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Abstract. We introduce a graph-orientation problem arising in the study of biological
networks. Given an undirected graph and a list of ordered source–target vertex pairs,
the goal is to orient the graph such that a maximum number of pairs admit a directed
source-to-target path. We study the complexity and approximability of this problem.
We show that the problem is NP-hard even on star graphs and hard to approximate
to within some constant factor. On the positive side, we provide an Ω(log log n/ log n)
factor approximation algorithm for the problem on n-vertex graphs. We further show
that for any instance of the problem there exists an orientation of the input graph that
satisfies a logarithmic fraction of all pairs and that this bound is tight up to a constant
factor. Our techniques also lead to constant-factor approximation algorithms for some
restricted variants of the problem.

1. Introduction

A major role of a protein–protein interaction (PPI) network is to transmit signals
within the cell in response to genetic and environmental cues. Technologies for
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measuring PPIs such as yeast two-hybrid [Fields 05] and co-immunoprecipitation
[Gavin et al. 02] are unable to provide information on the direction in which the
signal flows. Such information can be inferred from indirect, causal information
on cellular events. One such source of information is perturbation experiments,
in which a gene is perturbed (cause) and as a result, other genes change their
expression levels (effects).

In graph-theoretic terms, one is given an undirected graph and a list of source–
target pairs that represent the experimentally observed cause–effect pairs. The
goal is to predict an orientation of the graph, i.e., a directed graph on the same
vertex set that contains a single directed version of every undirected edge, so that
for a maximum number of pairs, the target is reachable from the source. We study
the complexity of approximating the resulting maximum-graph-orientation

problem.
The algorithmic research on graph orientations that preserve reachability

initially focused on producing strongly connected orientations. It started with
[Robbins 30], in which the author was motivated by applications in street
network design. He showed that an undirected graph has a strongly connected
orientation if and only if it has no bridge edge. In [Hakimi et al. 97], a poly-
nomial algorithm is presented for the problem of orienting an undirected graph
G = (V,E) to preserve reachability for a maximum number of all vertex pairs
(i.e., from the set V × V ). The problem we study is a generalization of the latter,
for it considers every subset of pairs. We refer to the textbook [Bang-Jensen and
Gutin 08] for a comprehensive discussion of various graph-orientation problems.

The authors of [Yeang et al. 04] were the first to use perturbation experiments
to annotate protein networks. They proposed a probabilistic model and an
accompanying inference approach to predict edge directions and signs of
activation and repression from cause–effect data. In [Ourfali et al. 07] can be
found an integer linear program formulation for the problem of inferring edge
signs that maximize the expected number of explained cause–effect pairs. In
[Gitter et al. 11], satisfiability-based approximations are used to tackle the
orientation problem. The main caveat of all these approaches is that they
depend on enumerating all possible paths between a pair of genes, and hence
they are limited to paths of very short length (3 for the first two works and
5 for the latter). Finally, [Dorn et al. 11] studies the complexity of solving the
orientation problem with respect to structural parameters that measure how
often vertices (or edges) are used by source-to-target paths.

In this paper we show that the maximum-graph-orientation problem can
be reduced to the same problem on instances in which the input graph is a tree.
We focus on the latter problem, called maximum-tree-orientation. We show
that it is NP-hard and hard to approximate to within a factor of 12/13. On the
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positive side, we show that for an n-vertex tree, the problem can be approximated
to within a factor of Ω(log log n/ log n).

We also study combinatorial properties of graph orientations, showing that for
every undirected graph and collection of source–target vertex pairs, there exists
an orientation that satisfies a logarithmic fraction of the pairs and that this
bound is tight up to a constant factor. We also present algorithms with constant
approximation ratios for restricted instances of maximum-tree-orientation.
In particular, we provide a constant approximation algorithm for instances in
which the distance between source and target vertices is bounded by a constant.

The paper is organized as follows: In Section 2, we define the graph-orientation
problem that we consider and provide hardness results. In Section 3, we present
combinatorial bounds on the number of pairs that can be satisfied in different
orientation instances. In Section 4, we provide a constant-factor approximation
algorithm for the restriction of maximum-tree-orientation, where the end
vertices of pairs are connected by short paths. In Section 5, we present a sublog-
arithmic approximation algorithm for the general case.

2. Preliminaries

Let G = (V,E) be an undirected graph on n vertices. We use V (G) and E(G)
to refer to its sets V of vertices and E of edges, respectively. The graph G is a
tree if it is connected and has no cycles. An orientation of G is an assignment of
directions to the edges of G such that each edge is assigned a single direction.

