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A numerical verification method of steady state solutions for a system of reaction-diffusion
equations is described. Using a decoupling technique, the system is reduced to a single
nonlinear equation and a computer-assisted method for second-order elliptic boundary
value problems based on the infinite dimensional fixed-point theorem can be applied.
Some numerical examples confirm the effectiveness of the method.
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1. Introduction

Consider the following system of two-coupled elliptic partial differential
equations: ⎧⎪⎨

⎪⎩
−ε2Δu = f(u) − δv in Ω ,

−Δv = u− γv in Ω ,

u = v = 0 on ∂Ω ,

(1)

where Ω is a bounded convex domain in R
n (n = 1, 2, 3) with piecewise smooth

boundary ∂Ω , the parameters ε �= 0, γ and δ are real and the map f is assumed to
satisfy appropriate conditions described later.

The elliptic system (1) represents a steady state case of reaction-diffusion
system of interest in mathematical biology [16]. Here, real functions u and v,
which are called the activator and inhibitor respectively, can be interpreted as
relative concentrations of two substances known as morphogens, and the func-
tion f models autocatalytic and saturation effects [12]. A lot of research has
been focused on the reaction-diffusion system (1) from theoretical and numerical
sides [2, 4, 11, 12, 16, 20].

The aim of this paper is to propose a numerical method to prove the existence
of the solutions of the system (1) near an approximate solution obtained by a
usual floating point computation. This method is also called computer-assisted
proof. The method is based on the infinite dimensional fixed-point theorem using
Newton-like operator and the constructive error estimates. All numerical results
discussed take into account of the effects of rounding errors in the floating point
computations.
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The contents of this paper are as follows. A fixed-point formulation and an
existence theorem in certain appropriate function spaces using Newton-like iter-
ation is considered in Section 2. Estimation of a linear boundary value problem
in decoupling technique is described in Section 3. Finally, some numerical results
which prove the existence of solutions are presented in Section 4.

2. Fixed-point formulation

For some integer m, let Hm(Ω) denote the L2-Sobolev space of order m on Ω .
We shall find weak solutions of the eq. (1) in

H1
0 (Ω) := {u ∈ H1(Ω) | u = 0 on ∂Ω}

with the inner product (∇u,∇v)L2 and the norm ‖u‖H1
0 (Ω) := ‖∇u‖L2(Ω) where

(u, v)L2 implies L2-inner product on Ω .
Let Sh be an approximate finite dimensional subspace of H1

0 (Ω) dependent on
the parameter h. For example, Sh is taken to be a finite element subspace with
mesh size h or a set of finite Fourier expansion with truncation number N (= 1/h).

We apply decoupling technique which reduces the system (1) to a single non-
linear equation [12] using the particular property that one of the two equations
is linear. Although it would be possible to treat problem (1) as a system, the
decoupling technique has the advantages from a computational point of view.
Assume that when u to be known, the boundary value problem:

{
−Δv + γv = u in Ω ,

v = 0 on ∂Ω
(2)

is uniquely solved by

v = Bu,

where the operator B is bounded invertible linear operator from L2(Ω) into H1
0 (Ω)

in the weak sense. If γ < 0, this assumption is not trivial. We will propose a
validation method to check the solvability of problem (2) and an upper bound of
‖Bw‖H1

0 (Ω) in Section 3.
Substituting v = Bu into the first equation of (1), the problem

⎧⎨
⎩−Δu =

1
ε2

(f(u) − δBu) in Ω ,

u = 0 on ∂Ω
(3)

is arrived. Here, numerical verification methods for nonlinear elliptic boundary
value problems [9, 10, 19] can be applied to the single equation (3). Here we
adopt computer-assisted approaches which have been developed by Nakao and co-
authors [6, 7, 8, 18]. For the self-containedness of the paper, we shall sketch the
verification method briefly.
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The nonlinear operator g : H1
0 (Ω) → L2(Ω) defined by

g(u) :=
1
ε2

(f(u) − δBu)

is supposed to be continuous, Fréchet differentiable, and also g maps bounded
sets in H1

0 (Ω) into bounded set in L2(Ω). For ξ ∈ L2(Ω) let Aξ be the solution
of −Δψ = ξ, x ∈ Ω and ψ = 0, x ∈ ∂Ω , then the operator A : L2(Ω) → H1

