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THE N-COPY OF A
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LEGENDRIAN KNOT.
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We consider Legendrian knots and links in the standard 3-dimensional
contact space. In 1997 Chekanov [Ch] introduced a new invariant for
these knots. At the same time, a similar construction was suggested by
Eliashberg [E1] within the framework of his joint work with Hofer and
Givental on Symplectic Field Theory ([E2],[EGH]). To a knot diagram,
they associated a differential algebra A. Its stable isomorphism type is
invariant under Legendrian isotopy of the knot.

In this paper, we introduce an additional structure on this algebra
in the case of a Legendrian link. For a link of N components, we
show that its algebra splits A = ®ycqA,y. Here G is a free group on
(N — 1) variables. The splitting is determined by the order of the
knots and is preserved by the differential. It gives a tool to show that
some permutations of link components are impossible to produce by
Legendrian isotopy.

Figure 1: 3-copy of the Legendrian unknot.
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Figure 2: Topologically trivial Legendrian knots.

For example, take three copies of the Legendrian unknot as is shown
in Fig. 1. Then the permutation 123 to 231 is possible but 123 to 132
is not. This is the simplest case of the following:

Theorem. Take a topologically trivial Legendrian knot and shift it N
times in the direction transversal to the contact planes. (The shift is
small and hence well-defined.) Only cyclic permutations of this link are
possible via Legendrian isotopy.

We prove this theorem in Section 5.

Notes. Topologically trivial Legendrian knots are classified in [EF]
and they are shown in Fig. 2. The Legendrian unknot corresponds to
s=r=1.

The result about three copies of the Legendrian unknot can be also
derived from the results of Traynor [Tr|.

1. Preliminaries and the splitting theorem.

1.1. Link diagrams. We work in the standard contact space (R?, dz—
ydzr). A Legendrian link is a curve tangent to the contact planes.
A Legendrian isotopy is an isotopy via Legendrian links. By Gray’s
stability theorem, it is equivalent to an ambient isotopy of the contact
manifold.

There are two ways to represent a Legendrian link by a 2-dimensional
diagram. One can project the knot either to the xy or xz planes. The
images are called the plane diagram and the front diagram (or the
wavefront) respectively. A wavefront is a smooth curve with cusps and
nowhere vertical tangent lines. The knot is completely determined by
its wavefront since the y coordinate equals the slope of the tangent line.
A plane diagram is a smooth curve of zero area and it determines the

knot up to translations along the z-axis. More details can be found in
[A][B][EF][FT] and other sources.
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For each intersection point on a plane diagram, we include the informa-
tion of which branch is the overcrossing into the diagram. The result
will be a topological link diagram with additional area restrictions.
This area information is not essential: two Legendrian links with the
same topological diagram are Legendrian isotopic.

In the next two subsections, we briefly recall the construction of the
differential algebra from [Ch].

1.2. Admissible disks. The construction of the differential algebra
of the Legendrian link is based on the holomorphic disks in the sym-
plectization R x R (with respect to a special choice of almost complex
structure). In [Ch] the disks are visualized as immersions of regular
n-gons to R?. However, in order to describe the link splitting, it is
convenient to visualize the disks in R3.

Consider a Legendrian link L in R? with a regular plane diagram. For
every point of self-intersection of the diagram, draw a vertical segment
in R? that joints two points of the link. This segment is called a Reeb
chord.

We call a disk D? — R? admissible if 9D? is mapped to the link with
Reeb chords, and the projection of the interior of D? onto R? is an
immersion. The boundary of an admissible disk consists of link arcs
and Reeb chords. Near every Reeb chord the image of the projection of
the disk forms an angle. We require the angle to be convex (< 7). This
is also an admissibility condition. We orient an admissible disk so that
it has negative area in R?. Its boundary is oriented counterclockwise.

Two admissible disks are homotopic if they are homotopic as admissible
disks. Let Imm be the corresponding set of homotopy classes.

1.3. Differential algebra. To every Reeb orbit assign a letter a;.
More precisely, assign a letter a; to an upward-oriented vertical seg-
ment and a; to a downward-oriented vertical segment.

To a disk in Imm there corresponds a word in the alphabet (a;", a; ). It
is the product of all letters of the Reeb orbits in 9D?. We pick up a;
or a; depending on the orientation of dD?. The word is determined
up to cyclic permutation.

Definition 1.3a. A Hamiltonian H is a formal sum of words associated
to all disks in Imm.
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Note that monomials of H are defined up to cyclic permutations. To be
precise, H is an element of the algebra C (af) of cyclic words generated
by letters ai.

