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Abstract. In this paper we study a class of one-sided post-processing techniques to enhance the
accuracy of the discontinuous Galerkin methods. The applications considered in this paper are linear
hyperbolic equations, however the technique can be used for the solution to a discontinuous Galerkin
method solving other types of partial differential equations, or more general approximations, as long as
there is a higher order negative norm error estimate for the numerical solution. The advantage of the
one-sided post-processing is that it uses information only from one side, hence it can be applied up to
domain boundaries, a discontinuity in the solution, or an interface of different mesh sizes. This technique
allows us to obtain an improvement in the order of accuracy from k-+1 of the discontinuous Galerkin
method to 2k+1 of the post-processed solution, using piecewise polynomials of degree k, throughout
the entire domain and not just away from the boundaries, discontinuities, or interfaces of different mesh
sizes.

1. Introduction. In this paper we study a class of one-sided post-processing tech-
niques to enhance the accuracy of the discontinuous Galerkin methods. This is a modifi-
cation of the local post-processing technique originally developed by Bramble and Schatz
[1] in the context of continuous finite element methods for elliptic problems, and later by
Cockburn, Luskin, Shu and Siili [6, 7] and by Ryan, Shu and Atkins [15] in the context of
the discontinuous Galerkin methods for linear hyperbolic equations. Two key ingredients
of this post-processing technique are a negative norm estimate for the numerical solu-
tion, which should be of higher order than the L? error estimate, and a local translation
invariance of the mesh within the support of the local post-processor. The technique
then allows the recovery of the L? error of the post-processed solution to the order of
accuracy in the negative norm estimate. The main advantages of this technique, com-
pared to other post-processing techniques, include its local feature, hence its efficiency
and its easiness in the parallel implementation framework, and its effectiveness in almost
doubling the order of accuracy rather than increasing the order of accuracy by one or
two.

The original local post-processor in [1, 6, 7, 15] is based on a symmetric local stencil,
using the information in about 2k neighboring elements to either side of the element being
post-processed, for P¥ (piecewise polynomials of degree up to k) elements. The mesh
must be uniform within this local stencil, and the post-processed solution is (2k+1)-th
order accurate in the L2 norm instead of the usual (k+1)-th order accuracy before post-
processing, for the discontinuous Galerkin method applied to linear hyperbolic equations,
which maintains a (2k+1)-th order accuracy in the negative k norm of the numerical
solution.

The symmetric nature of the local stencil prevents the application of the post-
processor to the following situations: near a boundary of a computational domain; near
a discontinuity in the solution; and near an interface of meshes with different mesh sizes.
We can see clearly in the numerical examples in [15], that the post-processor fails in all
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such cases, rendering the enhancement of the order of accuracy not uniform across the
computational domain when any one of these situations exist.

In this paper we develop a one-sided local post-processor based on a one-sided biased
or completely one-sided stencil. That is, the stencil uses more elements to the left than
to the right of the element being post-processed, or in the extreme case it uses only
elements to the left, for the left-sided post-processor. The right-sided post-processor is
a mirror image of the left-sided post-processor. Under the same assumptions as before,
namely the numerical solution has a negative norm estimate which is higher order than
the L? error estimate, and the mesh is translation invariant (uniform) within the stencil
of the post-processor, the same accuracy enhancement can be expected and is verified by
numerical experiments. This technique thus allows us to obtain an improvement in the
order of accuracy from k41 of the discontinuous Galerkin method to 2k+1 of the post-
processed solution throughout the entire domain and not just away from the boundaries,
discontinuities, or interfaces of different mesh sizes, for problems with negative error
estimates to the order of 2k+1, such as the discontinuous Galerkin method using P*
elements for linear hyperbolic equations with smooth solutions. The applications con-
sidered in this paper are mainly linear hyperbolic equations, however the technique can
be used for the solution to a discontinuous Galerkin method solving other types of partial
differential equations as long as there is a higher order negative norm error estimate for
the numerical solution, for example the local discontinuous Galerkin methods for con-
vection diffusion equations [11, 7] and for partial differential equations with even higher
spatial derivatives [17].

