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A new scheme with a shift of origin for computing singular values σk is presented. A shift θ
is introduced into the recurrence relation defined by the discrete integrable Lotka–Volterra
system with variable step-size. A suitable shift strategy is given so that the singular value
computation becomes numerically stable. It is proved that variables in the new scheme
converge to σ2

k −∑ θ2. A comparison of the zero-shift and the nonzero-shift routines is
drawn. With respect to both the computational time and the numerical accuracy, it is
shown that the nonzero-shift routine is more accurate and faster than a credible LAPACK
routine for singular values at least in four different types of test matrices.
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1. Introduction

In 1965 Golub and Kahan [6] found that a singular value decomposition (SVD)
for any rectangular matrix A ∈ Rl×m (l > m) can be accomplished by using both
the Householder transformation and the QR scheme. First we apply a sequence of
Householder transformations to obtain a bidiagonalization B of A such that

(
B

0

)
= U�AV, B =

⎛⎜⎜⎜⎜⎝
b11 b12

b22
. . .
. . . bm−1,m0 bm,m

⎞⎟⎟⎟⎟⎠ ,

where U and V are suitable orthogonal matrices and � denotes the transposed.
Then it becomes possible to obtain singular values of B by the QR scheme for
the symmetric tridiagonal matrix B�B. The singular values of B are congruent
with those of A. When l < m, the Golub-Kahan scheme also acts well through
(B 0) = U�AV .

Several results based on their idea have been still observed. Especially, the
QR scheme part is improved by Golub–Reinsch [5], Demmel–Kahan [3] and so
on. Golub–Reinsch introduced a shift of origin into the QR scheme. The Golub-
Reinsch version computes an SVD of B much faster than the original QR scheme.
In 1990 Demmel–Kahan proposed a definitive version of the QR scheme with shift,
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and then were awarded the second SIAM prize in numerical linear algebra. The
Demmel–Kahan scheme is open to the public as a reliable SVD routine “DBDSQR”
in a library of Fortan 77 routines “Linear Algebra PACKage (LAPACK)” [1] for
solving the most commonly occurring problems in numerical linear algebra. There
are also some LAPACK routines for computing singular values not an SVD of B.
One of the LAPACK routines for computing only the singular values is the DLASQ
routine. The DLASQ routine is based on the differential quotient difference with
shift (dqds) scheme [2, 12]. However, to the best of our knowledge, the convergence
of the dqds scheme has not been theoretically proved.

On the other hand singular values of B are shown to be computed [14] by using
the discrete integrable Lotka–Volterra system with fixed discrete step-size δ = 1.
The convergence speed is accelerated by introduing the discrete Lotka–Volterra
system with arbitrary positive constant step-size δ > 0 [9]. Though the convergence
speed grows faster as δ becomes larger, numerical accuracy is deteriorated by an
inappropriate choice of step-size in some cases. Moreover a numerical scheme [10]
for computing the singular values is designed in terms of the discrete Lotka–Volterra
system with variable step-size (vdLV) [8, 13]

u
(n+1)
k

(
1 + δ(n+1)u

(n+1)
k−1

)
= u

(n)
k

(
1 + δ(n)u

(n)
k+1

)
, k = 1, . . . , 2m− 1, (1)

u
(n)
0 ≡ 0, u

(n)
2m ≡ 0, 0 < δ(n) < M, n = 0, 1, . . . . (2)

where u(n)
k and δ(n) denote the value of uk and δ, respectively, at the discrete time∑n−1

i=0 δ
(i) and M is some positive constant. In this paper we call this scheme the

dLV scheme, for short. The step-size δ(n) of the dLV scheme can be changed at
each step n. A better choice of the stepwise parameter δ(n) gives a benefit from
viewpoint of the convergence speed and the numerical accuracy. However it has
not been known how to accelerate the dLV scheme by introducing a shift.

In this paper we design a nonzero-shift version (named the mdLVs routine)
of the dLV routine and compare it with the zero-shift dLV routine in singular
value computation of B. In a numerical test, the mdLVs routine requires the
computational time much less than the dLV routine. The singular values computed
by the mdLVs routine are shown to have a higher relative accuracy than that of the
dLV routine. From viewpoint of both convergence speed and numerical accuracy,
the mdLVs routine is remarkably better than DBDSQR routine (without computing
singular vectors) at least in four types of test matrices. The mdLVs routine also
has a better scalability.

Our goal in this paper is threefold: The first is to introduce a shift of origin
into the dLV scheme for accelerating the convergence. The second is to give a shift
strategy for avoiding numerical instability. The third is to prove that the mdLVs
variable always converges to singular values as n → ∞. In the new scheme, it
is possible to find how to determine a suitable shift such that the mdLVs varibles
stably converge to shifted singular values. The property of holding the positivity on
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the discrete Lotka–Volterra system takes an active part in the numerical stability
of the shifted scheme.

This paper is organized as follows. In Section 2, we introduce a new system and
present two theorems for singular value computation of B. In Section 3, we show
how to estimate the amount of shift so that the resulting scheme is numerically
stable. In Section 4, we prove a convergence of the new scheme with a shift. Two
particular cases where B has zero entries are described in Section 5. In Section 6,
we show test results for several examples.

2. The Shifted Integrable Scheme

The main purpose of this section is to introduce a shift of origin into a certain
recurrence relation derived from the vdLV system (1). We then investigate an
influence of the shift on the singular values of the upper bidiagonal matrix B.

Let us begin our analysis by introducing three mappings ψ(n)
j , j = 1, 2, 3 and

two bijections φ(n)
j , j = 1, 2, for some n. Let ψ(n)

j , j = 1, 2, 3 and φ(n)
j , j = 1, 2 be

ψ
(n)
1 : W̄ (n) =

{
w̄(n)

∣∣∣ w̄(n) ∈R2m−1
}
→U (n) =

{
u(n)

∣∣∣u(n) ∈R2m−1
}
,

w̄(n) =
(
w̄

(n)
1 , w̄

(n)
2 , . . . , w̄

(n)
2m−1

)
�→u(n) =

(
u

(n)
1 , u

(n)
2 , . . . , u

(n)
2m−1

)
,

ψ
(n)
2 : U (n) →V (n) =

{
v(n)

∣∣∣ v(n) ∈R2m−1
}
,

u(n) �→ v(n) =
(
v
(n)
1 , v

(n)
2 , . . . , v

(n)
2m−1

)
,

ψ
(n)
3 : V̄ (n) =

{
v̄(n)

∣∣∣ v̄(n) ∈R2m−1
}
→W (n+1) =

{
w(n+1)

∣∣∣w(n+1) ∈R2m−1
}
,

v̄(n) =
(
v̄
(n)
1 , v̄

(n)
2 , . . . , v̄

(n)
2m−1

)
�→w(n+1) =

(
w

(n+1)
1 ,w

(n+1)
2 , . . . ,w

(n+1)
2m−1

)
,

φ
(n)
1 : W (n) =

{
w(n)

∣∣∣w(n) ∈R2m−1
}
→ W̄ (n),

w(n) =
(
w

(n)
1 ,w

(n)
2 , . . . ,w

(n)
2m−1

)
�→ w̄(n),

φ
(n)
2 : V (n) → V̄ (n), v(n) �→ v̄(n)

(3)

where ψ(n)
1 : w̄(n) �→ u(n), ψ(n)