Let A = Zy(a; ) be a free associative Zy-algebra with unit, generated
by letters a; . Define the differential 0 by

aar) = 2

The right part of the formula is an element of A, despite the fact that
H is not. By ai*HLﬁ:O v; We mean the following. Take words from H
ai J

with exactly one positive letter a;". Represent them by noncyclic words
that begin with a;” and then differentiate, i.e., drop a;". In other words,
when we take a derivative of a cyclic word (i.e. drop a letter) the result
is not cyclic anymore, since dropped letter marks the beginning of the
word.

Extend 0 to the rest of the algebra by the Leibniz rule.

Definition 1.3b. (A, 0) is called the differential algebra of a Legen-
drian link.

Note. To be precise, we should call it the differential algebra of a plane
diagram. However, for all links in this paper it is clear which diagram
is meant.

Definition 1.3c. The stabilization SA of a differential algebra A is a
free product AJ[S. Here S = Zy{a,b) with da = b, 0b = 0.

Theorem 1.3d. [Ch] 0od = 0. Differential algebras of the Legendrian
isotopic Legendrian links are stable isomorphic, S"A = S™A' for some
n,m.

Notes. In fact, Chekanov proves that A and A" are stable tame isomor-
phic. We do not need the notion of tame isomorphism in this paper.

The differential algebra is called stably trivial if it is stably isomorphic
to the algebra with generators ay . . . a,, and differential day = 1, da; = 0
for ¢ > 0.

In [ENS] it is shown how to define the algebra over Z[t,t1]. It is done
by assigning proper signs to the disks.

There is an additional structure on the algebra, the Maslov class grad-
ing. We do not consider it here.
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1.4. Splitting theorem. For a link L, consider the relative homotopy
group Gy = m(R?/L). This is a free group on (N —1) variables, where
N is the number of components of the link.

Theorem 1.4a. The differential algebra A splits, A = @ A,. The
geGN
differential O preserves this splitting. Algebras of isotopic Legendrian

links are componentwise stable isomorphic,
D S"A, = D S"A,
geGN geGN
In particular, a permutation o of components of the Legendrian link by
Legendrian isotopy induces a componentwise automorphism,
D S"A, - P S™A,

geGn o0geGN

Notes. The permutation o acts naturally on 7, (R3/L) = G. We will
discuss this action in Section 1.5. below.

The stabilization SA is now defined as A ] Zs(a,b) with g(a) = g(b).
We call g(w) a link degree of w.

Proof. Each vertical segment represents an element of G'y. Denote it
by g(a). Extend g to the whole algebra by multiplicativity. It gives
the splitting A = @geq, Ay

Consider a word a; aj ...ay of the Hamiltonian. The corresponding
disk in R? gives a homotopy to the identity, it implies g(a;’aj_ cap) =
Lor g(a)g(aj ...ap) =1. Now g(a;) = g(a; )" = g(a; ...a;). We
proved that every monomial in da; has the same link degree as a, .
Therefore, 0 preserves the link degree.

To prove existence of componentwise isomorphism it is necessary to
repeat step-by-step Chekanov’s original proof and check that the split-
ting is preserved at every step. The most subtle point is to check that
all elementary automorphisms used in [Ch] preserve the splitting. [

1.5. The group Gy. Enumerate componentss of a link by 1... /.
Denote an arc from component i to component j by [i — j]. Also, set
[i — i] = 1. Gy is generated by elements [i — j] that are subject to
relations [i — j][j — k] = [i — k]. In particular, [i — j|[j — i] = 1.
The permutation o acts by o[i — j] = [0(i) — o(j)]. The group Gy
is freely generated by (N — 1) generators [1 — ] but this way we lose
symmetry.
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Figure 3: Wavefront resolution.

One can abelianize Gy = 7, (R*/L) to get the relative homology group
H\(R}/L) = Z"~'. Consider an injective map m : H'(R3/L) — Z~
defined by m([i — j]) = e; — e; where e; are basis vectors. Then the
action of a permutation group Sy on H'(R?/L) is just the standard
action of Sy on ZV.

We established the splitting theorem and now it is convenient to use
the original terminology from [Ch]. In the rest of the paper, disks are
immersed n-gons in the plane and Reeb orbits are positive and negative
disk corners. Also, we write a; instead of a; and denote by Imm; the
subset of Imm that consists of disks with one positive corner.