We remark that the idea of one-sided post-processors or filters has been developed
before in [2, 13] for spectral methods, and mentioned in [14] for finite difference methods,
for similar purpose of enhancing accuracy up to a boundary or a discontinuity.

The details of the discontinuous Galerkin method that we will be using can be found
in [9, 8, 5, 4, 10, 3, 12]. We use the third-order TVD Runge-Kutta method in time
[16]. The outline of the paper is as follows. In section 2, we discuss the form of the
one-sided post-processor. The numerical examples, mostly those given in [15], are then
presented using this one-sided form of the post-processor in section 3 to demonstrate
the accuracy enhancement capability of this technique. Although only one dimensional
scalar examples are given in this paper, the one-sided post-processor is expected to work
equally well for multi-dimensional linear hyperbolic systems; see [7, 15] for such examples
using the symmetric post-processors.

2. The one-sided post-processor. The structure of the post-processor we will
be using was initially designed by Mock and Lax [14] and Bramble and Schatz [1].
A discussion of this technique for the discontinuous Galerkin method can be found in
[6, 7, 15]. For the purposes of this paper, we introduce a one-sided technique to handle
post-processing near a boundary, a discontinuity, or an interface of meshes with different
mesh sizes.

The post-processed solution for the numerical solution uy(z) is of the form

u*(z) = Kp, * up ()

where the symmetric post-processing kernel is given by

k
R R () — Z AR RFLY (D) (g — ), (2.1)
y=—k

and K = %K(%) for a locally uniform mesh (h = Ax;, i =1,--- | N). Here c’2y(k+1),k:+1
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are constants and ¢(*+1) (x) are (k+1)-th order B-splines. Recall that the post-processor
can be implemented by doing small matrix-vector multiplications, [15]. The matrix-
vector format is found from evaluating

k l

: y— = D (Y~ Tiy
=t 55 e (52) S, (0550 s

J——Qk Lit; 1—0

- Z ZU’EQJ (7,1, k, ) (2.2)
j=—2k 1=0
where
1< y—x y— i)
C(,l,k,x) = - 3 C?y(k+1),k+1/ p(k+D) (T_7> < hz+1> dy
y=—k Liyj

is a polynomial of degree 2k+1 on the cell I; = (z; — %,xi + %) Notice that in this
symmetric version the post-processed solution has a support of 2k cells on either side
for a total support of 4k+1 cells. In order to perform a one-sided version of this, we
simply extend this support biased to one-side. Thus, to perform a purely left-sided

post-processing, the post-processed solution would be of the form

u(z) (2.3)

0k —1 !
n 1 Y — Tiyj
= > Dulyy Yo GEA / w’”“( . v) (—h *J> dy.
j=—4k 1=0 'y—72k 1 Iit;

Although we do not provide the details here, we note that it is only necessary to find the
2(k+1),k+1

new coeflicients, ¢

does not change.

As shown in [7, 15], the coefficients used in the kernel can be found easily by imple-
menting the property that K * p = p. In the case of the symmetric post-processing this
property holds for polynomials p up to degree 2k+1. For the one sided post-processor, we
can only require this property to hold for polynomials up to degree 2k. As an example,
we can look at the left-sided post-processor used for a linear polynomial approximation

(which gives second order accuracy). The left-sided post-processed solution is given by

D=3y S ] o () () w e

, in the post-processing kernel - the evaluation of the integral

where the cﬁ’Q are found from K * p = p for p = 1, z, 22. This gives the coefficients
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We proceed similarly for partially left sided post-processing. The right-sided post-
processing is a mirror image of the left-sided post-processing.
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3. Numerical Examples.

3.1. On the approximation level. To confirm the properties of one-sided post-
processing, we take as an example the L2-projection of u(z) = sin(x) onto the piecewise
P!~ and P2-polynomials for x € (0, 77”) and calculate the errors throughout the domain
both before and after post-processing. The one-sided biased or completely one-sided
post-processor is applied near the domain boundaries when it is necessary, and the usual
symmetric post-processing is applied in the interior of the domain whenever possible.