2 : u(n) �→ v(n) and ψ(n)
3 : v̄(n) �→ w(n+1) are defined by

u
(n)
k =

w̄
(n)
k

1 + δ(n)u
(n)
k−1

, v
(n)
k = u

(n)
k

(
1 + δ(n)u

(n)
k+1

)
and w

(n+1)
k = v̄

(n)
k ,

u
(n)
0 ≡ 0, u

(n)
2m ≡ 0, k = 1, 2, . . . , 2m− 1,

(4)

respectively. The explicit forms of the mappings φ(n)
j , j = 1, 2 will be defined in

the subsequent discussion. Under the boundary condition u
(n)
0 ≡ 0 and u

(n)
2m ≡ 0,
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the variables u(n)
k and v(n)

k in ψ(n)
j , j = 1, 2 are also given as

u
(n)
1 = w̄

(n)
1 , u

(n)
2 =

w̄
(n)
2

1 + δ(n)w̄
(n)
1

, . . . ,

u
(n)
2m−1 =

w̄
(n)
2m−1

1
+
δ(n)w̄

(n)
2m−2

1
+ · · ·+ δ(n)w̄

(n)
2

1 + δ(n)w̄
(n)
1

,

v
(n)
1 = u

(n)
1

(
1 + δ(n)u

(n)
2

)
, . . . , v

(n)
2m−2 = u

(n)
2m−2

(
1 + δ(n)u

(n)
2m−1

)
, v

(n)
2m−1 = u

(n)
2m−1,

in terms of w̄(n)
k and v

(n)
k , respectively. Hence we see that ψ(n)

j , j = 1, 2 are

bijections. It is also obvious that ψ(n)
3 is a bijection.

Let us consider that ψ(n)
j , j = 1, 2, 3 and φ

(n)
j , j = 1, 2 are defined as (3) and

(4) for every n. Moreover, in this section, we assume that w(n)
k > 0, u(n)

k > 0,
v
(n)
k > 0 and w̄

(n)
k > 0, v̄(n)

k > 0, k = 1, 2, . . . , 2m − 1 for every n. A composite
mapping

ψ(n+1) ≡ ψ
(n)
3 ◦ φ(n)

2 ◦ ψ(n)
2 ◦ ψ(n)

1 ◦ φ(n)
1 (5)

produces a maping W (n) →W (n+1) shown as in Fig. 1. Similarly, ψ(n+1)
1 ◦φ(n+1)

1 ◦
ψ

(n)
3 ◦ φ(n)

2 ◦ ψ(n)
2 : U (n) → U (n+1).

Fig. 1. An evolution W (n) → W (n+1).

Let us introduce here φ̃
(n)
j , j = 1, 2 such that w̄(n) = φ̃

(n)
1

(
w(n)

)
= w(n)

and v̄(n) = φ̃
(n)
2

(
v(n)
)

= v(n) as a concrete example of the bijections φ(n)
j , j = 1, 2,

respectively. Then the vdLV system (1) can be also regarded as a dynamical system
which generates an evolution from n to n + 1 of u(n) by a composite mapping
ψ

(n+1)
1 ◦ φ̃(n+1)

1 ◦ ψ(n)
3 ◦ φ̃(n)

2 ◦ ψ(n)
2 : u(n) �→ u(n+1).

Let us replace φ(n)
1 and φ(n)

2 in the mapping (5) with φ̃(n)
1 and φ̃(n)

2 , respectively.
Then the maping ψ(n+1) : W (n) →W (n+1) shown as in Fig. 1 is reduced to

ψ
(n+1)
dLV : W (n) = W̄ (n) ψ

(n)
1−−−→ U (n) ψ

(n)
2−−−→ V (n) = V̄ (n) ψ

(n)
3−−−→W (n+1).
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In [10], it is shown that the singular values of

B(n) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
w

(n)
1

√
w

(n)
2√

w
(n)
3

. . .

. . .
√
w

(n)
2m−2

0
√
w

(n)
2m−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (6)

are invariant in n under the evolution (1). Here the sequence B(n) starts from
B(0) = B and ψ

(n+1)
dLV ≡ ψ

(n)
3 ◦ φ̃(n)

2 ◦ ψ(n)
2 ◦ ψ(n)

1 ◦ φ̃(n)
1 generates an evolution

B(n) �→ B(n+1). It is also proved in [10] that ψ(n)
dLV ◦ ψ(n−1)

dLV ◦ · · · ◦ ψ(1)
dLV : w(0) �→(

σ2
1(B), 0, σ2

2(B), 0, . . . , 0, σ2
m(B)

)
as n → ∞, where σk(B) denotes each singular

value such that

σ1(B) > σ2(B) > · · · > σm(B) > 0.

It is of significance to note that λk
((
B(n)

)�
B(n)

)
is invariant in n as long as the

evolution B(n) �→ B(n+1) is produced by ψ
(n+1)
dLV , where λk(T ) is the k-th eigen-

value of T .
It has been known in matrix eigenvalue problems [2] that a shift of origin

(
B̄(n)

)�
B̄(n) =

(
B(n)

)�
B(n) − θ(n)2I,

B̄(n) ≡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
w̄

(n)
1

√
w̄

(n)
2√

w̄
(n)
3

. . .

. . .
√
w̄

(n)
2m−2

0
√
w̄

(n)
2m−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(7)

is useful to accelate the convergence speed, where θ(n)2 denotes the shift at discrete
time

∑n−1
i=0 δ

(i). We here assume that θ(n)2 is a suitable shift for keeping w̄(n)
k > 0,

k = 1, 2, . . . , 2m− 1. Let us introduce a parametric bijection

φ
(n)

1;θ(n) : w(n) =
(
w

(n)
1 , w

(n)
2 , . . . , w

(n)
2m−1

)
�→ w̄(n) =

(
w̄

(n)
1 , w̄

(n)
2 , . . . , w̄

(n)
2m−1

)
,⎧⎨⎩w̄

(n)
2k−2 + w̄

(n)
2k−1 = w

(n)
2k−2 + w

(n)
2k−1 − θ(n)2,

w̄
(n)
2k−1w̄

(n)
2k = w

(n)
2k−1w

(n)
2k , w

(n)
0 ≡ 0, w̄

(n)
0 ≡ 0.

(8)
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Uniquely we can compute w̄(n) from w(n) by

w̄
(n)
2k−1 = w

(n)
2k−2 +w

(n)
2k−1 − θ(n)2 − κ

(n)
2k−2, w̄

(n)
2k−1w̄

(n)
2k = w

(n)
2k−1w

(n)
2k , w̄

(n)
2k−2 = κ

(n)
2k−2,

κ
(n)
2k−2 ≡

w
(n)
2k−3w

(n)
2k−2

w
(n)
2k−4 +w

(n)
2k−3 − θ(n)2

− w
(n)
2k−5w

(n)
2k−4

w
(n)
2k−6 +w

(n)
2k−5 − θ(n)2

− · · · − w
(n)
1 w

(n)
2

w
(n)
1 − θ(n)2

.

(9)
It is worth noting that w

(n)
2k−1 ≥ w̄

(n)
2k−1 and w

(n)
2k ≤ w̄

(n)
2k from w

(n)
1 ≥ w̄

(n)
1 .

Let us replace φ
(n)
1 and φ

(n)
2 in (5) with φ

(n)

1;θ(n) and φ̃
(n)
2 , respectively. Then

ψ
(n+1)

dLVs1;θ(n) : W (n) →W (n+1) is also defined by the composite mapping

ψ
(n+1)

mdLVs1;θ(n) ≡ ψ
(n)
3 ◦ φ̃(n)

2 ◦ ψ(n)
2 ◦ ψ(n)

1 ◦ φ(n)

1;θ(n) (10)

as follows:

ψ
(n+1)

mdLVs1;θ(n) : W (n)
φ

(n)

1;θ(n)−−−−→ W̄ (n) ψ
(n)
1−−−→ U (n) ψ

(n)
2−−−→ V (n) = V̄ (n) ψ

(n)
3−−−→W (n+1).