2. Algebras.

2.1. Computing Imm;. Given a plane diagram, it is a nontrivial
problem to find all the disks. It is much easier to do it from a wavefront.
This approach was introduced in [Ng].

Here is a way to convert a wavefront to a plane diagram.

Proposition 2.1a. (see [Ng]) Resolve intersections and cusps of a
wavefront as shown in Fig. 3. The result is a plane diagram of a Leg-
endrian link that s Legendrian isotopic to the original. [J

We keep this resolution in mind and draw the disks directly on a wave-
front.

A wavefront is called simpleif all right cusps have the same z-coordinate.
Moving all right cusps to the right makes any front simple.

Definition 2.1b. A node of a wavefront is either a self-intersection
point or a right cusp.

Proposition 2.1c.([Ng]) Immy of a simple wavefront consists of embedded
disks of the following type. Take a left cusp and a node and connect
them by two strands. The strands go directly from left to the right, their
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Figure 4: Thick and thin disks.

projections onto x are embedded intervals. The disk is the region be-
tween the strands. We require all corners to be convex. Also, for every
right cusp there is a 1-vertex disk which is not seen on the wavefront
diagram. [

We call a 1-vertex disk a wunit disk, since it gives rise to a unit term
in the differential. Also, we call a unit disk small if it corresponds
to the resolution of a right cusp, and big otherwise. For example, a
Legendrian unknot has exactly two unit disks: a small one and a big
one.

2.2. Disks of a general N-copy.

Definition 2.2a. Shift a Legendrian knot /N times in the transversal
direction. The shift is small. The result is a link of N components. It
is called the N-copy of the initial knot.

A wavefront of the N-copy is an original wavefront shifted (a little)
N times in the z-direction. To each intersection point of the original
wavefront there corresponds a junction of N? intersection points of the
N-copy. Each left or right cusp gives a junction of N(N —1)/2 points.

Let us start with a simple wavefront. Consider a stick-together map
s : R? — R? with the following properties. Draw the N-copy of a knot
in the first R? and the knot itself in the second R?. The map s takes
every copy of the knot to the knot itself, as well as the space between
them. It is a diffeomorphism outside.

A disk of the original wavefront gives rise to a family of disks of its
N-copy. Namely, for every corner of the original disk, we choose some
corner in the corresponding junction.
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Figure 5: N-copy of the Legendrian unknot.

Definition 2.2b. A disk D of the N-copy is called thick if s(D) is a
disk of the initial knot.

Here we require s|gp to be injective. It means that for every vertex
of s(D) there is only one vertex of D in the corresponding junction.
Therefore all thick disks come from the original knot, as described
above.

For every smooth path connecting a node and a left cusp of the initial
knot, there is a family of strip-like disks of the N-copy. Also, there are
square-like disks in the left cusp junctions.

Definition 2.2c. A disk D of the N-copy is called thin if s(D) lies in
the wavefront.

A thin disk always has exactly four corners. One of them is a left cusp.
Therefore thin disks are either strip-like or square-like, as described
above.

Note. Small unit disks are considered to be neither thick nor thin.

Proposition 2.2d. Disks of the N-copy of a knot with a simple wave-
front are either thick or thin or small unit disks.

Proof. 1f a disk has only one consecutive corner per junction it is thick.
If there are two consecutive corners at the same junction then it is
forced to be thin. [J

Note. Proposition 2.2d is true for a wavefront that is not necessarily
simple, but has no disks with negative right cusp vertices. However,
for generic wavefronts the situation is more complicated.
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2.3. N-copy of the Legendrian unknot. Consider a circle with N
marked points, 1...N. Assign a letter a;; to the clockwise oriented arc
from 7 to j. The letter a; corresponds to an arc of length 2.

Definition 2.3a. The circular algebra Oy is a free algebra of N?
variables Zy(a;;) with a differential defined as:

daij = g Qik Ak

k between i and j on the circle
In other words, the range of kisi <k <jork<j<iorj<i<k.

Proposition 2.3b. The differential algebra of the N-copy of the Leg-
endrian unknot is Oy. Link degree is g(a;;) = [i — j].

Proof. The Legendrian unknot has only two unit disks: one big and
one small. There are 2N unit disks in the N-copy. They cancel each
other in the differential. The remaining disks are thin. Disks of types
AB,C in Fig. 5 correspond to the ranges i < k < j, k < 7 < i and
j <1 < k respectively. [J

2.4. Interval algebras. Consider the algebra of a piece of the wave-
front in Fig. 6. Rays from " and j™ left cusps intersect at node a;;,
where 1 <i < j < K and j —¢ < N. The differential 0 is

6aij = Z ik Ak for j —1< N
1<k<j
6aij = 1+ Z Qi Q5 for ] —1=N
1<k<j

Definition 2.4a. This is the interval algebra In(K).