0 (Ω)
is compact because the compactness of the imbedding H2(Ω) ↪→ H1(Ω). Then
the nonlinear operator F := A ◦ g is also a compact map on H1

0 (Ω), and the
weak form of eq. (3) can be rewritten equivalently as the fixed-point form u = Fu

in H1
0 (Ω).
Next we introduce the Newton-like method. Let Ph : H1

0 (Ω) → Sh denote the
H1

0 -projection defined by

(∇(w − Phw),∇φ)L2 = 0, ∀φ ∈ Sh, (4)

and suppose the following approximation property of Ph:

‖w − Phw‖H1
0 (Ω) ≤ Ch|w|H2(Ω), ∀w ∈ H1

0 (Ω) ∩H2(Ω), (5)

where C > 0 is a positive constant whose concrete upper bound can be es-
timated and | · |H2(Ω) means the semi-norm on H2(Ω) defined by |w|2H2(Ω) =∑n

i,j=1‖∂2w/∂xi∂xj‖2
L2(Ω). This assumption holds for many finite element sub-

spaces of H1
0 (Ω) or function spaces of Fourier series with finite truncation.

Since Sh is the closed subspace of H1
0 (Ω), each element of H1

0 (Ω) can be
uniquely represented as the direct sum of the element of Sh and S⊥

h . Here
S⊥

h stands for the orthogonal complement subspace of Sh in H1
0 (Ω). Therefore,

the fixed-point equation u = Fu in H1
0 (Ω) can also be uniquely decomposed as

the finite dimensional (projection) part and the infinite dimensional (error) part
such that {

Phu = PhFu,

(I − Ph)u = (I − Ph)Fu.
(6)

In order to obtain a solution satisfying eq. (6), we fix an approximate weak
solution uh ∈ Sh of eq. (3) and define the nonlinear operator Nh : H1

0 (Ω) → Sh by

Nhu := Phu− L−1
h Ph(u− Fu),

where L−1
h : Sh → Sh means the inverse of the operator

Lh := Ph

(
I − 1

ε2
A(f ′(uh) − δBh)

)

on Sh and Bh on Sh maps element wh to the zh satisfying

(∇zh,∇xh)L2 + γ(zh, xh)L2 = (wh, xh)L2 , ∀xh ∈ Sh. (7)
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Note that existence of L−1
h is equivalent to the invertibility of a matrix which

is able to be numerically checked in the actual verification process. Because of
Phu = PhFu and Phu = Nhu are equivalent, defining the compact operator T on
H1

0 (Ω) by

Tu := Nhu+ (I − Ph)Fu, (8)

two fixed-point problems u = Tu and u = Fu are also equivalent. Therefore
Schauder’s fixed-point theorem asserts that if for a nonempty, bounded, convex
and closed set U ⊂ H1

0 (Ω),

TU = {Tu | u ∈ U} ⊂ U,

holds, then there exists a fixed-point of T in U . We call such a set U expected to
be TU ⊂ U as a candidate set.

When a candidate set U is chosen such as

U := uh + Uh + U⊥
h , Uh ⊂ Sh, U

⊥
h ⊂ S⊥

h , (9)

a sufficient condition for TU ⊂ U can be written by

{
NhU − uh ⊂ Uh,

(I − Ph)FU ⊂ U⊥
h

(10)

[18]. Note that when the approximate solution uh ∈ Sh is sufficiently good, the finite
dimensional part will be possibly contractive. On the other hand, the magnitude of
the infinite dimensional part of T , i.e., (I−Ph)Fu, is expected to be small when the
parameter h of Sh are taken to be sufficiently small because of the approximation
property (5) of Ph.

3. Validation of linear operator

This section describes the estimation of B for the boundary value problem (2),
namely, we consider the existence of a weak solution v ∈ H1

0 (Ω) and give an upper
bound of ‖v‖H1

0 (Ω) for the problem:

{
−Δv + γv = uh + û in Ω ,

v = 0 on ∂Ω ,
(11)

where û ∈ L2(Ω). Here, note that the existence of a solution of eq. (11) derives the
invertibility of B because B is linear. In actual computation, û should be taken as
ûh + u∗, ûh ∈ Uh, u∗ ∈ U⊥

h , therefore an upper bound of ‖û‖L2(Ω) is known. In
the same finite element subspace we compute an approximate solution for û = 0 in
eq. (11) and fix by vh ∈ Sh. As the similar formulation in the previous section, a
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fixed-point form v = F̂ v in H1
0 (Ω) is obtained using F̂ v := A(−γv + uh + û) and

also v = F̂ v can be decomposed as

{
Phv = PhF̂ v,

(I − Ph)v = (I − Ph)F̂ v.