In this paper we call the procedure from W (n) to W (n+1) by the mapping ψ(n+1)

dLVs1;θ(n)

the modified discrete Lotka–Volterra with shift (mdLVs) scheme I. Let ψ(n+1)(X),
for some matrices X, denote the mappings of the entries of X by ψ(n+1). Then(
B(n+1)

)�
B(n+1) = ψ

(n)
3 ◦ φ̃(n)

2 ◦ ψ(n)
2 ◦ ψ(n)

1 ◦ φ̃(n)
1 ◦

(
φ̃

(n)
1

)−1 ((
B̄(n)

)�
B̄(n)

)
=

ψ
(n)
dLV ◦

(
φ̃

(n)
1

)−1 ((
B̄(n)

)�
B̄(n)

)
. It is to be noted that the composite mapping

ψ
(n)
dLV ◦

(
φ̃

(n)
1

)−1

generates an evolution from B̄(n) to B(n+1) such that

λk

((
B(n+1)

)�
B(n+1)

)
= λk

((
B̄(n)

)�
B̄(n)

)
. By relating it to (7), it follows that

λk

((
B(n+1)

)�
B(n+1)

)
= λk

((
B(n)

)�
B(n)

)
− θ(n)2. (11)

Therefore we have the following theorem for the mdLVs scheme I.

Theorem 2.1. The bidiagonal matrix

B(n+1) = ψ
(n+1)

mdLVs1;θ(n) ◦ ψ(n)

mdLVs1;θ(n−1) ◦ · · · ◦ ψ(1)

mdLVs1;θ(0)

(
B(0)

)
satisfies

λk

((
B(0)

)�
B(0)

)
= λk

((
B(n+1)

)�
B(n+1)

)
+

n∑
N=0

θ(N)2. (12)

Proof. From (11), we have (12). �

We here consider the case where φ(n)
1 is replaced by φ̃(n)

1 in (5). A composite
mapping ψ(n)

3 ◦ φ(n)
2 ◦ ψ(n)

2 ◦ ψ(n)
1 ◦ φ̃(n)

1 produces W (n) →W (n+1) such that

W (n) = W̄ (n) ψ
(n)
1−−−→ U (n) ψ

(n)
2−−−→ V (n) φ

(n)
2−−−→ V̄ (n) ψ

(n)
3−−−→W (n+1).
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Simultaneouly, ψ(n)
3 ◦ φ(n)

2 ◦ ψ(n)
2 ◦ ψ(n)

1 ◦ φ̃(n)
1 : B(n) �→ B(n+1). Let us define a new

parameteric mapping

ψ̄
(n)

3;θ(n) : v(n) =
(
v
(n)
1 , v

(n)
2 , . . . , v

(n)
2m−1

)
�→ w(n+1) =

(
w

(n+1)
1 , w

(n+1)
2 , . . . , w

(n+1)
2m−1

)
,⎧⎨⎩w

(n+1)
2k−2 + w

(n+1)
2k−1 = v

(n)
2k−2 + v

(n)
2k−1 − θ(n)2,

w
(n+1)
2k−1 w

(n+1)
2k = v

(n)
2k−1v

(n)
2k , w

(n)
0 ≡ 0, v

(n)
0 ≡ 0,

(13)
with the shift θ(n)2 which keeps w(n+1)

k > 0, k = 1, 2, . . . , 2m− 1. We also see that
ψ̄

(n)

3;θ(n) is a bijection since φ(n)

1;θ(n) in (8) coincides with ψ̄
(n)

3;θ(n) in (13) by replacing

w
(n)
k , w̄

(n)
k with v

(n)
k , w

(n+1)
k , respectively. Let us call the procedure from B(n) to

B(n+1) by a composite mapping

ψ
(n+1)

mdLVs2;θ(n) ≡ ψ̄
(n)

3;θ(n) ◦ ψ(n)
2 ◦ ψ(n)

1 ◦ φ̃(n)
1 (14)

the mdLVs scheme II. Then we have a theorem for the mdLVs scheme II.

Theorem 2.2. The bidiagonal matrix

B(n+1) = ψ
(n+1)

mdLVs2;θ(n) ◦ ψ(n)

mdLVs2;θ(n−1) ◦ · · · ◦ ψ(1)

mdLVs2;θ(0)

(
B(0)

)
satisfies (12).

Proof. Let us introduce a mapping

φ
(n)

2;θ(n) : v(n) =
(
v
(n)
1 , v

(n)
2 , . . . , v

(n)
2m−1

)
�→ v̄(n) =

(
v̄
(n)
1 , v̄

(n)
2 , . . . , v̄

(n)
2m−1

)
,⎧⎨⎩v̄

(n)
2k−2 + v̄

(n)
2k−1 = v

(n)
2k−2 + v

(n)
2k−1 − θ(n)2,

v̄
(n)
2k−1v̄

(n)
2k = v

(n)
2k−1v

(n)
2k , v̄

(n)
0 ≡ 0, v

(n)
0 ≡ 0.

(15)

Then we can regard ψ̄
(n)

3;θ(n) in (13) as a composite mapping ψ
(n)
3 ◦ φ(n)

2;θ(n) . Note
here that

ψ
(n+1)

mdLVs2;θ(n)=0

((
B(n)

)�
B(n)

)
= ψ

(n)
3 ◦φ(n)

2;θ(n)=0
◦ψ(n)

2 ◦ψ(n)
1 ◦ φ̃(n)

1

((
B(n)

)�
B(n)

)
= ψ

(n+1)
dLV

((
B(n)

)�
B(n)

)
.

Hence we see that λk

(
ψ

(n+1)

mdLVs2;θ(n)=0

((
B(n)

)�
B(n)

))
= λk

((
B(n)

)�
B(n)

)
.

Moreover a mapping ψ̄(n)

3;θ(n) in (13) implies that

λk

(
ψ

(n+1)
mdLVs2

((
B(n)

)�
B(n)

))
= λk

(
ψ

(n)

mdLVs2;θ(n)=0

((
B(n)

)�
B(n)

))
− θ(n)2,
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since w(n+1)
k = v

(n)
k if θ(n) = 0. Consequently,

λk

((
B(n+1)

)�
B(n+1)

)
= λk

((
B(n)

)�
B(n)

)
− θ(n)2.

This leads to (12). �

In this section two types of shifted integrable schemes, named the mdLVs
schemes I and II, are presented. A desirable choice of the shift θ(n)2 which guaran-
tees a numerical stability will be discussed in the next section. A convergence to
singular values of the schemes will be proved in Section 4.

3. Shift Strategy

The mapping φ
(n)

1;θ(n)=0
in (8) holds w̄(n)

k > 0 if w(n)
k > 0 for k = 1, 2, . . . ,

2m− 1. However w̄(n)
k is not always nonzero positive when θ(n) is large. The value

of w̄(n)
k does not only become negative but also numerically overflow in the worst

case. For some k0, if w̄(n)
2k0−1 = 0 by an inappropriate shift, then w̄

(n)
2k0

diverges

to infinity, i.e. we can not compute w̄(n)
2k0

numerically. Moreover we do not desire

the case where w̄(n)
1 > 0, . . . , w̄(n)

k0−1 > 0, w̄(n)
k0

< 0, . . . by a too large shift. This is

because 1+ δ(n)u
(n)
k0

with u(n)
k0

< 0 may be zero, i.e. u(n)
k0+1 may become numerically

uncomputable by the mapping ψ(n)
1 : w̄(n) �→ u(n). Hence for a rather large shift the

mdLVs scheme I may be numerically unstable. There is an intimate relationship
among the stability, the shift and the positivity of the variables w̄(n)

k . We here
present the following fundamental theorem for keeping w̄(n)

k > 0.