Given a source vertex s ∈ V (G) and a target vertex t ∈ V (G), we say that t

is reachable from s if there exists a path in G from s to t. In this case, we also
say that G satisfies the source–target vertex pair (s, t). The problem we study
is formally defined as follows:

Problem 2.1. (maximum-graph-orientation.)

Input: An undirected graph G = (V,E) and a multiset of source–target vertex
pairs P from G.

Output: An orientation G′ of G that satisfies a maximum number of pairs
from P .

A tuple (G,P ) of an undirected graph G and a multiset of source–target vertex
pairs P from G is called an orientation instance; |P | denotes the number of pairs
in the multiset P .
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Lemma 2.2. There exists a linear-time algorithm that given an orientation instance
(G,PG ), computes an orientation instance (T, PT ) with tree T such that for every
k ∈ N, there exists an orientation G′ of G that satisfies k pairs from PG if and
only if there exists an orientation T ′ of T that satisfies k pairs from PT .

Proof. The algorithm computes the tree T of G’s two-edge connected components.
Vertex pairs PG in G are transformed into vertex pairs PT in T by the following
rule: For every pair (s, t) ∈ PG we construct a pair (C,C ′), where C and C ′

are the two-edge connected components of G that contain s and t, respectively.
Computing the tree of two-edge connected components can be done in linear
time, as shown in [Tarjan 72, Tarjan 74]; the transformation of the pairs can also
be done in linear time.

An orientation G′ of G translates into an orientation T ′ of T by taking the
oriented versions of the bridge edges between two-edge connected components.
For every vertex pair (s, t) ∈ PG that is satisfied in G′, the corresponding pair
of components (C,C ′) is also satisfied in T ′. Conversely, consider an orientation
T ′ of T . We will use the orientations from the edges of T for the bridge edges
between the two-edge connected components in G and a strongly connected
orientation for each two-edge connected component. Such orientations exist by
a theorem in [Robbins 30], and they satisfy every pair whose source and target
vertices lie in the same two-edge connected component.

By Lemma 2.2, it is sufficient to solve the maximum-graph-orientation

problem for orientation instances (T, P ) with T being a tree. This results in the
formal maximum-tree-orientation problem. In the following, we prove NP-
hardness for an even more restricted problem variant in which the input graph
is a star.

Theorem 2.3. The maximum-tree-orientation problem is NP-hard to approxi-
mate to within a factor of 12/13.

Proof. We reduce from the maximum-directed-cut problem [Kann et al. 96],
where we are given a directed graph G and wish to find a subset A ⊆ V (G) such
that a maximum number of edges cross from A to V (G) \A in G.

For the reduction, we map a directed graph G to an orientation instance (S, P )
with S being a star graph in the following way: We set V (S) = V (G) ∪ {vc},
where vc is a vertex not in V (S) that will be the vertex in the center of S. For
every vertex v ∈ V (G), we insert an undirected edge between v and vc into the
edge set E(S). We define P to be the set of directed edges of G. We claim that
for every k ∈ N, there exists a set A ⊆ V (G) such that at least k edges from
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E(G) go from A to V (G) \A if and only if there exists an orientation S ′ of S

that satisfies at least k pairs from P .
For the “only if” direction, consider a set A ⊆ V (G) with k crossing edges. For

all v ∈ A, orient the edge between v and vc from v toward vc . All other edges
are oriented away from vc . Every pair with a corresponding edge that goes from
A to V (G) \A is satisfied by this orientation.

For the “if” direction, let S ′ be an orientation of S that satisfies k pairs from P .
Let A be the set of vertices from V (S) \ {vc} whose incident edges are oriented
toward vc . Pairs that are satisfied in S ′ have their source vertices in the set A

and their target vertices in the set V (S) \A. To each of these pairs corresponds
an edge that goes from A to V (G) \A in G.

Since maximum-directed-cut is NP-hard to approximate to within a factor
of 12/13 [H̊astad 01] and the reduction is approximation-preserving, the claim
follows.

The maximum-tree-orientation problem is also NP-hard when restricted
to complete binary trees [Medvedovsky et al. 08] or caterpillar trees of degree at
most 3, like [Medvedovsky 09]. In contrast, on path graphs (graphs like

it can be solved in polynomial time by a dynamic programming algorithm
[Medvedovsky et al. 08, Dorn et al. 11].

3. Combinatorial Logarithmic Bounds

In this section we prove bounds on the number of pairs that can be satisfied
in various orientation instances. We first introduce the concept of covers
and show that orientation instances with restricted covers admit orientations
satisfying a constant fraction of the pairs. Then we turn to general orien-
tation instances and show that they always admit an orientation satisfying
a logarithmic fraction of their pairs and that this is tight up to a constant
factor.