One can visualize Iy(K) as an interval with K marked points. Vari-
ables are subintervals of length < N. Note that Iy(NV) is also well
defined and has no units in its differential.

Consider a free product Iy(K)][[In(L). Identify interval ends of
length N. Namely, take the quotient by relations a;; = a;j and agy1-iki1-j =
a1 ip41-j for i,7 < N. The differential is still well-defined.

Definition 2.4b. This is the double interval algebra Iy (K, L).
We can visualize it as two intervals with glued ends. See Fig. 7B.

Definition 2.4c. A circular algebra Oy (K) is defined to be Iy(K +
N, N).



668 THE N-COPY OF A TOPOLOGICALLY TRIVIAL LEGENDRIAN KNOT.

P g~ wN P
RS ©0o~wo

[ERN
N

Figure 6: Interval algebra I(12).
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Figure 7: Double interval algebra I3(9,9).

This is a generalization of a definition from the previous section, Oy (N) =
On. We can visualize Oy (K) as an algebra of arcs of length < N in a
circle with K marked points. See Fig. 8.

2.5. N-copies of topologically trivial Legendrian knots. These
are shown in Fig. 2.
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Figure 8: Circular algebra.

Proposition 2.5a. The differential algebra of the N-copy of a topo-
logical unknot with r left cusps and s right cusps is In(rN,sN + N) as
soon as s > 1. Link degree is g(a;;) = [imod N — jmod N].

Proof. When s > 1 a wavefront has no disks except small unit disks.
The N-copy has only thin disks. The diagram of the N-copy is given
by Fig. 7TA with p = rN, ¢ = sN. The algebra Ix(rN) corresponds
to the left side of Fig. 7TA. To see how the right side of the picture
corresponds to Iy(sN + N) we mark the left cusps by 1...(sN + N)
as it is shown. Now aj; is a point of intersection of rays from " and
§™ left cusps. One can check that all the disks fit together to give a
correct differential. [J

2.6. N-copies of negative torus knots. Legendrian torus knots
are classified in [EH]. They are divided into two categories: positive
and negative. All negative torus knots are shown in Fig. 7A. with
(N,p+q) =1. When (N,p+ q) # 1 Fig. 7TA gives (N, p+ ¢)-copy of a
negative torus knot.

Proposition 2.6a. The algebra of a link shown in Fig. 7A is Ix(p, ¢+
N) as soon as ¢ > 2N.

We do not consider torus links in this paper and omit the proof of
the proposition. However, it is likely that our methods can be used to
prove the following:

Conjecture 2.6b. Only cyclic permutations are possible for the N-
copy of a negative torus knot.
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3. Algebraic tools.

We need some computable invariants of differential algebras that sur-
vive stabilization. The homology ring H = Ker d/Im 9 is difficult to
compute. (A4, d) can be viewed as a vector field on a non-commutative
affine space. Thus, the invariants of (A, 0) are subject to algebraic
geometry language rather than homology groups language. Zeroes of
a vector field are called augmentations and we study their local invari-
ants. Augmentations and corresponding linear homology groups were
introduced in the original paper [Ch] and studied further in [F].

3.1. Local homology groups.

Definition 3.1a. An augmentation € of A is a ring homomorphism
€ : A — Zjy such that eo 0 =0 and (1) = 1.

Alternatively, an augmentation is a zero of the vector field 0 or a max-
imal differential ideal A' = Kere so that A =1 @ A' and 0A! C AL

The homomorphism € is defined as soon as we know all €(a;). Those
are the coordinates of a point. Change the coordinate system via a; :=
a; + €(a;). Now € is an augmentation if in the new coordinate system
0 has no constant terms (units) i.e. the vector field vanishes at the
origin.

For the rest of the section, we assume that A has some fixed augmen-
tation with kernel A*. Also, we substitute a; := a; + €(a;) and assume
€(a;) = 0 for all generators of A.

Power ideals AV = (A")N are preserved by 0 as well. The augmentation
gives rise to the power filtration A = A° D A D A2... > AN > ...
It is the usual filtration of A by word length.

Consider T = A'/A2. Tt is a Zy-vector space spanned by a;. The
differential 0 induces the differential 0, : T — T. It is exactly the
linear part of 0.