In Table 3.1 we can see that the post-processor does indeed give us the designed
(2k+1)-th order accuracy. In fact, the L? errors are even half an order higher than
the designed (2k+1)-th order, due to the fact that in the interior the symmetric post-
processor is (2k+2)-th order accurate on the approximation level. However, looking at
the L errors, we can see that unless the mesh is sufficiently refined it is not advantageous
to apply the one-sided post-processor. This is a clear indication that the constant in front
of the leading error term h2**! is much larger for the one-sided post-processor than for
the symmetric post-processor. In Figure 3.1 it is illustrated that near the boundaries,
where the one-sided post-processor is applied, the error is larger than in the interior,
where the symmetric post-processor is applied. We also see that unless the mesh is
sufficiently refined, it is not advantageous to apply the one-sided post-processor at the
domain boundaries.

Next we look at the accuracy enhancement of the post-processor for the derivatives
of the numerical solution. In [15], it is verified that the symmetric post-processor can
improve the order of accuracy for the r-th derivative from k+1-r to 2k+2-r. This is also
the case for the one-sided post-processor, see Table 3.1 and Figure 3.1. We can see that,
for the derivatives (especially for the second derivative), it is advantageous to do the
one-sided post-processing even for coarse meshes.

3.2. Domains with different mesh sizes. In [15] we presented the example of
a domain with two different mesh sizes. We explored the case of the linear hyperbolic
equation uy + u,; = 0 with u(x,0) = sin(3z) for z € (0,27). The left half of the mesh
contains two-thirds of the elements and the right-half of the domain contains one-third of
the elements as shown in Figure 3.2. The problem is solved over the entire domain at a
final time of T'= 12.5. In the case of using the symmetric version of the post-processor,
we found that when we evaluated the solution away from the mesh interface we did
obtain the expected (2k+1)-th order accuracy in the post-processed solution. However,
in the region near the mesh interface, there was contamination in the post-processed
solution due to the post-processor taking information from both sides of the interface,
violating the local translation invariance assumption in the post-processing stencil.

Here, we present the results of implementing the one-sided biased or completely
one-sided form of the post-processor near the mesh interface and domain boundary when
necessary. The symmetric version is used in the interior of the two meshes whenever pos-
sible. We evaluate the error throughout the entire domain, and not in the individual mesh
regions as done in [15]. In Table 3.2, we see that for piecewise P!- and P?-polynomials
we do indeed obtain the improvement in the order of accuracy to 2k+1 throughout the
entire domain, although the mesh has to be sufficiently refined in order for the one-sided
post-processor to show an effect of reducing the errors near the interface. In Figure 3.3
we can compare the post-processed solution with the original solution. We can see an
apparent improvement in accuracy after the post-processing. Comparing with the figures
in [15] using the symmetric post-processor, we can see that the one-sided post-processor
successfully eliminates a region of O(1) errors near the interfaces of two different mesh
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TABLE 3.1
Errors for the L?-projection of u(x) = sin(z) onto the piecewise P1- and P2-polynomials for x €
(0,71).

Before Post-Processing After Post-Processing
mesh | L? error | order | L°° error | order | L? error | order | L*®° error | order
Errors for u(x)