3.1. Constant Factor Bounds

In the following we will consider tree instances, and instead of orienting edges
individually, we partition the input tree into subtrees and orient all edges of a
subtree at the same time in a consistent direction.

A cover for T is a tuple (T ,W) that consists of (1) a class T = {T1 , . . . , Tl}
of induced subtrees of T where every Ti is connected and E(T1), . . . , E(Tl) is a
partition of E and (2) a collection of verticesW = {w1 , . . . , wl} with wi ∈ V (Ti)
for every i ∈ {1, . . . , l}. The size of the cover is |T | = |W|. For every subtree
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Ti , we consider two orientations: the orientation T receiver
i , where all edges are

oriented toward the vertex wi (i.e., every edge is oriented toward its incident
vertex nearest to wi), and the orientation T sender

i , where all edges are oriented
in the opposite direction. We consider the collection of orientations of T that
are produced by choosing, for every subtree Ti , one of T receiver

i and T sender
i and

combining them to an orientation for T . For a cover of size l, this collection
contains 2l orientations. For an orientation instance (T, P ), we define a pair
cover as a cover (T ,W) for T such that for every pair (s, t) ∈ P , there exists an
orientation in the cover that satisfies (s, t). The crossing number of a pair cover
is the maximum number of subtrees whose edges are used by a pair on the path
from its source to its target vertex.

Lemma 3.1. Let (T, P ) be an orientation instance admitting a pair cover (T ,W)
with crossing number c. Then there exists an orientation T ′ of T that satisfies
at least |P |/2c pairs from P .

Proof. We consider a uniform probability distribution on the collection of orien-
tations of T that can be constructed with respect to (T ,W). Note that it is
equivalent to say that we choose, for every subtree Ti ∈ T , with probabilities
1/2 the orientation T receiver

i or the orientation T sender
i . For every pair (s, t), we

consider a random variable X(s,t) that is evaluated to 1 if the particular orienta-
tion satisfies (s, t) and 0 otherwise. The satisfaction of a pair depends only on the
orientations of the at most c subtrees whose edges are used by its source-to-target
path. Thus every pair is satisfied with probability at least 1/2c (in particular,
E[X(s,t) ] ≥ 1/2c). Let us denote by X the random variable that equals the total
number of pairs that are satisfied in an orientation. By linearity of expectation,
E[X] =

∑
(s,t)∈P E[X(s,t) ] ≥ |P |/2c . Thus, there must exist an orientation, as

desired.

Since the conditional expectation with respect to partial orientations of the
tree can be computed in polynomial time by deleting all unsatisfied pairs from
P , contracting the oriented edges, and computing the expectation value for the
remaining instance, we can apply the method of conditional expectations [Alon
and Spencer 00] to construct a deterministic polynomial-time algorithm that
produces the orientations from Lemma 3.1.

In some restricted cases, the input trees admit the polynomial-time construc-
tion of pair covers with small crossing numbers, and hence orientations satisfying
a constant fraction of all input pairs. This leads to the following bounds for star
and caterpillar graphs:
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Figure 1. (a) A star tree and (b) a caterpillar tree along with their pair covers as
constructed in the proof of Lemma 3.2. The cover subtrees from T are depicted
with gray background bars; the vertices from W are filled in black.

Lemma 3.2. The following two properties hold:

1. Let (S, P ) be an orientation instance with a star graph S. Then there
exists a polynomial-time computable orientation S ′ of S that satisfies at
least |P |/4 pairs from P .

2. Let (C,P ) be an orientation instance with a caterpillar graph C. Then
there exists a polynomial-time computable orientation C ′ of C that satisfies
at least |P |/8 pairs from P .

Proof. To prove the lemma, we show that orientation instances with star graphs
and caterpillar graphs admit polynomial-time computable pair covers with re-
spective crossing numbers 2 and 3. Examples of the constructed pair covers are
given in Figure 1.

We start with orientation instances (S, P ), where S is a star with center node
vc . We define the pair cover (T ,W) to be the collection of all edges from E(S)
together with wi = vc for all i ∈ {1, . . . , |E(S)|}. It can be computed in polyno-
mial time for a given star graph, and since it has crossing number at most 2,
applying Lemma 3.1 and the subsequent derandomization proves the claim.