Definition 3.1b. The linear homology group H! is Ker d;/Im 9.
For any i < j there is a space A’/A’ with the induced differential and
homology group H*/. In particular, H*? = H' and H*> = H.

There is also a system of inclusion/surjection maps A’/A7 — A" /AT
for i > i', j > j'. They are compositions of inclusions A*/A7 — A” /AT
and surjections A°/A7 — A'/A7". The induced maps i, : H» — H">'
are also well defined.
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Definition 3.1c. We call the groups H* together with homomor-
phisms e
a system of local homology groups that corresponds to the augmen-
tation e.

For an augmentation € of A there is an augmentation Se of SA =
A]Zxy{a,b) defined by €(a) = €(b) = 0.

Proposition 3.1d. The system of local homology groups survive sta-
bilization, i.e., H"(A) = H"(SA) and these isomorphisms commute
with the maps 1.

Proof. In [Ch] the invariance of H is proved by means of the chain
homotopy operator h (see Lemma 2.2. in [Ch]). The same tech-
nique works here. One has to check that A commutes with inclu-
sion/surjection maps and preserves the power filtration. [J

Notes. We will use only the map i, : H — H'.

If we think about an augmentation € as a zero (or a singular point)
of the vector field, then the system of local homology groups is an
invariant of the stable geometric type of this zero.

The Maslov class grading makes T a graded vectorspace. Then instead
of the dimension of H' there is a Poincaré polynomial.

The invariance of H' can be also proved as follows. Stabilization SA
raises the dimension of T by 2. The differential is 0ya = b, 0,0 = 0, so
the homology is preserved.

3.2. Augmentation classes. Unfortunately, for every augmentation
e of A there are two augmentations for SA. One is Se the other is
€(a) = 1, €(b) = 0. They are equivalent but it causes some trouble in
definitions.

Definition 3.2a. Two augmentations € and € are called (stably) equiv-
alent if there is a differential preserving automorphism o : S"4 — S"A
with S™¢’ = S™e o a.. A set of equivalent augmentations forms an aug-
mentation class.

An augmentation class is the geometrical type of a zero up to stabiliza-
tion. All zeros of SA come from zeros of A, but nonequivalent zeroes of
A can become equivalent in S A. In fact, the only way to check that two
zeroes are not stably equivalent is to compute their local invariants, i.e.
homology groups.
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Proposition 3.2b. If A and A’ are stably isomorphic then there is
a one-to-one correspondence between their augmentation classes and
1somorphisms of corresponding systems of local homology groups. In
particular, the number of augmentation classes is an invariant. [

3.3. Splitting and proper augmentations. If the knot un-
der consideration is a link, then everything splits: H = ®&,H,, T =
®,Ty, H' = ®,H, etc. For g = [i — j] we will use shorter notations

The algebra of a link has another class of differential ideals besides the

augmentation ideals. Namely, denote by A, the two-sided differential
ideal generated by A,. A, is a proper subset for g # 1.

Let L be a link formed by knots K;.
Proposition 3.3a. There is a natural homomorphism A(L) — [ [, A(K;).
Proof. This is exactly the quotient map A(L) — A(L)/ @y Ay(L). O

Definition 3.3b. An augmentation € is called proper if e(4,) = 0 for
g#1

Proposition 3.3c. Proper augmentations of the link are in one-to-one
correspondence with augmentations of its knot components.

Proof. It follows from the previous proposition. [

3.4. Characteristic algebra. There is an alternative approach to
the problem of distinction of differential algebras.

Definition 3.4a. [Ng| A characteristic algebra of Ais C'(A) = A/Im 0.

The characteristic algebra has relations. The stabilization SC(A) is
defined as SC'(A) := C(SA). It is C(A) with one new generator added
and no new relations. There are some algebraic properties of C'(A)
that survive stabilization. For example,

Proposition 3.4b. Both C(A) and SC(A) have divisors of zero or
neither have. [

More examples and applications of characteristic algebras can be found
in [Ng]. In particular, the Legendrian mirror problem of [FT] is solved
there.

3.5. Reduced algebra. Consider a differential algebra A with a fixed
proper augmentation. Denote the intersection of the augmentation
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ideal A' with A, by Ay. Thus, A = Dgr1 4, D Ay @ 1. Also, let Ay be
the corresponding differential ideal.

Definition 3.5a. A reduced algebra A is A/A,.