]P>1
20 | 7.93E-03 — | 2.01E-02 — | 2.95E-02 — | 1.29E-01 —
40 | 1.99E-03 2.00 | 5.06E-03 1.99 | 2.71E-03 | 3.44 | 1.54E-02 3.07
80 | 4.98E-04 | 2.00 | 1.27E-03 2.00 | 2.42E-04 | 3.49 | 2.10E-03 | 2.87
160 | 1.24E-04 2.00 | 3.17E-04 2.00 | 2.15E-05 3.50 | 2.69E-04 2.97
320 | 3.11E-05 2.00 | 7.91E-05 2.00 | 1.90E-06 | 3.50 | 3.37E-05 2.99
IP)2
20 | 3.69E-04 — | 8.66E-04 — | 5.82E-03 — | 2.57E-02 —
40 | 4.62E-05 3.00 | 1.09E-04 | 3.00 | 1.37E-04 5.41 | 7.15E-04 | 5.17
80 | 5.78E-06 3.00 | 1.36E-05 | 3.00 | 3.08E-06 5.48 | 2.54E-05 | 4.81
160 | 7.23E-07 | 3.00 | 1.70E-06 | 3.00 | 6.84E-08 5.49 | 8.40E-07 | 4.92
Errors for du(x)/dx
]P>1
20 | 1.11E-01 — | 2.55E-01 — | 2.95E-02 — | 1.30E-01 —
40 | 5.60E-02 1.00 | 1.28E-01 0.99 | 2.72E-03 | 3.44 | 1.54E-02 3.08
80 | 2.80E-02 1.00 | 6.41E-02 1.00 | 2.43E-04 | 3.49 | 2.10E-03 | 2.87
160 | 1.40E-02 1.00 | 3.20E-02 1.00 | 2.15E-05 | 3.50 | 2.69E-04 | 2.96
320 | 7.01E-03 1.00 | 1.60E-02 1.00 | 1.90E-06 | 3.50 | 3.40E-05 2.98
PZ
20 | 8.69E-03 — | 2.52E-02 — | 5.82E-03 — | 2.57E-02 —
40 | 2.18E-03 2.00 | 6.32E-03 1.99 | 1.37E-04 5.41 | 7.15E-04 | 5.17
80 | 5.45E-04 | 2.00 | 1.58E-03 2.00 | 3.08E-06 5.48 | 2.56E-05 | 4.80
160 | 1.36E-04 | 2.00 | 3.95E-04 | 2.00 | 6.84E-08 5.49 | 8.45E-07 | 4.92
Errors for d?u(z)/dx?

Pl
20 N/A — N/A — | 3.06E-02 — | 1.51E-01 —
40 N/A — N/A — | 3.37E-03 3.18 | 1.61E-02 3.23
80 N/A — N/A — | 5.54E-04 2.60 | 2.11E-03 2.93
160 N/A — N/A — | 1.26E-04 2.13 | 3.63E-04 2.54
320 N/A — N/A — | 3.12E-05 2.02 | 8.21E-05 2.15
]P)2
20 | 1.12E-01 — | 2.55E-01 — | 5.92E-03 — | 2.75E-02 —

40 | 5.61E-02 1.00 | 1.28E-01 0.99 | 1.44E-04 | 5.36 | 7.18E-04 | 5.26
80 | 2.80E-02 1.00 | 6.41E-02 1.00 | 3.86E-06 | 5.22 | 2.48E-05 | 4.85
160 | 1.40E-02 1.00 | 3.20E-02 1.00 | 1.57E-07 | 4.62 | 8.39E-07 | 4.89

sizes.

Next, we look at the accuracy enhancement of the post-processor for the derivatives
of the numerical solution. The errors and orders of accuracy are listed in Table 3.3.
Figure 3.4 plots the errors before and after post-processing for the first and second
derivatives in the P? case. Clearly, we obtain an improvement for the order of accuracy
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TABLE 3.2
One dimensional discontinuous Galerkin approximations to the advection equation over a domain
with two different mesh sizes as shown in Figure 3.2. Errors calculated over the entire domain.