Recall that a caterpillar graph is made up of a backbone path and edges at-
tached to that path. For caterpillars, we construct a pair cover (T ,W) by taking
the backbone path and the edges attached to it into the collection T . Note that
all graphs in T are paths. For each of them we use any end vertex as wi . This
cover is polynomial-time computable and has crossing number at most 3. Simi-
larly to the star graph case, the claim follows.

Figure 1 shows examples of the pair covers constructed in the proof of
Lemma 3.2.

We note that maximum-tree-orientation on star graphs reduces to
maximum-directed-cut by the following two-step reduction: Without loss of
generality, we start with an orientation instance (S, P ) with a center vertex vc
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where each pair has distinct end vertices. First, consider pairs (s, t) for which one
of s and t equals vc . Delete (s, t) from P , insert a new vertex v(s,t) into V (S) that
is connected to vc , and insert a copy of (s, t) into P , where the vertex equal to
vc is replaced by v(s,t) . This does not change the size of an optimal orientation,
and no pair contains the center vertex. Next, consider the new instance (S ′, P ′)
from the first step, and construct the graph (V (S ′), P ′). Similarly to the proof
of Theorem 2.3, every optimal orientation for (S ′, P ′) can be turned into an op-
timal cut for (V (S ′), P ′), and vice versa. It follows that the orientation problem
on stars admits a 0.874 approximation using the corresponding approximation
algorithm for maximum-directed-cut [Lewin et al. 06].

3.2. Logarithmic Factor Bounds

Lemma 3.3. Let (T, P ) be an orientation instance with a tree T . There exists an
orientation T ′ of T that satisfies at least |P |/(4�log n�) pairs from P .

Proof. We partition the multiset P into �log n� multisets P1 , . . . , P�log n� such that
every orientation instance (T, Pi) admits an orientation satisfying at least |Pi |/4
of the pairs in Pi . Taking the instance with the largest set Pi and an orienta-
tion that satisfies at least 1/4 of its pairs results in an orientation that satisfies
1/(4�log n�) of all pairs.

Let v ∈ V (T ) be a vertex whose removal breaks the tree into components of
size at most �|V (T )|/2�; such a centroid vertex always exists in trees and can be
found in polynomial time [Frederickson and Johnson 80]. Let P1 be the pairs from
P with source-to-target paths crossing the vertex v and consider the orientation
instance (T, P1). We construct a pair cover (T1 ,W1) for (T, P1), where T consists
of all subtrees rooted at v, and vertices inW equal v. This pair cover has crossing
number 2. Thus, by Lemma 3.1, there exists an orientation satisfying at least
1/4 of the pairs P1 .

Next, let F be the forest that arises by deleting v from T . Note that the path
of every pair from P \ P1 lies completely inside one of the trees from this forest.
We consider centroid vertices for all trees of F and let P2 be the multiset of pairs
from P \ P1 that cross any of these vertices. We use the same construction of pair
covers as above for every tree of the forest, and merge the covers to obtain a pair
cover with crossing number 2 for the orientation instance (T, P2). It witnesses
that there exists an orientation T ′ of T satisfying at least 1/4 of the pairs from P2 .
We proceed recursively by breaking F into subforests using centroid vertices. This
produces �log n� orientation instances (T, P1), . . . , (T, P�log n�), each admitting an
orientation that satisfies at least 1/4 of its pairs using the same arguments.
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The following lemma shows that the logarithmic bound from Lemma 3.3 is
tight up to a constant factor. We refer to Section 7 for its proof.

Lemma 3.4. For every r ∈ N, there exists an orientation instance (Tr , Pr ) with
|V (Tr )| = 2r+1 − 1 and |Pr | = 2r4r−1 such that every orientation of Tr satisfies
at most (4r − 1)/3 pairs. This is at most 2/(3r) of all pairs, which is logarithmic
in the size of T v

r

4. Constant-Factor Approximation for Pairs of Bounded Distance

In this section we consider tree-orientation instances (T, P ) for which the distance
between the source and target vertices of each pair is at most a constant d ∈ N.
We prove that such instances always admit orientations satisfying at least 1/(4d)
of the input.

Lemma 4.1. Let d ∈ N. Let (T, P ) be an orientation instance with a tree T such that
for every pair (s, t) ∈ P , the path from s to t in T has length at most d. Then
there exists an orientation T ′ of T that satisfies at least |P |/(4d) pairs from P .