The finite dimensional part Phv = PhF̂ v is rewritten as Newton-type fixed-point
form Phv = N̂hv using

N̂hv := [I + γPhA]−1
h PhA(uh + û− γ(I − Ph)v),

where [I + γPhA]−1
h means the inverse on Sh of the restriction operator Ph(I +

γPhA)|Sh
. The invertibility of Ph(I + γPhA)|Sh

is equivalent to the existence of
G−1 described later.

Now we prepare the candidate set V = vh + Vh + V ⊥
h ⊂ H1

0 (Ω) as Vh and V ⊥
h

are balls with radius α > 0 and β > 0 of the form

Vh = {v̂h ∈ Sh | ‖v̂h‖H1
0 (Ω) ≤ α}, V ⊥

h = {v∗ ∈ S⊥
h | ‖v∗‖H1

0 (Ω) ≤ β}. (12)

Then defining the compact operator T̂ on H1
0 (Ω) by T̂ u := N̂hu+ (I − Ph)F̂ u,

two fixed-point problems u = T̂ u and u = F̂ u are equivalent, and the verification
condition: {

N̂hV − vh ⊂ Vh,

(I − Ph)F̂ V ⊂ V ⊥
h

(13)

assures the existence of the solution of the problem (11) in the set V ⊂ H1
0 (Ω).

From the definition of [I+γPhA]−1
h and Ph, a sufficient condition of the verification

condition (13) is

⎧⎪⎨
⎪⎩
ρ sup

v∈V
‖PhA(uh + û− γ(I − Ph)v − γvh) − vh‖H1

0 (Ω) ≤ α,

Ch sup
v∈V

‖−γv + uh + û‖L2(Ω) ≤ β,
(14)

where ρ := ‖LTG−1L‖E, ‖ · ‖E is the Euclidean norm of R
K , K := dimSh, G is

K ×K matrix defined by Gij = (∇φj ,∇φi)L2 + γ(φj , φi)L2 , D is K ×K positive
definite matrix defined by Dij = (∇φj ,∇φi)L2 and L is K×K lower triangle matrix
by the Cholesky decomposition: D = LLT [8] and {φi}1≤i≤K is a basis of Sh. Here,
a verified enclosure of G−1 can be obtained automatically in computer by interval
arithmetic (for example see Rump [13]). Also, interval Cholesky decomposition
algorithm [1] is usually feasible because of the positive definiteness of D. The
estimate of ρ is, generally, singular value problem of a matrix. There are some
verification algorithms to estimate rigorous bound for the maximum (or minimum)
singular value [14].
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The first term of eq. (14) is estimated as

‖PhA(uh + û− γ(I − Ph)v − γvh) − vh‖H1
0 (Ω)

≤ ‖PhA(uh − γvh) − vh‖H1
0 (Ω) + ‖PhAû‖H1

0 (Ω) + |γ| ‖PhA(I − Ph)v‖H1
0 (Ω). (15)

By setting

uh =
K∑

i=1

uiφi, u := (ui) ∈ R
K , vh =

K∑
i=1

viφi, v := (vi) ∈ R
K ,

rh := PhA(uh − γvh) − vh =
K∑

i=1

riφi, r := (ri) ∈ R
K , Mij = (φj , φi)L2 ,

from the definition of Ph and A, it holds that

(∇rh,∇φi)L2 = −(∇vh,∇φi)L2 + (uh − γvh, φi)L2 , 1 ≤ i ≤ K,

then rh can be obtained by

r = D−1(−Gv +Mu).

Therefore we have

r := ‖PhA(uh − γvh) − vh‖H1
0 (Ω) =

√
rTDr.

Note that r is expected to be small because vh is the approximate solution of
equation (11) with û = 0.

Next, using the Poincaré constant C2 > 0 such that

‖v‖L2(Ω) ≤ C2‖v‖H1
0 (Ω), v ∈ H1

0 (Ω), (16)

we get

‖PhAû‖2
H1

0 (Ω) ≤ ‖Aû‖2
H1

0 (Ω)

= (∇Aû,∇Aû)L2

= (û, Aû)L2

≤ ‖û‖L2(Ω)‖Aû‖L2(Ω)

≤ C2‖û‖L2(Ω)‖Aû‖H1
0 (Ω),

then

‖PhAû‖H1
0 (Ω) ≤ C2‖û‖L2(Ω)

holds. Similar procedure and Aubin–Nitsche’s technique imply

‖PhA(I − Ph)v‖H1
0 (Ω) ≤ C2Chβ.