Theorem 3.1. Assume that w(n)
k > 0 for k = 1, 2, . . . , 2m − 1. Then(

B(n)
)�
B(n) is positive-definite symmetric. It holds that w̄(n)

k > 0 for k = 1, 2, . . . ,

2m− 1 if and only if θ(n)2 < λm

((
B(n)

)�
B(n)

)
, where λm

((
B(n)

)�
B(n)

)
is the

minimal eigenvalue of
(
B(n)

)�
B(n). Namely, w̄(n)

k > 0 if and only if

θ(n)2 < σ2
m

(
B(n)

)
. (16)

Proof. Let w(n)
k > 0, k = 1, 2, . . . , 2m − 1. Then it is obvious from (6)

that σk
(
B(n)

)
> 0, k = 1, 2, . . . ,m. Simultaneously, λk

((
B(n)

)�
B(n)

)
> 0,

k = 1, 2, . . . ,m. Hence we see that
(
B(n)

)�
B(n) is positive definite and symmetric.

Let us here consider the case where θ(n)2 < λm

((
B(n)

)�
B(n)

)
. Since it

is shown in Section 2 that λk
((
B̄(n)

)�
B̄(n)

)
= λk

((
B(n)

)�
B(n)

)
− θ(n)2, k =

1, 2, . . . ,m, we see that λk
((
B̄(n)

)�
B̄(n)

)
> 0, k = 1, 2, . . . ,m, i.e.

(
B̄(n)

)�
B̄(n) is
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a positive definite and symmetric. Let B̄(n)
k , k = 1, 2, . . . ,m denote k × k matrices

defined by

B̄
(n)
k =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
w̄

(n)
1

√
w̄

(n)
2√

w̄
(n)
3

. . .

. . .
√
w̄

(n)
2k−2

0
√
w̄

(n)
2k−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (17)

where B̄(n)
m = B̄(n). Then the positive definite and symmetric matrix

(
B̄(n)

)�
B̄(n)

satisfies det
((
B̄

(n)
k

)�
B̄

(n)
k

)
> 0, k = 1, 2, . . . ,m. Note that det

((
B̄

(n)
k

)�
B̄

(n)
k

)
=

det
((

B̄
(n)
k

)�)
det
(
B̄

(n)
k

)
. Hence we derive

∏k
j=1 w̄

(n)
2j−1 > 0, k = 1, 2, . . . ,m,

i.e. w̄(n)
2k−1 > 0, k = 1, 2, . . . ,m. Moreover, it is obvious from (8) that w̄(n)

2k−1w̄
(n)
2k =

w
(n)
2k−1w

(n)
2k , k = 1, 2, . . . ,m−1. From the assumption w(n)

k > 0, k = 1, 2, . . . , 2m−1,

it follows that w̄(n)
2k > 0, k = 1, 2, . . . ,m− 1.

Conversely, we assume that w̄(n)
k > 0, k = 1, 2, . . . , 2m−1. Then

∏k
j=1 w̄

(n)
2j−1 >

0, k = 1, 2, . . . ,m, i.e. det
((

B̄
(n)
k

)�
B̄

(n)
k

)
> 0, k = 1, 2, . . . ,m. Since

(
B̄(n)

)�
B̄(n)

is positive definite and symmetric, we see that λk
((
B̄(n)

)�
B̄(n)

)
> 0, k = 1, 2, . . . ,

m. Note here that λk
((
B̄(n)

)�
B̄(n)

)
= λk

((
B(n)

)�
B(n)

)
−θ(n)2, k = 1, 2, . . . ,m.

Hence it follows that θ(n)2 < λm

((
B(n)

)�
B(n)

)
.

Therefore it is concluded that w̄(n)
k > 0, k = 1, 2, . . . , 2m − 1 if and only if

θ(n)2 < λm

((
B(n)

)�
B(n)

)
, i.e. θ(n)2 < σ2

m

(
B(n)

)
. �

The Gers̆gorin-type lower bound proposed by C.R. Johnson [11] helps us to
estimate the minimal singular value σm

(
B(n)

)
in (16) as follows:

σm(B(n)) ≥ max
{

0, ϑ(n)
1

}
, ϑ

(n)
1 ≡ min

k

{√
w

(n)
2k−1 −

1
2

(√
w

(n)
2k−2 +

√
w

(n)
2k

)}
.

(18)
Combining it with Theorem 3.1, we perform a shift strategy for avoiding numerical
instability of the mdLVs scheme I.

Theorem 3.2. Assume that the initial data is as w(0)
k > 0 for k = 1, 2, . . . ,

2m− 1 and ε is some small positive constant. Then

θ(n)2 = max
{

0,
(
max{0, ϑ(n)

1 }
)2

− ε

}
(19)

is a safe choice for numerical stability of the mdLVs scheme I.
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Next we consider a different shift stratagy from Theorem 3.2. Let us introduce
a new variable

ϑ
(n)
2

2
=

1
2

min
k

{
w

(n)
2k−1 −

(
w

(n)
2k−2 + w

(n)
2k

)}
. (20)

Then we obtain the following theorem.

Theorem 3.3. If θ(n)2 is computed by

θ(n)2 = max
{

0, ϑ(n)
2

2 − ε
}
, (21)

instead of (19), then the mdLVs scheme I is also numerically stable.

Proof. Let us consider two cases ϑ(n)
1 ≤ 0 and ϑ(n)

1 > 0.
For x, y ≥ 0, it is well known that (x + y)/2 ≥ √

xy. Note that w(n)
k > 0,

k = 1, 2, . . . , 2m− 1. Then we have√
w

(n)
2k−1ϑ

(n)
1 =

√
w

(n)
2k−1 min

k

{√
w

(n)
2k−1 −

1
2

(√
w

(n)
2k−2 +

√
w

(n)
2k

)}

= min
k

⎧⎨⎩w(n)
2k−1 −

√
w

(n)
2k−1 ·

1
4

(√
w

(n)
2k−2 +

√
w

(n)
2k

)2
⎫⎬⎭

≥ min
k

{
1
2
w

(n)
2k−1 −

1
8

(√
w

(n)
2k−2 +

√
w

(n)
2k

)2
}

=
1
2

min
k

{
w

(n)
2k−1 −

1
4

(
w

(n)
2k−2 + w

(n)
2k

)
− 1

2

√
w

(n)
2k−2w

(n)
2k

}
≥ 1

2
min
k

{
w

(n)
2k−1 −

1
2

(
w

(n)
2k−2 + w

(n)
2k

)}
> ϑ

(n)
2

2

which implies that ϑ(n)
2

2
< 0 if ϑ(n)

1 ≤ 0. Hence max
{

0,
(
max

{
0, ϑ(n)

1

})2

− ε

}
=

max
{

0, ϑ(n)
2

2 − ε
}

= 0 if ϑ(n)
1 ≤ 0.