The reduced algebra A is generated by the letters of A with the link
degree # 1. It is not free. The products of the generators that have
unit link degree are equal to 0. These are all the relations. Here is an
alternative description of the linear homology and T, for g = [i — j].

Proposition 3.5b. 1&T,; =4/ @ A,

g£[i—j],#1
Proof. All generators of link degree # [i — j] disappear. If g(a) =
g(b) = [i — j] then g(ab) = [i — j]* # [i — j] hence the quadratic
terms also disappear. [J

3.6. ijk-localization. The reduced algebra has a filtration by pow-
ers of A,. For our purposes it is enough to exploit only the simplest
nonlinear term of this filtration.

Definition 3.6a. Let v = {[i — j],[j — k|,[i — k|}. The ijk-
localization for A is the space T;;; defined by 1 ® T;;;, = fi/ P Ag.
9¢7,#1

Proposition 3.6b. T;;; is generated by generators of A with link
degrees from . The only quadratic elements are products of generators
of degree [i — j| and [j — k]. As a Zy-vector space, T;ji is isomorphic
to Tij @ Ty, @ Tir @ (Ti; @ Tji). The differential Oyjy, is obtained from
0 by erasing all nonlinear terms except products ab with g(a) = [i —
jl, g(b) =1[j — k]. O

Note. We can now define H;;;, = Ker 0jj/Im 0. These groups, and
their generalizations, are well-defined invariants of the stable type, but
they are beyond the scope of this paper. We use a more computable
characteristic algebra approach.

3.7. Characteristic ijk-algebra. We call T;;, a free ijk-algebra. It
has no relations except those dictated by the link degree. The stabiliza-
tion operation SA induces an obvious stabilization operation ST;j; of
free 1jk-algebras. We need some invariants that survive stabilization.

Definition 3.7a. The characteristic ijk-algebra C'H,jy, is T;jj /Im Oj.

The characteristic algebra is not necessarily free. The stabilization
operation S(CH,j) is the addition of one new generator of any appro-
priate link degree.
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Figure 9: Kinks.

Definition 3.7b. An ijk-algebra has no divisors of zero if ab = 0 only
by degree reasons. In other words, ab # 0 as soon as g(a) = [i —

gl 9(b) =[5 — kJ.

Proposition 3.7c. Both CH;j, and S(CH;j;) have divisors of zero or
neither have. UJ

4. N-copies.

4.1. N-copy alternative.

Proposition 4.1a. For any link L either

1) All permutations of the N-copy of L are possible by Legendrian
isotopy, and that is when all permutations of the 3-copy are pos-
sible, or

2) Only cyclic permutations are possible, and that is when 12 to 21
15 possible and 123 to 132 is not, or

3) No permutations are possible.

Proof. 1f we can exchange knots of the 2-copy, we can exchange a knot
and its (N — 1)-copy. It gives a cyclic permutation of the N-copy. If
there is a non-cyclic permutation of the N-copy we can drop all the
knots but three of them to get a non-cyclic permutation of the 3-copy.
Given a permutation 123 to 132 one can generate any permutation of
the N-copy. U

Notes. The proposition is true in any contact manifold. The main
theorem of this paper states that topologically trivial knots are of type
2. The result of [Tr] can be viewed as an example of type 3 knot in
J'(SY). Recently, L. Ng produced an example of type 3 knot in R3.

4.2. Kinked knots and cyclic permutations. One can add a
positive or negative zigzag to the Legendrian knot K (see Fig. 9.) The
result is a kinked knot Z*(K).
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Figure 10: Zigzag journey.

Figure 11: Permutation of the 2-copy of the Legendrian unknot.

Proposition 4.2a. Cyclic permutations of the N-copy of the kinked
knot Z*(K) are possible.

Proof. Fig. 10. shows how the zigzag travels through the 2-copy of the
knot to exchange the knots. It is shown how the zigzag goes through
the cusps and the intersection points. []

Proposition 4.2b. Cyclic permutations of the N-copy of the Legen-
drian unknot are possible.

Proof. The permutation 12 to 21 is shown in Fig. 11. Alternatively,
consider the torus |z;|> + |22/ = 1, Imz; /25 = 0 in the contact sphere
S3 C C2. Tt is transversal to the contact structure and is foliated by
Legendrian unknots. [J
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Figure 12: Getting rid of big unit disks.

4.3. N-copy trick. If two Legendrian knots are Legendrian isotopic,
then so are their N-copies (and vice versa). We can consider invariants
of the N-copy instead of invariants of the initial knot. Call it the
N-copy trick. The N-copy trick is not completely new: the Thurston-
Bennequin invariant can be defined as a linking number of a 2-copy.