Then for v ∈ V we have

‖PhA(uh + û− γ(I − Ph)v − γvh) − vh‖H1
0 (Ω) ≤ r + C2(‖û‖L2(Ω) + |γ|Chβ).
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On the other hand, the second term of inclusions (14) is estimated as

‖−γv + uh + û‖L2(Ω) ≤ ‖−γvh + uh‖L2(Ω) + |γ|(C2α+ Chβ) + ‖û‖L2(Ω),

the sufficient conditions for (13) are

{
ρ(r + C2(‖û‖L2(Ω) + |γ|Chβ)) ≤ α,

Ch(‖−γvh + uh‖L2(Ω) + |γ|(C2α+ Chβ) + ‖û‖L2(Ω)) ≤ β,

and the following theorem is led immediately.

Theorem 3.1. If the inequality

1 − C2h2|γ|(1 + |γ|C2
2ρ

)
> 0

is satisfied, the equation (11) has the solution in the set V defined by (12) with

β =
Ch(‖−γvh + uh‖L2(Ω) + |γ|C2ρ(r + C2‖û‖L2(Ω)) + ‖û‖L2(Ω))

1 − C2h2|γ|(1 + |γ|C2
2ρ)

,

α = ρ(r + C2(‖û‖L2(Ω) + |γ|Chβ)).

Note that if −γ is an eigenvalue of −Δ, the matrix G has the singularity as
h → 0 and the estimation ρ can not be obtained. In the case γ = 0, it is easily
checked that ρ = 1 and Theorem 3.1 implies

α = r + C2‖û‖L2(Ω), β = Ch(‖uh‖L2(Ω) + ‖û‖L2(Ω)).

When consider the residual type problem [6], the right hand side ĝ := uh + û

of eq. (11) happen to be very small norm. In this case we can take uh = vh = 0
and the radius of the candidate set can be taken by

β =
Ch‖ĝ‖L2(Ω)(|γ|C2

2ρ+ 1)
1 − C2h2|γ|(1 + |γ|C2

2ρ)
, α = ρ(C2(‖ĝ‖L2(Ω) + |γ|Chβ)).

4. Numerical examples

We now give some verification results which prove the existence of solutions.
The candidate set U ⊂ H1

0 (Ω) of eq. (9) is defined by

Uh =
K∑

i=1

[Y i, Y i]φi,

U⊥
h = {u∗ ∈ S⊥

h | ‖v∗‖H1
0 (Ω) ≤ η},

where {φ1, . . . , φK} is a basis of Sh, and [Y i, Y i] (1 ≤ i ≤ K) means an interval
coefficient and η > 0.
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4.1. One dimensional case
Consider FitzHugh–Nagumo type model problem [16]:

⎧⎪⎨
⎪⎩
−ε2u′′ = u(1 − u)(u− a) − δv for −1 ≤ x ≤ 1,

−v′′ = u− γv for −1 ≤ x ≤ 1,

u = v = 0 for x ∈ {−1, 1},
(17)

where 0 < a ≤ 1/2. The interval (−1, 1) is divided into N equal parts and Sh

is taken as the set of piecewise linear functions on each subinterval. Then K =
dimSh = N − 1, h = 2/N , C2 = 2/π and a priori constant C in (5) can be taken
as 1/π [5]. The interval arithmetic in each verification step was implemented using
Sun ONE Studio 7, Compiler Collection Fortran 95 on Fujitsu PRIMEPOWER 850
(CPU: SPARC64-GP 1.3 GHz, OS: Solaris 8). The approximate solutions uh and
vh were obtained by Newton–Raphson method using usual floating point arithmetic
by double precision.