Assume that ϑ(n)
1 > 0, then it follows that

ϑ
(n)
1

2
= min

k

{(√
w

(n)
2k−1−

1
2

(√
w

(n)
2k−2 +

√
w

(n)
2k

))2
}

= min
k

⎧⎨⎩w(n)
2k−1 +

1
4

(√
w

(n)
2k−2 +

√
w

(n)
2k

)2

−
√
w

(n)
2k−1

(√
w

(n)
2k−2 +

√
w

(n)
2k

)2
⎫⎬⎭

≥ 1
2

min
k

{
w

(n)
2k−1−

1
2

(√
w

(n)
2k−2 +

√
w

(n)
2k

)2
}

=
1
2

min
k

{
w

(n)
2k−1−

1
2

(
w

(n)
2k−2 +w(n)

2k

)
−
√
w

(n)
2k−2w

(n)
2k

}



Accurate Computation of Singular Values 249

≥ 1
2

min
k

{
w

(n)
2k−1−

(
w

(n)
2k−2 +w(n)

2k

)}
= ϑ

(n)
2

2
.

Therefore it is concluded that σ2
m

(
B(n)

)
> max

{
0, ϑ(n)

1

2−ε
}
≥ max

{
0, ϑ(n)

2

2−ε
}

,

i.e. θ(n) in (21) satisfies the condition θ(n)2 < σ2
m

(
B(n)

)
. �

One of the fortunate characteristics in (21) is that any square root computation
does not appear at every n. In the case where we compute θ(n)2 by (19), it is
necessary to compute the square root of w(n)

k , k = 1, 2, . . . , 2m− 1.
The mdLVs scheme II with a rather large shift also has the same type

of instability as the mdLVs scheme I. Let us recall that
(
B(n+1)

)�
B(n+1) =

ψ
(n+1)
dLV

((
B(n)

)�
B(n)

)
−θ(n)2I in the mdLVs scheme II. According to Theorem 3.1

we see that

w
(n+1)
k > 0, k = 1, 2, . . . , 2m− 1, (22)

if and only if θ(n)2 < λm

(
ψ

(n+1)
dLV

((
B(n)

)�
B(n)

))
= σ2

m

(
ψ

(n+1)
dLV

(
B(n)

))
. Since

it is obvious that σm
(
ψ

(n+1)
dLV

(
B(n)

))
= σm

(
B(n)

)
, the mdLVs scheme II is also

numerically stable if θ(n) is computed by (19) or (21). Moreover we may estimate
a lower bound of the minimal singular value σm

(
ψ

(n+1)
dLV

(
B(n)

))
by

σm

(
ψ

(n+1)
dLV

(
B(n)

))
≥ max

{
0, ϑ(n)

3

}
,

ϑ
(n)
3 = min

k

{√
v
(n)
2k−1 −

1
2

(√
v
(n)
2k +

√
v
(n)
2k−2

)}
.

(23)

This is because ψ
(n+1)
dLV

(
B(n)

)
= ψ

(n+1)

mdLVs2;θ(n)=0

(
B(n)

)
and w

(n+1)
k = v

(n)
k if

θ(n) = 0 in the mdLVs scheme II. Similarly it follows that σ2
m

(
ψ

(n)
dLV

(
B(n)

))
>

max
{

0,max
{

0, ϑ(n)
3

}2

− ε

}
≥ max

{
0, ϑ(n)

4

2 − ε
}

where

ϑ
(n)
4

2
=

1
2

min
k

{
v
(n)
2k−1 −

(
v
(n)
2k−2 + v

(n)
2k

)}
. (24)

The following theorem guarantees a numerical stability of the mdLVs scheme II.

Theorem 3.4. Numerical stability is always kept in the mdLVs scheme II

if the shift θ(n)2 is given by max
{

0,
(
max

{
0, ϑ(n)

1

})2

− ε

}
, max

{
0, ϑ(n)

2

2 − ε
}

,

max
{

0,
(
max{0, ϑ(n)

3 }
)2

− ε

}
or max

{
0, ϑ(n)

4

2 − ε
}

.

To ensure a convergence of the schemes with the shift we require the following
condition

∞∑
n=0

θ(n)2 < λm

((
B(0)

)�
B(0)

)
= σ2

m

(
B(0)

)
(25)
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for the sequence of shifts. The stability condition (16) is automatically satisfied.
The condition (25) guarantees the positivity of the limit limn→∞

(
B(n)

)�
B(n) if it

exists, which is discussed in the next section.
We here propose four possible choices of the shift θ(n)2 which keep the mdLVs

schemes stable. Two of them are based on the Johnson-type bound. Others are
new and do not need any square root computation. An optimal choice of the shift
is not found yet. This is because the best choice with respect to the computational
time and the accuracy depend on the type of matrices. In Section 6 numerical tests
will be given for the purpose in comparing one of the mdLVs schemes and a credible
routine of LAPACK.

4. Convergence to Shifted Singular Values

In this section we consider an asymptotic behavior of w(n)
k as n→ ∞. Moreover

we explain a relationship between the limit of w(n)
2k−1 as n → ∞ and the singular

value of B(0) with the help of the sequence of shifts in Theorems 3.2, 3.3 or 3.4.
If 0 < λm

((
B(0)

)�
B(0)

)
≤ ε, then the shift θ(n)2, n = 0, 1, . . . becomes 0. It is

proved in [10] that w(n)
2k−1 → σ2

k

(
B(0)

)
and w

(n)
2k → 0 as n → ∞ in the zero-shift

scheme. It is of significance to note that λm
((
B(n)

)�
B(n)

)
> ε, n = 1, 2, . . . if

λm

((
B(0)

)�
B(0)

)
> ε. Even if θ(n0) = 0 for some finite n0, nonzero shift θ(n0+k)

2

may be chosen for any k = 1, 2, . . . . We here discuss a convergence of the mdLVs
schemes for such case.

Let us prepare two lemmas for w(n) =
(
w

(n)
1 , w

(n)
2 , . . . , w

(n)
2m−1

)
and u(n) =(

u
(n)
1 , u

(n)
2 , . . . , u

(n)
2m−1

)
given by ψ(n+1)

mdLVs1◦ψ(n)
mdLVs1◦· · ·◦ψ(1)

mdLVs1

(
w(0)

)
or ψ(n+1)

mdLVs2◦
ψ

(n)
mdLVs2 ◦ · · · ◦ ψ(1)

mdLVs2

(
w(0)

)
. We assume that the shift θ(n)2 satisfies (25) in the

following lemmas, propositions and theorem.

Lemma 4.1. Let M0 and M1 be some positive constants. Then 0 < w
(n+1)
k <

M1 and 0 < u
(n)
k < M1, for any n, if 0 < w

(0)
k < M0 and

∑∞
n=0 θ

(n)2 < σ2
m

(
B(0)

)
.

Proof. It is proved in the previous section that 0 < w
(n+1)
k . In Theorems 2.1

and 2.2, we see that trace
((
B(0)

)�
B(0)

)
= trace

((
B(n+1)

)�
B(n+1)

)
+m

(
θ(0)

2
+

θ(1)
2

+ · · · + θ(n)2
)
. Theorem 3.1 implies that 0 ≤ θ(0)

2
+ θ(1)

2
+ · · · + θ(n)2 <

σ2
m

(
B(0)

)
. Note here that trace

((
B(0)

)�
B(0)

)
= σ2

1

(
B(0)

)
+ σ2

2

(
B(0)

)
+ · · · +

σ2
m

(
B(0)

)
. Hence

0 < trace
((

B(n+1)
)�

B(n+1)

)
< M2,

or equivalently, 0 < w
(n+1)
1 + w

(n+1)
2 + · · · + w

(n+1)
2m−1 < M2, where M2 is some

positive constant. Therefore it follows that 0 < w
(n+1)
k < M1. Since it is obvious
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from the definition that u(n)
k ≤ w

(n+1)
k in the mdLVs schemes I, we also have

0 < u
(n)
k < M1. In the mdLVs scheme II, it follows from (13) that 0 < v

(n)
1 +

v
(n)
2 + · · · + v

(n)
2m−1 < M2 + mσ2

m

(
B(0)

)
. This implies that 0 < v

(n)
1 < M1 and

u
(n)
k = v

(n)
k

/(
1 + δ(n)u

(n)
k−1

)
≤ v

(n)
k < M1. �

Lemma 4.2. If
∑∞
n=0 θ

(n)2 < σ2
m

(
B(0)

)
, then the variable w

(n+1)
k is writ-

ten as

w
(n+1)
k =

n∏
N=0

(
1

γ
(N)
k

· 1 + δ(N)u
(N)
k+1

1 + δ(N)u
(N)
k−1

)
w

(0)
k , (26)

where γ(N)
k are some constants such that γ(N)

2k−1 ≥ 1 and 0 < γ
(N)
2k ≤ 1 for any N .