Proof. Choose any vertex r ∈ V (T ) and consider, for every pair (s, t) ∈ P , the
unique vertex v(s,t) from the s-to-t path that has shortest distance to r. We
partition the pairs P into d multisets P0 , . . . , Pd−1 as follows: A pair (s, t) ∈ P

lies in Pi if and only if i ≡ d(s,t) mod d, where d(s,t) is the distance between r

and v(s,t) . An example instance and its partition are depicted in Figure 2.
We prove that for every orientation instance (T, Pi), there exists an orienta-

tion satisfying at least |Pi |/4 pairs. Taking such an orientation for the largest
multiset Pi results in an orientation that satisfies at least |P |/(4d) pairs. We use
Lemma 3.1 and the following pair cover with crossing number 2: For an instance
(T, Pi), we produce T by splitting T at every vertex v whose distance from r

modulo d is i. For every subtree Tj from T , its vertex wj is the vertex from
V (Tj ) with lowest distance to r in T . Since the distance between the source and
target vertices of each pair is at most d, the path of every pair lies in at most two
subtrees from T . Moreover, every pair in Pi can be satisfied by an orientation
with respect to this pair cover: Either it lies completely inside a subtree Tj and
one of its end vertices is wj , or it lies in two subtrees Tj and Tk with wj = wk .

Let (T, P ) be an orientation instance with tree T . The conflict graph of (T, P ),
denoted by C(T ,P ) , is the undirected graph with vertex set P and an edge between
two pairs p1 = (s1 , t1) ∈ P and p2 = (s2 , t2) ∈ P if and only if p1 and p2 cannot



218 Internet Mathematics

Figure 2. An example orientation instance (T, P ) with P =
{(s1 , t1 ), (s2 , t2 ), (s3 , t3 )} is shown. The construction from the proof of Lemma 4.1
for the depicted root node r and source-to-target distance 3 partitions P into
P0 = {(s1 , t1 )}, P1 = ∅, and P2 = {(s2 , t2 ), (s3 , t3 )}. The multiset for a pair (s, t)
is chosen with respect to the vertex v(s ,t) and its distance from r. The distances
of the vertices from the root modulo 3 are depicted using different shades of
gray.

be satisfied at the same time in any orientation of T ; equivalently, the path from
s1 to t1 and the path from s2 to t2 use some edge in different directions. We say
that p1 and p2 are conflicting if there is an edge between them in the conflict
graph, and nonconflicting otherwise. Sets of nonconflicting pairs can be satisfied
simultaneously, which implies the following fact:

Fact 4.2. Let (T, P ) be an orientation instance with a tree T . For every k ∈ N

there exists an orientation of T that satisfies at least k pairs from P if and only
if there exists an independent set of size at least k in C(T ,P ).

Theorem 4.3. Let d ∈ N. There exists a polynomial-time algorithm that approximates
its optimum solution to within a factor of 1/(2d) for any orientation instance
(T, P ) in which for every pair the length of the path between the source and the
target vertex is at most d.

Proof. Let opt be the size of an optimal solution to maximum-tree-orientation

for the given orientation instance (T, P ). The algorithm consists of two steps:
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First it computes a subset P ′ of the pairs P with 2· opt/d ≤ |P ′|. Then it
computes an orientation T ′ for T satisfying |P ′|/4 pairs. As a result, we will
satisfy at least opt/(2d) of the pairs.

For the first step of the algorithm, consider a vertex r ∈ V (T ) and the partition
of the pairs P into multisets P0 , . . . , Pd−1 from the proof of Lemma 4.1. Let C ′(T ,P )
be the graph that arises from the conflict graph C(T ,P ) of (T, P ) by deleting all
edges between pairs (si, ti) and (sj , tj ) with v(si ,ti ) = v(sj ,tj ) . Two pairs (si, ti)
and (sj , tj ) from the same set Pi have the same vertex v(si ,ti ) = v(sj ,tj ) or else
their paths do not overlap. Thus, the partition P0 , . . . , Pd−1 is a valid coloring
with d colors of C ′(s,t) . For graphs with colorings of d colors, we can use an
algorithm from [Hochbaum 83] that computes an independent set whose size
approximates the size of a maximum independent set to within a factor of 2/d

in time O(nm log n), where n = |P | and m ≤ |P |2 are the numbers of vertices
and edges in the considered graph. Let P ′ be such a set for C ′(s,t) . Since C ′(s,t) is
a subgraph of C(s,t) , we have 2·opt/d ≤ |P ′| .

For the second step consider the partition P ′0 , . . . , P
′
d−1 with P ′i = Pi ∩ P ′ of P ′.

Similarly to the proof of Lemma 4.1, we compute an orientation that satisfies 1/4
of the pairs for every orientation instance (T, P ′i ), but this time we are not limited
to using only the orientation of a single instance. Since P ′ is an independent set,
there are no conflicts between pairs from different sets P ′i and P ′j . Thus, we are
able to merge the orientations for the instances (T, P ′i ) into an orientation that
satisfies at most 1/4 of all pairs from P ′. Altogether, this results in a set of
satisfied pairs of size at least opt/(2d).