Before post-processing After post-processing
mesh | L? error | order | L™ error | order | L? error | order [ L™ error | order
[P)l
20 | 3.48E-01 — | 5.40E-01 — | 3.76E-01 — | 5.81E-01 —

40 | 6.20E-02 2.49 | 1.07E-01 2.34 | 6.32E-02 2.57 | 1.09E-01 2.41
80 | 9.55E-03 | 2.70 | 1.89E-02 | 2.50 | 1.02E-02 | 2.63 | 2.93E-02 1.89
160 | 1.46E-03 2.71 | 3.22E-03 2.55 | 1.25E-03 3.03 | 4.26E-03 2.78
320 | 2.82E-04 2.38 | 9.21E-04 1.80 | 1.53E-04 3.03 | 5.80E-04 2.88
IP)Q
20 | 9.77E-03 — | 2.44E-02 — | 3.20E-01 — | 1.40E-00 —
40 | 7.95E-04 | 3.62 | 3.55E-03 | 2.78 | 9.96E-03 | 5.01 | 5.88E-02 | 4.58
80 | 1.05E-04 2.92 | 5.08E-04 2.81 | 2.67E-04 5.22 | 2.08E-03 | 4.82
160 | 1.31E-05 | 3.01 | 6.37E-05 | 2.99 | 1.03E-05 | 4.69 | 8.52E-05 | 4.61
320 | 1.68E-06 | 2.96 | 8.19E-06 | 2.96 | 2.74E-07 | 5.24 | 3.00E-06 | 4.83

approximating the r-th derivative from k+1-r to 2k+2-r, and the order of accuracy
is uniform throughout the computational domain. Also, for derivatives, the one-sided
post-processor improves the accuracy even for coarse meshes.

3.3. Discontinuous coefficient hyperbolic equations. The second case we ad-
dress using the one-sided post-processing technique is that of a linear hyperbolic equation
with a discontinuous coefficient

u(z,t)e + (a(x)u(x,t)), =0 (3.1)

where a(z) is piecewise constant,

with 0 < b < a as given in [15].
The first example is one with two stationary shocks located at x = :t% for the exact
solution. The initial condition is given by

w(z,0) = {—2005(4773:), x € (—'%, %),
cos(2mz), otherwise in [-1,1]
and extended periodically outside [-1,1]. Here a = 1 and b = %, and the boundary
condition is 2-periodic. In [15], when a symmetric post-processor was used, the errors
were calculated 0.4 away from the stationary shocks at a final time 7" = 12.5. Here we
implement the one-sided version of the post-processing technique at the boundaries and
the regions near the stationary shocks whenever necessary. In Table 3.4 we can see that
the post-processing gives us (2k+1)-th order accuracy throughout the entire domain,
including the regions containing the discontinuities. The errors for the P?-polynomial
case are also plotted in Figure 3.5 in logarithmic scale both before and after implementing
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TABLE 3.3
One dimensional discontinuous Galerkin approximations to the advection equation over a domain
with two different mesh sizes as shown in Figure 3.2. Errors in the first and second derivatives calculated
over the entire domain.

Before post-processing After post-processing
mesh | L? error ] order | L*° error | order | L? error | order ’ L*° error | order
First Derivative

]Pl
20 | 1.16E-00 — | 1.98E-00 — | 9.57E-01 — 1.54E-00 —
40 | 4.02E-01 1.52 | 1.18E-00 | 0.75 | 2.03E-01 2.24 | 4.71E-01 1.71
80 | 1.95E-01 1.04 | 6.46E-01 0.87 | 2.68E-02 | 2.93 | 6.00E-02 | 2.97
160 | 9.78E-02 1.00 | 3.30E-01 0.97 | 3.31E-03 | 3.01 | 5.23E-03 | 3.52
320 | 4.93E-02 | 0.99 | 1.67E-01 0.98 | 4.27E-04 | 2.96 | 7.22E-04 | 2.86
]P)2
20 | 1.32E-01 — | 6.40E-01 — | 1.35E-00 — | 4.30E-00 —
40 | 3.49E-02 1.92 | 1.73E-01 1.88 | 4.64E-02 | 4.86 | 2.03E-01 | 4.40
80 | 9.42E-03 1.89 | 4.75E-02 1.87 | 1.40E-03 | 5.05 | 8.26E-03 | 4.62
160 | 2.36E-03 | 2.00 | 1.19E-02 | 2.00 | 1.77E-05 | 6.31 1.91E-04 | 5.43
320 | 6.00E-04 1.98 | 3.03E-03 1.97 | 5.27E-07 | 5.07 | 6.04E-06 | 4.98
Second Derivative