Proof. (i) Let us consider the case where w(n+1) = ψ
(n+1)
mdLVs1 ◦ψ(n)

mdLVs1 ◦ · · · ◦
ψ

(1)
mdLVs1(w

(0)). Then

w
(n)
k = γ

(n)
k w̄

(n)
k (27)

for some constants such that γ(n)
2k−1 ≥ 1 and 0 < γ

(n)
2k ≤ 1 for any n and k =

1, 2, . . . , 2m − 1, since it follows from (8) and (9) that w(n)
2k−1 ≥ w̄

(n)
2k−1 and w

(n)
2k ≤

w̄
(n)
2k . Hence, in the mapping ψ(n+1)

mdLVs1, we derive a time evolution from n to n+ 1
of w(n)

k as follows:

1 + δ(n)u
(n)
k+1

1 + δ(n)u
(n)
k−1

w
(n)
k = γ

(n)
k

1 + δ(n)u
(n)
k+1

1 + δ(n)u
(n)
k−1

w̄
(n)
k = γ

(n)
k

(
1 + δ(n)u

(n)
k+1

)
u

(n)
k = γ

(n)
k v

(n)
k

= γ
(n)
k w

(n+1)
k .

(ii) Let w(n+1)
k be given by w(n+1) = ψ

(n+1)
mdLVs2 ◦ψ(n)

mdLVs2 ◦ · · · ◦ψ(1)
mdLVs2

(
w(0)

)
.

Inequalities v(n)
2k−1 ≥ v̄

(n)
2k−1 and v(n)

2k ≤ v̄
(n)
2k in (15) lead

v
(n)
k = γ

(n)
k v̄

(n)
k . (28)

Therefore we see that

1 + δ(n)u
(n)
k+1

1 + δ(n)u
(n)
k−1

w
(n)
k =

(
1 + δ(n)u

(n)
k+1

)
u

(n)
k = v

(n)
k = γ

(n)
k v̄

(n)
k = γ

(n)
k w

(n+1)
k .

Noting that 0 < δ(n) and 0 < u
(n)
k we have

w
(n+1)
k =

1

γ
(n)
k

1 + δ(n)u
(n)
k+1

1 + δ(n)u
(n)
k−1

w
(n)
k (29)

in both cases (i) and (ii). This completes the proof of (26). �
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It is significant to emphasize that the evolution from n to n+ 1 of w(n)
k given

by the mdLVs scheme I has the same properties shown in Lemmas 4.1 and 4.2 as
those of the evolution given by the mdLVs scheme II. Lemmas 4.1 and 4.2 lead
to the following fundamental propositions on an asymptotic behavior of γ(n)

2k−1 and

w
(n)
k as n→ ∞.

Proposition 4.3. As n→ ∞, γ(n)
2k−1 → 1 if

∑∞
n=0 θ

(n)2 < σ2
m

(
B(0)

)
.

Proof. Let us consider
∏m
k=1 w

(n)
2k−1 with 0 <

∏m
k=1 w

(0)
2k−1 < ∞. From (26),

we derive
m∏
k=1

w
(n+1)
2k−1 =

m∏
k=1

w
(0)
2k−1

(
n∏

N=0

m∏
k=1

γ
(N)
2k−1

)−1

(30)

which implies that
∏m
k=1 w

(0)
2k−1 ≥ ∏m

k=1 w
(1)
2k−1 ≥ · · · ≥ ∏m

k=1 w
(n)
2k−1 ≥ · · · ≥

0. Since
∏m
k=1 w

(n)
2k−1, n = 0, 1, . . . , is monotoniclly decreasing, we see that∏m

k=1 w
(n)
2k−1 → c1:m as n→ ∞ for some nonnegative constant c1:m ≥ 0. Note that∏m

k=1 w
(n)
2k−1 = det

((
B(n)

)�
B(n)

)
=
∏m
k=1 λk

((
B(n)

)�
B(n)

)
. It is here empha-

sized that limn→∞
∏m
k=1 w

(n)
2k−1 = limn→∞

∏m
k=1 λk

((
B(n)

)�
B(n)

)
> 0 if θ(n)2 ≥ 0

is the suitable shift shown as (25). Hence it follows that c1:m = limn→∞
∏m
k=1 w

m
2k−1

is positive. Simultaneously, it is obvious from (30) that for j = 1, 2, . . . ,m,

n∏
N=0

γ
(N)
2j−1 ≤

n∏
N=0

m∏
k=1

γ
(N)
2k−1 =

(
m∏
k=1

w
(n)
2k−1

)−1 m∏
k=1

w
(0)
2k−1 ≤ 1

c1:m

m∏
k=1

w
(0)
2k−1 <∞,

(31)

1 ≤
1∏

N=0

γ
(N)
2j−1 ≤ · · · ≤

n∏
N=0

γ
(N)
2j−1 ≤ · · · . (32)

Namely,
∏n
N=0 γ

(N)
2j−1 converges to some positive constant p̄j > 0 as n→ ∞. There-

fore, for γ(n)
2j−1 ≥ 1, it is concluded that limn→∞ γ

(n)
2j−1 = 1. �

Proposition 4.4. As n → ∞, w(n)
2k−1 → ck, w

(n)
2k → 0 if

∑∞
n=0 θ

(n)2 <

σ2
m(B(0)), where ck are some positive constants such that c1 > c2 > · · · > cm > 0.

Proof. When k = 1 in (26), we derive

w
(n+1)
1 = w

(0)
1

(
n∏

N=0

γ
(N)
1

)−1 n∏
N=0

(
1 + δ(N)u

(N)
2

)
. (33)

Let us recall here that w(n+1)
1 < M1 and

∏n
N=0 γ

(N)
1 ≤ p̄1 for any n in Lemma 4.1

and Proposition 4.3, respectively. Then it is obvious from (33) that

1 <
n∏

N=0

(
1 + δ(N)u

(N)
2

)
=
w

(n+1)
1

w
(0)
1

n∏
N=0

γ
(N)
1 <

M1

w
(0)
1

p̄1 <∞.
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Since
∏n
N=0

(
1 + δ(n)u

(N)
2

)
, n = 0, 1, . . . , is monotonically increasing, we see that∏n

N=0

(
1 + δ(N)u

(N)
2

)
converges to some positive constant p1 as n → ∞. Sub-

stituting limn→∞
∏n
N=0 γ

(N)
1 = p̄1 and limn→∞

∏n
N=0

(
1 + δ(N)u

(N)
2

)
= p1 into

(33) as n→ ∞, we have

lim
n→∞w

(n)
1 = c1, (34)

where c1 ≡ w
(0)
1 p1/p̄1 > 0 is some positive constant. While

∑n
N=0 δ

(N)u
(N)
2 con-

verges to some positive constant as n → ∞ if and only if
∏n
N=0

(
1 + δ(N)u

(N)
2

)
converges to some positive constant. This implies that limn→∞ δ(n)u

(n)
2 = 0 with

0 < δ(n) < M and limn→∞ u
(n)
2 = 0. Note here that w(n)

