vza%)gzij + 2(vzbg)gzk] Z 0

if K is large enough. Hence J3 > 0. This completes the proof. O

REMARK 4.2. Theorem 4.1 is still true if the index set A is a separable metric
space. Moreover, under similar conditions, we can also get the convexity preserving
for following equation

(4.8) up = sup{L% + f* +B%}, (z,t) € R" x[0,T],
acA

where

1
BYu = X"(t)/o (u(z + % (x,t,m),t) —u(z,t) — Y*(x,t,n) - Vu(z,t))dn.
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