The differential algebra of a Legendrian knot has two flaws. First, it
gives no invariants for kinked knots since such a knot has a stably
trivial algebra. This is because 0(a) = 1, where a is a letter of the
right cusp of a zigzag. One can prove that it implies stable triviality.
Second, it can have no augmentations at all and then it is difficult to
deal with (see however [Ng]).

However, the differential algebra of the N-copy of a Legendrian knot is
not necessarily stably trivial. The next proposition shows that 2-copies
(and hence all 2N-copies) always have augmentations.

Proposition 4.3a. A 2-copy of any Legendrian link has at least one
augmentation.

Proof. Consider the initial link. All units in the differential come from
unit disks, which are either big or small. A Legendrian isotopy does
not alter the existence of the augmentation. Move all right cusps to
the right and all left cusps to the left. Then perform the operation
shown in Fig. 12. Now there are no big unit disks. Indeed, such a disk
is formed by an intersection point of two branches of the link from one
left cusp point. But these branches do not intersect at all in Fig. 12.

Consider a 2-copy of the altered link. It has no big unit disks either.
Every cusp (left or right) gives a single node b; of degree [1 — 2] or
[2 — 1]. Let €(b;) = 1 for those nodes and €(a;) = 0 for all other nodes.
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Figure 13: Ruling of the 2-copy.

In Fig. 13. nodes b; are marked. Now € is an augmentation. Indeed,
for every small unit disk there is a thin disk with only b; vertices, as it
is shown in Fig. 13. Hence all units in the differential cancel out. [

Note that thin disks in the Fig. 13. form a ruling [F]. We can also use
the result of [F| ("ruling implies augmentation”) to prove the proposi-
tion. Then the preliminary step in Fig. 12. is not unnecessary.

Notes. We saw that the flaws of the differential algebra of the Legen-
drian knot may be resolved by applying the N-copy trick. The disad-
vantage of this approach is that the new algebra is much bigger. The
advantage is that the link degree g gives a lot of additional structure.
Now we have the differential ideals Ag, filtration by powers of A, and
groups like Hj;,, C'H;j, to work with.

To produce even more invariants of Legendrian knots, a generalization
of the N-copy trick was proposed by the author [M]. It was called the
satellite construction in [Ng2].

It is likely that these techniques may be used to find practical invariants
of stabilized Legendrian knots, though this still seems to be a delicate
and difficult problem.
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5. Proof of the theorem.

5.1. Legendrian unknot.

Theorem 5.1a. Only cyclic permutations of the N-copy of the Legen-
drian unknot are possible.

Note that they are indeed possible; see Section 4.2. We give two proofs
of this theorem. One uses homology groups. The other is a model
proof for the general case.

Proof. The algebra is Op; see Section 2.3. There is a unique proper
augmentation class since the Legendrian unknot has one augmentation
class. It is given by €(a;j) = 0. The differential has trivial linear part,
01 = 0. The homology groups are:

Hl _ ZN2
— #2
H =7V

Lemma 5.1b. The homomorphism i : Hy; — H}; is not trivial when
j=1+1o0ri=N,j=1. It is trivial otherwise.

Proof. In the first case, da;; = 0. Hence a;; represents an element of
Hij and z(a”) 7£ 0.

In the second case, let s be a representative of a homology class of H;;
with i(s) # 0. Then s = a;; + w where w € A?. Since &, = 0 we have
0(A?) C A% and dw € A*. Now ds = da;; + Ow = 0 hence da;; € A>.
This is a contradiction. [J

It follows that Legendrian isotopy should preserve the cycle 1 — 2 —
... > N — 1 and hence the isotopy may only cyclically permute the
components of the N-copy. [

Another proof of 5.1a. Consider Os. It is enough to show that the
permutation 123 to 132 is impossible. Take T3 and T;32. Both have
three generators, one in each degree. But 0935(a13) = a12a93 while

0132 = 0. Hence characteristic algebra C'H;93 has divisors of zero while
C'H;3» has none. [

5.2. Topologically trivial Legendrian knots.

Theorem 5.2a. Only cyclic permutations are possible for the N-copy
of a topologically trivial Legendrian knot.
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Proof. All these knots are shown in Fig. 2. The case s = r = 1 was
considered in the previous section. Cyclic permutations are possible
since they are kinked knots; see Section 4.2.