2 = α
(n)
2 u

(n)
2

(
1 + δ(n)u

(n)
1

)
with 0 < α

(n)
2 ≡

{
γ

(n)
2 , 1

}
≤ 1 and 0 < u

(n)
1 < M1. Hence it follows that

lim
n→∞w

(n)
2 = 0. (35)

Next we consider the case where k = 2, 3, . . . ,m− 1 in (26). From Lemma 4.1
and Proposition 4.3 we derive

1 <
n∏

N=0

(
1 + δ(N)u

(N)
2k

)
=
w

(n+1)
2k−1

w
(0)
2k−1

(
n∏

N=0

γ
(N)
2k−1

)(
n∏

N=0

(
1 + δ(N)u

(N)
2k−2

))

<
M1

w
(0)
2k−1

p̄kpk−1 <∞,

if
∏n
N=0

(
1 + δ(N)u

(N)
2k−2

)
converges to some positive constant pk−1 > 0 as n →

∞. It is proved that limn→∞
∏n
N=0

(
1 + δ(N)u

(N)
2

)
= p1. Along the same line

of thought as above we can show the following convergence of infinite product∏∞
N=0

(
1 + δ(N)u

(N)
2k

)
= pk where pk is some positive constant. Therefore the limit

of w(n)
2k−1 as n→ ∞ exists and is a positive constant, namely,

lim
n→∞w

(n)
2k−1 = w

(0)
2k−1

pk
p̄kpk−1

= ck > 0. (36)

Simultaneously, u(n)
2k−2 → 0 as n→ ∞, and consequently, we have

lim
n→∞w

(n)
2k−2 = 0. (37)

Finally let us discuss the asymptotic behavior of

w
(n+1)
2k

w
(n)
2k

=
1

γ
(n)
2k

· 1 + δ(n)u
(n)
2k+1

1 + δ(n)u
(n)
2k−1
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as n → ∞. Since the positive variable w
(n)
2k , n = 1, 2, . . ., converges to 0 and

0 < γ
(n)
2k ≤ 1, we have

1 + δ(n)u
(n)
2k+1 < γ

(n)
2k

(
1 + δ(n)u

(n)
2k−1

)
≤ 1 + δ(n)u

(n)
2k−1

for a large n. Here we remark that u(n)
2k−1 = α

(n)
2k−1w

(n)
2k−1

/(
1 + δ(n)u

(n)
2k−2

)
→ ck

with α
(n)
2k−1 ≡

{
1, 1
/
γ

(n)
2k−1

}
→ 1, w(n)

2k−1 → ck and u
(n)
2k−2 → 0 as n → ∞. We see

that the limit ck satisfies

ck+1 < ck. (38)

It is concluded that c1 > c2 > · · · > cm > 0. This completes the proof. �

A relationship between the limit of w(n)
k and the square of singular values

σ2
k

(
B(0)

)
is now evident by using Theorem 2.1, 2.2 and Proposition 4.4. Note that

σ2
k

(
B(0)

)
= λk

((
B(0)

)�
B(0)

)
. Then we have the following theorem on asymptotic

behavior of the variables w(n)
k by using singular values and shifts.

Theorem 4.5. As n → ∞, w(n)
2k−1 → ck = σ2

k(B
(0)) − ∑∞

N=0 θ
(N)2 and

w
(n)
2k → 0 if

∑∞
n=0 θ

(n)2 < σ2
m(B(0)).

A convergence to singular values of the mdLVs schemes is now proved. It is to
be remarked that the square of singular values are computed from limn→∞ w

(n)
2k−1 in

descendent order as k = 1, 2, . . . ,m. By combining Theorem 4.5 with Theorems 3.1,
3.2, 3.3, 3.4 on stability it is concluded that the mdLVs schemes are shown to be
credible singular value computation schemes.

All singular values of B(0) are not multiple if and only if w(0)
2k > 0 for k =

1, 2, . . . ,m − 1 [16]. Hence it is not nessesary to consider the case where B(0) has
some multiple singular values, i.e., ck+1 = ck in Proposition 4.4. When w

(0)
k0

= 0
for some k0, we may decompose B(n) into some smaller upper bidiagonal matrices
whose singular values are simple and nonzero as shown in Section 5.

5. Splitting and Deflation Process

In the previous sections we assume that w(0)
k > 0, k = 1, 2, . . . , 2m − 1. Note

that w(n)
2k tends to 0 as n grows. If B(n) in (6) has zero-singular value, then w(n)

2k0−1

tends to 0 for some k0. In computer, the value of w(n)
k is also regarded as 0 if w(n)

k is
less than the machine epsilon εM , where εM denotes the minimal floating number
such that 1 + εM > 1. In this section we consider two cases where w(n)

2k0
= 0 and

w
(n)
2k0−1 = 0.

First, let w(n)
2k0

= 0, then B(n) is decomposed as

B(n) =

(
B

(n)
1 0
0 B

(n)
2

)
, (39)
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where B
(n)
j are upper bidiagonal matrices such as B(n)

1 ∈ Rk0×k0 and B
(n)
2 ∈

R(m−k0)×(m−k0). This implies that the singular values of B(n) are equivalent to
those of B(n)

1 and B
(n)
2 . Both B

(n)
1 and B

(n)
2 have nonzero positive diagonal and

upper subdiagonal entries. The singular values of B(n)
1 and B(n)

2 can be computed
as shown in the previous sections. Let us call this process a splitting. Especially,
w

(n)
2m−1 is just the square of a singular value when w

(n)
2m−2 = 0 for some n. And

we may computes the singular values of (m− 1) × (m− 1) matrix B(n)
1 instead of

m×m matrix B(n). This process is called a deflation.
Next we explain a splitting process in the case where w(n)

2k0−1 = 0. Let us assume

that
(
B̃(n)

)�
B̃(n) =

(
B(n)

)�
B(n), where B̃(n) is an upper bidiagonal matrix with

the (k, k)-entry
√
w̃

(n)
2k−1 and the (k, k + 1)-entry

√
w̃

(n)
2k . Then it is obvious that

w̃
(n)
2k0−1w̃

(n)
2k0

= 0 since w̃(n)
2k0−1w̃

(n)
2k0

= w
(n)
2k0−1w

(n)
2k0

. It is of significance to note that

w̃
(n)
2k0

may be an arbitrary number. If we set w̃(n)
2k0

= 0, then B̃(n) is decomposed as
the same form as in (39), i.e.,

B̃(n) =

(
B̃

(n)
1 0
0 B̃

(n)
2

)
, (40)

where B̃(n)
1 ∈ Rk0×k0 and B̃

(n)
2 ∈ R(m−k0)×(m−k0) are upper bidiagonal matrices.