5. Sublogarithmic Factor Approximation

In this section, we devise a deterministic algorithm that achieves a sublog-
arithmic approximation guarantee of Ω(log log n/ log n) for maximum-tree-

orientation. Since general instances reduce to tree instances in an
approximation-preserving manner, this leads to the same approximation ratio
for the general problem maximum-graph-orientation.

The algorithm first partitions the input pairs P into Ω(log log n/ log n) mul-
tisets Pi . For each orientation instance (T, Pi), it computes an orientation that
satisfies a constant fraction of the optimal number of satisfiable pairs. Conse-
quently, the above-mentioned approximation ratio follows by picking, out of the
set of all the computed orientations, the one that satisfies the maximum number
of pairs. Below we describe the partition and orientation steps in detail.
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5.1. Pair Partitioning

The process by which we partition the pairs is a modification of the centroid
decomposition used in the proof of Lemma 3.3. Specifically, we will use a de-
composition that splits a tree into k = �log n� subtrees of almost the same size,
formalized by the concept of an almost-balanced decomposition: Let T = (V,E)
be a tree. An almost-balanced k-decomposition of T is a partition of T into k edge-
disjoint subtrees T1 , . . . , Tk such that each subtree contains between |E|/(3k) and
3|E|/k edges and the number of vertices shared by at least two subtrees is at
most k. In [Gamzu and Segev 10], the authors showed that for every tree T and
integer k ≤ |E(T )| there exists an almost-balanced k-decomposition for T , and
that such a decomposition can be computed in polynomial time.

The partition of the pairs corresponds to a recursive decomposition of the
input tree T . Let T1 = {T1 , . . . , Tk} be an almost-balanced k-decomposition of
T . We say that a decomposition separates a pair (si, ti) when its end vertices
reside in different subtrees of the decomposition (see Figure 3 for an example).
The first multiset of pairs, P1 , consists of all pairs separated by T1 . To partition
the remaining set of pairs, P \ P1 , we recursively apply the previously described
procedure with respect to the collection of subtrees in T1 . Specifically, in the
second level of the recursion, an almost-balanced k-decomposition is computed
in each of the subtrees T1 , . . . , Tk to obtain a set T2 comprising k2 subtrees. The
second multiset of pairs, P2 , consists of all pairs from P \ P1 that are separated
by T2 . The remaining multisets P3 , P4 , . . . are defined in a similar manner. The
recursive process ends as soon as we arrive at a subtree whose number of edges
is strictly at most k. In this case, we use the decomposition that breaks a tree
into its individual edges.

For k = �log n�, the overall number of levels in the recursion, or equivalently,
the number of pair multisets, is O(logk n) = O(log n/ log log n).

5.2. A Constant-Factor Approximation for a Single Part

Notice that a multiset of pairs, say P� , generally consists of several subsets of
pairs, each created when different subtrees in T�−1 are partitioned by the decom-
position T� . More specifically, assuming that the subtrees in T�−1 are T1 , T2 , . . . ,
the class P� can be written as the disjoint union of P 1

� , P 2
� , . . . , where Pj

� is the
set of pairs that are first separated when Tj is partitioned. Recall that the path
of any pair separated by some subtree decomposition must be contained in that
subtree (otherwise, this pair would have been separated in previous recursion
steps). This observation implies that it is sufficient to compute an orientation
for a single subtree decomposition and its induced set of separated pairs. Given a
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Figure 3. This example shows a tree T = (V, E) with 32 edges and an almost-
balanced 7-decomposition for it. The seven subtrees of the decomposition are
highlighted with gray backgrounds; the five border vertices (see below) are filled
in black. The number of edges in the subtrees varies between 3 and 7; this satis-
fies the lower bound |E|/3k = 32/21 ≤ 3 and upper bound 3|E|/k = 96/7 ≥ 7
for the number of edges that are allowed in the trees of almost-balanced 7-
decompositions. The pairs (s1 , t1 ) and (s2 , t2 ) are separated by the decomposition,
while the pair (s3 , t3 ) is not separated.

polynomial-time algorithm that computes such an orientation, one can apply it
to each of the subtree decompositions in the same recursion level. The resulting
orientations of edge-disjoint subtrees define an orientation for the whole input
tree, satisfying at least as many pairs as the overall number of pairs satisfied in
all individual subtrees.