The z-mirror of the knot is its reflection along z axis. It is enough
to prove the theorem for the z-mirror of the knot. Therefore, we can
assume s > 1.

We want to prove that the permutation 123 to 132 is impossible for the
3-copy. The algebra of the 3-copy is I3(3r, 35+ 3); see Section 2.5. This
algebra has no proper augmentations since the initial knot has none.
We use the 2-copy trick, as recommended in Section 4.3., to obtain the
augmentation.

Proposition 5.2b. 1y(2r,2s + 2) has a unique (not proper) augmen-
tation class. It is given by €(a;;iy1) = €(aj;y,) = 1 and €(a;i2) =
G(a;,i+2) =0.
PT‘OOf. 8ai,,~+2 =1+ Qg 541 41,142 1mphes G(ai,i—i—l) = 1. The value
of €(a;;t+2) is not important since there are automorphisms a; ;4o =
1+ A5 5+42- O

We can subdivide a link into components that are links themselves. The
splitting theorem and all related considerations still work. Consider the
3-copy of the 2-copy of the knot. In other words, consider its 6-copy
subdivided into three 2-copy parts. The algebra is Ig(6r, 6s + 6) with
the link degree given by ¢(a;;) = [imod 3 — jmod 3]. We want to show
that permutation 123 to 132 is impossible for this algebra.

Note that the algebra Ig(6r, 65 + 6) (viewed as a 3-copy) has a unique
proper augmentation. It follows from Proposition 5.2b (I3 has a unique
augmentation) and Proposition 3.3¢ (proper augmentations of a link
are induced by augmentations of its components). Note that the aug-
mentation of 5.2b becomes proper when we view the 2-copy as one
component. The following proposition finalizes the proof of the theo-
rem.

Proposition 5.2c. CHi93(L4(67,65 + 6)) has divisors of zero, while
CHi35(Ig(6r, 65 4 6)) has none.

Proof. We will evaluate C'Hy93 and C'H,3y graphically. The sample
picture of the interval algebra I(12) is shown in Fig.14. A node at
the intersection of the rays from two left cusps marked ¢ and j has
degree [i — j]. T;ji is generated by the nodes grouped into triangles.
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Figure 14: I5(12)

Factoring by the augmentation ideal Ay means that circled nodes are
equal to 1 since € is equal to 1 there. All other nodes are equal to zero.

Every term of the differential O is represented by a parallelogram.
Nonzero terms of 0,5, come from two types of parallelograms. The
first type is a parallelogram with 3 vertices at the triangles. It gives a
quadratic term. The second type is a parallelogram with 2 vertices at
the triangles and one circled vertex. It gives a linear term.

These calculations show that Tio3(/s(12)) is generated by ag, by, co,
ai, bi, ¢, i, vy, 2, © = 1...3. The differential is given by the formu-
lae:

ob; = 0c; =0
Oa; = b;c;

Oxr; = b; + biq
0z = ¢; + Cip1

yi = a; + aip1 + Ticip1 + biz;
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That means by = by = by = b3 = band ¢g = ¢; = ¢ = ¢3 = ¢ in
the C'Hy93 and the relation bc = 0 gives divisors of zero. Note that
b, ¢ # 0 because all relations in C' Hyy3 are given by the right parts of
the displayed formulae.

Ti32(16(12)) is generated by ay, ¢y, a;, b;, ¢;, 0 = 1...3 and xq, Yo, Ti, Yi, 2,
t = 1,2. The differential is given by:

da; = 0b; = 0c; =0
Yy = ¢; + Cip1

Ozi = b; + by

Ox; = a; + a1 + Cibiga

For the characteristic algebra C'Hy3s, this means that by = by = b3 = b
and ¢y = ¢; = ¢3 = c3 = ¢. Also, ¢b = ag+a; = a1 +as = as + az which
implies ag = as = a and a; = a3 = a/. The algebra C'H,3, is generated
by a,d’, b, ¢, x;, y;, z; with only one relation cb = a+a'. It has no divisors
of zero. Indeed, let pg = 0, with g(p) =[1 — 3|, g(¢) = [3 — 2|. Then
p and ¢ are sums of linear terms. The product consists of quadratic
terms with at most one term cb. This product cannot be zero.

The calculations for the general case I4(6r,6s + 6) are similar to those
performed above. C'H;j(Ig(67, 65+ 6)) is obtained from CH;;;,(1s(67))
and C'H,j;(Is(6s+ 6)) by variable identification. Still, C'H;,3 has divi-
sors of zero and C'Hy3, has none. [J
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