At the first, we try the case δ = 0. Then the system (17) decouples and
reduces to the single equation. The boundary value problem satisfied by the u is
well studied, and it is known that if ε > 0 is sufficiently small, there are exactly two
nontrivial solutions [15]. Fig. 1 shows the shape of these two approximate solutions
uh and corresponding vh. The left solution in Fig. 1 is of boundary layer type
(BL); the right is a so-called peak-solution (PS). Table 1 shows verification results.
In the table ‖ · ‖∞ means the upper bound of L∞-norm on (−1, 1). We use the
estimate ‖u‖∞ ≤ (1/

√
2)‖u‖H1

0 (Ω) for the verified candidate set. The last digit in
the mantissa for each of the norm values is rounded-up.

Next, we consider the case δ �= 0. It was proved that if δ = 0, there is a critical
value εc in the interval (0, 0.2387) and when ε > εc, no positive solution exists [12].
However, setting ε = 0.25, we can assure that non-trivial solutions do exist for a

Fig. 1. Approximate solutions for δ = 0, ε = 0.1, γ = −0.05 and a = 1/2.

Table 1. Verification results for δ = 0, ε = 0.1, γ = −0.05, a = 1/2, N = 1500.

Type ‖uh‖∞ ‖Uh‖∞ ‖U⊥
h ‖∞ ‖vh‖∞ ‖Vh‖∞ ‖V ⊥

h ‖∞
BL 0.99876 1.01499×10−4 1.02739×10−2 0.47804 1.68044×10−4 1.03667×10−3

PS 0.39515 6.07108×10−3 6.27672×10−3 0.12623 7.03572×10−3 2.71132×10−4
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Fig. 2. Approximate solutions for δ = −0.2, ε = 0.25, γ = −0.05 and a = 1/2.

Table 2. Verification results for δ = −0.2, ε = 0.25, γ = −0.05, a = 1/2, N = 1500.

Type ‖uh‖∞ ‖Uh‖∞ ‖U⊥
h ‖∞ ‖vh‖∞ ‖Vh‖∞ ‖V ⊥

h ‖∞
UP 0.96476 5.30726×10−5 3.12184×10−3 0.40956 8.30218×10−5 8.60449×10−4

LO 0.45028 3.14573×10−5 1.36812×10−3 0.18075 4.19882×10−5 3.77334×10−4

negative value of δ. We call these solution as upper type (UP) and lower type
(LO). Fig. 2 shows the shape of approximate solutions uh and corresponding vh

and Table 2 shows verification results.
When taking lower ε, we have seven approximate solutions: four seem to be

symmetric and three seem to be asymmetric. Figs. 3, 4 and 5 show the shape of

Fig. 3. Approximate “symmetric (S1 and S2)” solutions uh (left) and vh (right) for

δ = 0.2, ε = 0.08, γ = −0.05 and a = 1/2.

Fig. 4. Approximate “symmetric (S3 and S3)” solutions uh (left) and vh (right) for

δ = 0.2, ε = 0.08, γ = −0.05 and a = 1/2.



242 Y. Watanabe

Fig. 5. Approximate “asymmetric (AS1, AS2 and AS3)” solutions uh (left) and vh (right)

for δ = 0.2, ε = 0.08, γ = −0.05 and a = 1/2.

Fig. 6. Shape of “symmetric” approximate solution S1 and “asymmetric” approximate

solution AS3 for δ = 0.2, ε = 0.08, γ = −0.05 and a = 1/2.

Table 3. Verification results for δ = 0.2, ε = 0.08, γ = −0.05, a = 1/2, N = 5000.

Type ‖uh‖∞ ‖Uh‖∞ ‖U⊥
h ‖∞ ‖vh‖∞ ‖Vh‖∞ ‖V ⊥

h ‖∞
S1 0.84803 6.42742×10−5 2.22929×10−3 0.40389 8.38954×10−5 2.61753×10−4

S2 0.66057 5.32970×10−4 2.73014×10−3 0.16555 5.63207×10−4 1.13887×10−4

S3 0.71926 3.03301×10−4 4.20778×10−3 0.18893 4.08560×10−4 1.08497×10−4

S4 0.62685 1.99658×10−4 3.17346×10−3 0.20583 2.77909×10−4 1.55641×10−4

AS1 0.89305 2.03274×10−4 2.79030×10−3 0.23556 1.64205×10−4 1.88588×10−4

AS2 0.57169 7.43865×10−5 2.05645×10−3 0.09379 1.10036×10−4 9.42650×10−4

AS3 0.85895 1.42930×10−4 0.23180×10−3 0.38196 1.31440×10−4 2.45271×10−4

approximate solutions (uh, vh). Note that we can assure that more three “reflected”
solutions exist corresponding to AS1, AS2 and AS3. Table 3 shows verification
results.