In what follows, we focus our attention on a single decomposition and devise
a randomized algorithm that computes an orientation that satisfies, in expec-
tation, a constant fraction of the optimal number of satisfiable pairs for this
decomposition. Formally, an instance of the problem in question consists of a
tree T = (V,E) and a partition T = {T1 , . . . , Tk} of this tree into k edge-disjoint
subtrees, where k ≤ �log n�, and the number of vertices shared by at least two
subtrees is less than k. In addition, we are given a multiset P of pairs that are
separated by the decomposition T .

We need the following notation (exemplified in Figure 4). Let opt denote the
number of satisfied pairs in some fixed optimal orientation of T . Let VB ⊆ V be
the set of border vertices of T , that is, the set of vertices that are shared by at
least two subtrees in T . Moreover, let S ⊆ T be the skeleton of T , namely, the
minimal subtree spanned by all border vertices. Note that this subtree consists
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Figure 4. An almost-balanced 5-decomposition. Black vertices are border ver-
tices, gray vertices are junction vertices, and the gray areas make up the skeleton
of the decomposition.

of the union of paths connecting any two vertices in VB . Finally, let VJ ⊆ V be
the set of junction vertices, defined as nonborder skeleton vertices with degree
at least 3 (counting only skeleton edges).

We are now ready to present the orientation algorithm. Our algorithm consists
of two phases: segment guessing, in which the optimal direction state of disjoint
subpaths of the skeleton is attained, followed by randomized assignment, in which
individual edges are assigned a direction.

Segment guessing Let us name the vertex set VB ∪ VJ the core of the skeleton S.
One can verify that |VB ∪ VJ | < 2k, since |VJ | < |VB | < k. We now partition the
skeleton into a collection Σ(S) of edge-disjoint paths, which are referred to as
segments. Each such segment is a subpath of S whose endpoints are core vertices,
but its interior traverses only noncore vertices. Clearly, |Σ(S)| = |VB ∪ VJ | − 1 <

2k.
We now argue that one could obtain in polynomial time the direction state

that the optimal orientation induces on each segment σ ∈ Σ(S) simultaneously
for all segments. To this end, notice that any skeleton segment σ = 〈v1 , v2 , . . . , v�〉
may be in one of three possible direction states:

� Right direction: all edges are consistently directed from v1 toward v� , which
means that v1 → v2 , v2 → v3 , . . . , v�−1 → v� .

� Left direction: all edges are consistently directed from v� toward v1 , namely,
v1 ← v2 , v2 ← v3 , . . . , v�−1 ← v� .

� Mixed direction: the direction of segment edges is inconsistent.

These definitions imply that the total number of segment direction states to
be examined is of polynomial size, since 3|Σ(S )| < 32k ≤ 32�log n� = O(n2·log 3). As
a consequence, we may assume without loss of generality that the set of direction
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Figure 5. (a) An orientation of a sender subtree, where the thick edges are part
of the skeleton. (b) A partition of a pair path into five parts.

states induced by the optimal orientation on all the segments of Σ(S) is known
in advance. This assumption can be enforced by enumerating over all O(n2·log 3)
possible segment direction states.

Randomized assignment. The goal of this phase is to orient the graph while making sure
that the edge directions respect the outcome of the segment-guessing phase. For
this purpose, we begin by considering skeleton segments that have a consistent
direction—namely, segments in either right or left direction states—and assign
all the edges in these segments their implied direction. The assignment proce-
dure involves two randomized assignment steps: (1) Each segment in a mixed
direction state is assigned, independently and uniformly at random, a right or
left direction. All segment edges are oriented according to the chosen direction.
(2) Each of the decomposition subtrees T1 , . . . , Tk is assigned, independently and
uniformly at random, the role of a sender or a receiver. All the nonskeleton edges
of each sender subtree are oriented toward the skeleton (in its simplest form,
when the subtree contains a single border vertex, all edges are oriented toward
that vertex). In contrast, all the nonskeleton edges of each receiver subtree
are oriented away from the skeleton. We refer the reader to the example in
Figure 5(a).

We turn now to proving that the expected number of satisfied pairs is within
a constant factor of optimal, as formally stated in the following claim.

Claim 5.1. The resulting orientation satisfies at least opt/16 pairs in expectation.

Proof. Recall that we have previously assumed the endpoints of each pair to reside
in different subtrees of the decomposition T . In particular, this implies that each
pair path must traverse at least one border (core) vertex. For this reason, as
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shown in Figure 5(b), we can divide each pair path, with endpoints si and ti ,
into five (some possibly empty) parts: (1) a subpath between si and its closest
skeleton vertex vsi

; (2) a subpath, along a partial skeleton segment, between vsi

and its closest core vertex rsi
; (3) a subpath between ti and its closest skeleton

vertex vti
; (4) a subpath, along a partial skeleton segment, between vti

and its
closest core vertex rti

; (5) a subpath between rsi
and rti

, along a sequence of
complete skeleton segments.