Pl
20 N/A — N/A [ — [ 341E-00 — [ 548E-00 | —
40 N/A — N/A — | 5.77E-01 2.56 | 9.99E-01 2.46
80 N/A — N/A — | 9.86E-02 2.55 | 2.66E-01 1.91
160 N/A — N/A — | 1.43E-02 2.78 | 4.71E-02 2.50
320 N/A — N/A — | 2.63E-03 2.45 | 8.28E-03 2.51
]P)2
20 | 2.04E-00 — | 6.37E-00 — | 2.99E-00 — | 1.30E+01 —

40 | 1.04E-00 | 0.97 | 3.39E-00 | 0.91 | 9.06E-02 | 5.04 | 5.22E-01 | 4.64
80 | 5.38E-01 | 0.96 | 1.77E-00 | 0.94 | 2.56E-03 | 5.15 | 1.80E-02 | 4.85
160 | 2.69E-01 1.00 | 8.86E-01 1.00 | 1.16E-04 | 4.46 | 1.30E-03 | 3.79
320 | 1.36E-01 | 0.99 | 4.49E-01 | 0.98 | 2.10E-05 | 2.47 | 2.45E-04 | 2.41

the one-sided form of the post-processor. From Figure 3.5 we can see that the one-sided
post-processor works even near the shock regions.

We next consider the more complex situation when there are two moving shocks in
addition to the two stationary shocks. The equation (3.1) is with a = 2, b = 1 and the
initial condition is given by

(. 0) = {(;os.(%x), z € [-2,2]\(~1,1),

gsin(rr) @€ (—1,1).

and extended periodically outside [-2,2]. We use a 4-periodic boundary condition and
compute up to the final time T = 1, before the shocks cross each other. The two
stationary shocks are located at cell interfaces, whereas the two moving shocks are located
inside the cells. In this example, the discontinuous Galerkin method has no problem
handling the stationary shocks, as they are at cell interfaces. However, the moving
shocks are located inside the cells and will degenerate the accuracy nearby. In this case,
the errors for the symmetric version of the post-processor were calculated 1.1 away from
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TABLE 3.4
Errors for the discontinuous method applied to the linear hyperbolic equation with discontinuous
coefficient with two stationary shocks. Errors calculated over the entire domain.

Before post-processing After post-processing
mesh | L? error | order [ L™ error | order | L? error | order | L* error | order
[P)l
20 | 8.55E-01 — | 1.56E+01 — | 8.17E-01 — | 1.55E+01 —

40 | 1.93E-01 2.15 3.80E-01 2.04 | 1.80E-01 2.18 | 3.50E-01 2.15
80 | 2.72E-02 2.83 | 5.84E-02 2.70 | 2.58E-02 2.80 | 4.90E-02 2.84
160 | 3.69E-03 2.88 | 8.84E-03 2.72 | 3.34E-03 2.95 | 6.21E-03 2.98
320 | 5.67E-04 2.70 | 1.46E-03 2.60 | 4.21E-04 299 | 7.87E-04 2.98
IP)Q
40 | 1.45E-03 — | 5.65E-03 — | 2.04E-02 — | 9.85E-02 —
80 | 1.54E-04 3.24 | 7.29E-04 2.95 | 4.48E-04 5.51 | 3.04E-03 5.02
160 | 1.90E-05 | 3.02 | 9.22E-05 | 2.98 | 5.87E-06 | 6.25 | 5.81E-05 | 5.71
320 | 2.37E-06 | 3.00 | 1.16E-05 | 3.00 | 7.26E-08 | 6.34 | 9.72E-07 | 5.90
640 | 2.96E-07 | 3.00 | 1.44E-06 3.00 | 1.71E-09 5.41 1.61E-08 9.91

TABLE 3.5
Errors for the discontinuous method applied to the linear hyperbolic equation with a discontinuous
coefficient with two stationary and two moving shocks. Errors calculated outside a radius of 0.4 of the
mowving shocks.