4.2. Two dimensional case
Consider the following problem:

⎧⎪⎨
⎪⎩
−ε2Δu = u− u3 − δv in Ω ,

−Δv = u− γv in Ω ,

u = v = 0 on ∂Ω ,

(18)
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where Ω = (0, 1)×(0, 1). The approximate subspace Sh is taken as the set of double
finite Fourier series:

Sh =

{
N∑

m,n=1

amn sin(πmx) sin(πny)

∣∣∣∣∣ amn ∈ R

}
.

Then dimSh = N2, h = 1/N , C2 = 1/(π
√

2) and a priori constant C can be taken
as N

/(
π
√

((N + 1)2 + 1)
)

[17].
Taking advantage of Δuh,Δvh ∈ L2(Ω) for obtained approximate solutions

uh, vh ∈ Sh, we rewrite eq. (18) as residual form:

⎧⎪⎨
⎪⎩
−ε2Δũ = ε2Δuh + uh − δvh + ũ− (ũ+ uh)3 − δṽ in Ω ,

−Δṽ = Δvh + uh − γvh + ũ− γṽ in Ω ,

ũ = ṽ = 0 on ∂Ω ,

(19)

and find the residual ũ = u− uh and ṽ = v − vh in the candidate set Uh + U⊥
h ,

Vh + V ⊥
h ⊂ H1

0 (Ω).
We used the Fortran 90 library INTLIB 90 coded by Kearfott [3] with IBM

XL Fortran Enterprise Edition V9.1 Version: 09.01.0000.0007 on IBM eServer p5
model 595 (POWER 5 1.90 GHz Turbo; AIX 5L V5.3) for the verified numerical
computations.

Note that if (u, v) is a solution of the system (18), (−u,−v) is also the solution,
therefore we try to find “upper” state.

By floating point arithmetic, two types of approximate solutions are obtained
for the various ε (see Figs. 7 and 8).

Table 4 shows verification results.

Table 4. Verification results for δ = 0.5, γ = −1.2, N = 80.

Type ε ‖uh‖L2(Ω) ‖Uh‖∞ ‖U⊥
h ‖∞ ‖vh‖L2(Ω) ‖Vh‖∞ ‖V ⊥

h ‖∞
I 0.1 0.69266 2.56074×10−19 1.26908×10−15 0.03624 5.03767×10−20 1.95957×10−20

II 0.1 0.05492 1.19191×10−22 1.12352×10−15 0.00057 3.37753×10−23 1.73480×10−20

I 0.08 0.75481 1.38244×10−20 2.37244×10−16 0.03872 2.71964×10−21 3.66325×10−21

II 0.08 0.38917 2.35690×10−21 2.08711×10−17 0.00593 4.63666×10−22 3.22267×10−22

I 0.06 0.81541 1.11203×10−16 1.44528×10−11 0.04071 2.18765×10−17 2.23164×10−16

II 0.06 0.56317 7.98206×10−18 1.20585×10−12 0.01182 1.57029×10−18 1.86193×10−17

I 0.04 0.87478 8.91259×10−12 1.28638×10−6 0.04215 1.75335×10−12 1.98628×10−11

II 0.04 0.71497 5.04207×10−12 8.16969×10−7 0.01627 9.91911×10−13 1.26148×10−11

I 0.02 0.93314 3.85229×10−5 1.408569×10−1 0.04303 7.57850×10−6 2.174954×10−6

II 0.02 0.85819 4.26610×10−5 3.301898×10−1 0.01754 8.39257×10−6 5.098422×10−6
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ε = 0.1

ε = 0.08

ε = 0.06

ε = 0.04

ε = 0.02

Fig. 7. Approximate solutions uh (left) and vh (right) for δ = 0.5, γ = −1.2 (type I).
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ε = 0.1

ε = 0.08

ε = 0.06

ε = 0.04

ε = 0.02

Fig. 8. Approximate solutions uh (left) and vh (right) for δ = 0.5, γ = −1.2 (type II).
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5. Conclusion

We propose a numerical method to prove the existence of the solutions of the
reaction-diffusion system near an approximate solution obtained by a usual floating
point computation. All numerical results discussed are taken into account of the
effects of rounding errors in the floating point computations.

The principle of our verification method can be applied to Neumann boundary
conditions. This will be given in the forthcoming papers.
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