Note here that σk
(
B(n)

)
= σk

(
B̃(n)

)
and σk

((
B̃

(n)
1

)�)
= σk

(
B̃

(n)
1

)
. Hence

the singular values of B(n) are equal to those of
(
B̃

(n)
1

)�
and B̃

(n)
2 . Let us here

introduce a new upper bidiagonal matrix B̂
(n)
1 with the same form of B̃(n) such

that
(
B̂

(n)
1

)�
B̂

(n)
1 = B̃

(n)
1

(
B̃

(n)
1

)�
with w̃(n)

2k0−1 = 0. Then we see that ŵ(n)
2k0−2 = 0

and ŵ
(n)
2k0−1 = 0. Consequently, without changing the singular values, B(n) can be

transformed to

B̂(n) =

⎛⎜⎝ B̂′(n)

1 0
0

0 B̃
(n)
2

⎞⎟⎠ , (41)

where both B̂′(n)

1 ∈ R(k0−1)×(k0−1) and B̃
(n)
2 have nonzero positive diagonal and

upper subdiagonal entries. Namely, we may compute the singular values of both
B̄′(n)

1 and B̃(n)
2 instead of B(n) with w(n)

2k0−1 = 0.
By using the mdLVs schemes with the above splitting and deflation process

successively, the upper bidiagonal matrix B(n) approaches to a diagonal matrix
whose entries are singular values of B(0).

6. Test Results

Tests have been carried out on our computer with CPU: PentiumIII 933 MHz,
RAM: 512 MB. As numerical examples, we consider 100 × 100 and 1000 × 1000
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matrices of four types as in Table 1. Let us set the step-size δ(n) = 1 and the

shift θ(n)2 =
(
max

{
0, ϑ(n)

1

})2

for n = 0, 1, . . . in the mdLVs scheme II. Then, in

many cases, θ(n)2 < σ2
m

(
B(n)

)
, w(n+1)

k > 0 and the mdLVs scheme II is numerically
stable. Only the variable w(n+1)

k is computed as w(n+1)
k = v

(n)
k for k = 1, 2, . . . , 2m−

1 if w(n+1)
k ≤ 0 in (13). Namely, we adopt the zero-shift stable version of the mdLVs

scheme II. It can be shown that the convergence speed of the mdLVs scheme II is
slightly faster than that of the mdLVs scheme I in numerical tests. Hence we
demonstrate the computational performance of the mdLVs scheme II in this paper.
A variable step-size version without shift is discussed in [10]. The splitting or the
deflation shown in Section 5 are performed when w(n)

2k0−1 or w(n)
2k0

are relatively small
for some k0. We here designed a new trial routine named the mdLVs routine in terms
of the mdLVs scheme II. The dLV routine is just the zero-shift version of the mdLVs
routine. The singular values are computed with double precision in our routines. In
this section, we compare the mdLVs, the dLV and DBDSQR (without computing
singular vectors) routines with respect to both the computational time and the
numerical accuracy. Here DBDSQR is well known and is widely used as one of the
most credible routines in LAPACK having a stability and a guaranteed convergence.
We use a FORTRAN routine of DBDSQR in LAPACK 3.0 downloaded from a web
site [1]. Many fundamental linear computations in LAPACK routines are performed
by Basic Linear Algebra Subprograms (BLAS).

Table 1. Four types of upper bidiagonal matrices.

Diagonal
bk,k

Subdiagonal
bk,k+1

Distribution
of σ̂k

Minimal
σ̂m

Type 1: B1 2.001 2
sufficiently
separated

nonzero

Type 2: B2 1 10 separated almost zero

Type 3: B3

{
1 (k = 1)
2 (k �= 1)

{
0.001 (k = 1)
0.002 (k �= 1)

dense
(except for σ̂m)

nonzero

Type 4: B4 0.001 2 dense
(except for σ̂m)

almost zero

First we compare the computational time by the mdLVs, the dLV and
DBDSQR routines for computing every singular values of Bk, k = 1, 2, 3, 4 in
Table 1, where Bk are 100× 100 and 1000× 1000 matrices. Table 2 gives the com-
putational time. Obviously the mdLVs routine requires the computational time less
than the dLV routine. Compare it with DBDSQR routine, there is a little difference
in the computational time when every Bk is 100 × 100. This is such a small-scale
computation that the most of data are stored in not main memory but efficient
cache memory of computer. In the singular value computation of 1000 × 1000
matrices, the mdLVs routine is 26–46% faster than DBDSQR routine. It can be
shown that the mdLVs routine has a better scalability than DBDSQR routine. In
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contrast with the dLV and DBDSQR routines, the mdLVs routine runs in almost
the same time independently of matrix type. Moreover DBDSQR routine is not
accelerated by using an optimized BLAS “Automatically Tuned Linear Algebra
Software (ATLAS) [15].” This is because DBDSQR routine for computing only
singular values does not require any vector and matrix operations accelerated by
ATLAS. In a full SVD by DBDSQR, ATLAS will demonstrate it’s ability.

Table 2. Computational time by the mdLVs, the dLV and DBDSQR routines (sec.).

100 × 100 1000 × 1000
mdLVs dLV DBDSQR mdLVs DBDSQR

Type 1 0.02 0.13 0.02 1.34 2.27
Type 2 0.02 0.88 0.03 1.32 2.43
Type 3 0.02 36.2 0.02 1.30 1.76
Type 4 0.02 174 0.02 1.32 2.00

Next we discuss the numerical accuracy of computed singular values by
the mdLVs, the dLV and DBDSQR routines. Fig. 2 describes relative errors
|σk − σ̂k| /σ̂k in the computed singular values σk of 100 × 100 Type 4 matrix B4,
where σ̂k are the verified correct values computed by using Maple [7] with 50-digits.
The relative errors themselves were also computed with 50-digits in Maple. Visibly
the relative errors of computed singular values by the mdLVs routine are much
smaller than those by the dLV routine. Since the roundoff operations in the mdLVs
routine are much less than those in the dLV routine, the roundoff errors in the
mdLVs routine seems to be smaller. Hence the mdLVs routine is superior to the
dLV routine with respect to the numerical accuracy. The computed singular val-
ues by the mdLVs routine are also practically with higher accuracy than those by
DBDSQR routine. For other type of matrices in Table 1, we also obtain the graphs
similar to Fig. 2.

In this paper it is shown that the mdLVs routine is better than DBDSQR
routine of LAPACK with respect to both the computational time and the numerical
accuracy. The higher relative accuracy of the mdLVs routine will be quite useful
to compute singular vectors from the singular values.



258 M. Iwasaki and Y. Nakamura

Fig. 2. A graph of the suffix k for ordering singular values σk according

to magnitude (x-axis) and the relative errors in computed singular

values of B4 by the mdLVs, the dLV and DBDSQR routines (y-axis).

The soild, dashed and dotted lines are given by the mdLVs, the dLV

and DBDSQR routines, respectively. The relative error of σ100 is

plotted on x-axis because |σ100−σ̂100| ∼ 0. Here the machine epsilon

is εM = 2.22 × 10−16.

7. Concluding Remarks

In this paper a new shifted scheme for singular values of matrices is designed.
In Section 2, two types of such schemes, named the mdLVs schemes I and II, are
presented. In Section 3, four possible choices of the shift which keep the mdLVs
schemes numerically stable. In Section 4, a convergence to singular values of the
mdLVs schemes is proved. It is concluded that the mdLVs schemes are stable
schemes having guaranteed convergence to singular values. In Section 6 a compar-
ison of the mdLVs routine with a credible routine, DBDSQR, of LAPACK. It is
shown that the mdLVs routine is more accurate and faster than DBDSQR routine
and has a good scalability.

The higher relative accuracy of the mdLVs schemes is quite important to com-
pute orthogonal singular vectors from computed singular values in terms of, for
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example, a new twisted factorization method. An optimal implementation, the cu-
bic convergence to singular values, a parallelization of the mdLVs schemes and a
full SVD scheme will be discussed in subsequent papers. The authors hope that
the new shifted schemes for singular values will contribute effectively to large scaled
SVD problems.
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