Before post-processing After post-processing
mesh | L? error | order | L error | order | L? error | order | L error | order
]Pl
40 | 1.36E-03 — | 8.88E-03 — | 2.05E-03 — | 1.17E-02 —

80 | 3.35E-04 2.02 | 2.31E-03 1.94 | 9.57E-05 4.42 | 7.82E-04 3.91
160 | 8.30E-05 2.01 | 5.87E-04 1.98 | 4.61E-06 4.38 | 4.66E-05 4.07
320 | 2.07E-05 2.01 | 1.48E-04 1.99 | 3.40E-07 | 3.76 | 2.49E-06 | 4.23
640 | 5.16E-06 2.00 | 3.71E-05 2.00 | 3.87E-08 3.14 | 1.32E-07 | 4.24
]PJ2

40 | 3.79E-05 — | 2.45E-04 — | 1.90E-04 — | 1.00E-03 —

80 | 4.77E-06 | 2.99 | 3.08E-05 | 2.99 | 2.44E-06 | 6.28 | 1.89E-05 | 5.73
160 | 5.98E-07 3.00 | 3.85E-06 3.00 | 2.80E-08 6.45 | 3.09E-07 | 5.93

the shocks in [15]. However, implementing the one-sided post-processor in the region
of the discontinuities allows us to calculate the error in a larger region which includes
the stationary shocks. Since the discontinuous Galerkin approximation itself does not
give good information near the moving shocks, we do not expect the accuracy of the
post-processor to improve upon this information, even in the case of implementing the
one-sided post-processor. The errors contained in Table 3.5 show that outside a radius
of 0.4 of the moving shocks, the one-sided post-processed solution improves the accuracy
to 2k+1. The errors for the P? case are also plotted in Figure 3.6 in logarithmic scale
both before and after post-processing.

4. Concluding Remarks. We have presented a one-sided version of a local post-
processing technique that enhances the accuracy of any approximation with high order
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negative norm error estimates, with application to the discontinuous Galerkin solution
for linear hyperbolic equations. The one-sided nature of the post-processor allows us
to enhance the accuracy throughout the entire domain and not just away from the
boundaries, discontinuities, or interfaces of different mesh sizes. Numerical examples
are given to verify such accuracy enhancement capability of the post-processor for the
discontinuous Galerkin solution and its derivatives throughout the entire domain for
multi-domain problems with different mesh sizes and discontinuous coefficient equations.
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F1G. 3.1. Pointwise errors in logarithmic scale when an L?-projection onto the piecewise P2 poly-
nomials is done. Left: before post-processing. Right: after post-processing. Top: for the function;
middle: for the first derivative; bottom: for the second derivative.
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Fic. 3.2. Mesh structure for solving the linear advection equation. The left half of the domain
contains approrimately two-thirds of the elements; the right contains approrimately one-third of the
elements.
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F1G. 3.3. Pointwise errors in logarithmic scale when the P2 discontinuous Galerkin method is used
to solve the linear advection equation over a domain with two different mesh sizes as shown in Figure
8.2. Left: before post-processing. Right: after post-processing. The graphs are scaled the same.
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FIG. 3.4. Pointwise errors in the first and second derivatives in logarithmic scale when the P2
discontinuous Galerkin method is used to solve the linear advection equation over a domain with two
different mesh sizes as shown in Figure 3.2. Left: before post-processing. Right: after post-processing.
Top: first derivative; bottom: second derivative.
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FIG. 3.5. Pointwise errors in logarithmic scale when the P2 discontinuous Galerkin method is used
to solve the discontinuous coefficient equation with two stationary shocks. Left: before post-processing.
Right: after post-processing.
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F1G. 3.6. Pointwise errors in logarithmic scale when the P? discontinuous Galerkin method is used
to solve the discontinuous coefficient equation with two stationary shocks and two moving shocks. Left:
before post-processing. Right: after post-processing.
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