With these definitions in mind, let us focus on some pair (si, ti) that is sat-
isfied in the optimal orientation. We now argue that with probability at least
1/16, this pair is satisfied in the random orientation constructed by the algo-
rithm. Consequently, by linearity of expectation, the overall expected number of
satisfied pairs is opt/16. The key observation we make to establish this argu-
ment is that all the segments along the subpath between rsi

and rti
must have

a consistent direction in the optimal orientation; otherwise, this pair would not
have been satisfied. Accordingly, we may assume that our algorithm assigned
the same direction to all the edges in these segments. Now notice that the pair
under consideration is satisfied if the following four probabilistic events occur:
(1) the edges in the subpath between si and vsi

are oriented toward vsi
; (2)

the edges in the subpath between vsi
and rsi

are oriented toward rsi
; (3) the

edges in the subpath between vti
and rti

are oriented toward vti
; and (4) the

edges in the subpath between ti and vti
are oriented toward ti . One can validate

that these four events are independent, and that each one of them occurs with
probability of at least 1/2. For example, the edges in the subpath between si and
vsi

are oriented toward vsi
if the underlying subtree Tsi

is selected as a sender.
As a result, the probability that pair i is satisfied in the random orientation is
at least 1/16.

Derandomization. The extent to which we utilize randomization is limited; its purpose
is to make the presentation of our algorithm simpler. Each segment in a mixed
direction state is randomly assigned one of two possible directions, resulting in at
most 2|Σ(S )| < 22k ≤ 22�log n� = O(n2) possibilities. Each decomposition subtree
is randomly assigned one of two possible roles, resulting in at most 2k ≤ 2�log n� =
O(n) possibilities. To obtain a deterministic polynomial-time algorithm, we can
construct the whole space of possible assignments.

In summary, we obtain the following theorem:

Theorem 5.2. There exists a polynomial-time algorithm that approximates
maximum-tree-orientation to within a factor of Ω(log log n/ log n) on n-
vertex trees.
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Theorem 5.2 and Lemma 2.2 imply the same approximation bound for the
problem on general graphs:

Corollary 5.3. There exists a polynomial-time algorithm that approximates
maximum-graph-orientation to within a factor of Ω(log log n/ log n) on n-
vertex graphs.

6. Conclusions

In this paper we studied the complexity and approximability of the maximum-

graph-orientation problem. We showed that this problem is NP-hard to ap-
proximate to within a factor of 12/13. On the positive side, we provided an
Ω(log log n/ log n)-approximation algorithm for the problem. In addition, we pro-
vided insights into the combinatorial structure of the problem, showing that every
orientation instance admits an orientation that satisfies at most 1/(4�log n�) of
its pairs, and that this bound is tight up to a constant factor. We also designed
constant-factor approximation algorithms for restricted variants of the problem
in which the instance can be decomposed by restricted covers, including star
graphs, caterpillars, and graphs in which the distances between the source and
target vertices of every pair are bounded.

There are several directions for future research: One direction is to close the
gap between our approximation and hardness-of-approximation results. Another
direction is to develop algorithms that work on instances in which some of the
graph’s edges are predirected. This problem is motivated by biological scenarios
in which the directions of some of the edges are known, such as for protein–DNA
interaction and kinase–substrate interactions. We recently developed a polyno-
mial integer linear programming formulation for the problem and showed that
the resulting orientations are much more in line with current biological knowl-
edge compared to orientations that ignore the preset directions [Silverbush et
al. 11]. We also proved a sublinear approximation ratio for this problem [Elber-
feld et al. 11]. It is open whether this ratio can be improved. A third research
direction is to understand the structure of real-world instances and exploit it for
algorithms solving the NP-complete orientation problem rapidly in practice. A
recent work in this direction, [Dorn et al. 11], determines the values of many
structural parameters for different PPI networks and studies the complexity of
the orientation problem when parameterized by them.
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7. Appendix: Proof of Lemma 3.4

Proof. Let r ∈ N. The orientation instance (Tr , Pr ) consists of an undirected rooted
complete binary tree with depth r and the following multiset of pairs: For every
ordered pair (v, w) of distinct leaves in Tr we insert 2(2r−d(v ,w ))/2 copies of the
pair (v, w) into Pr , where d(v, w) is the distance between v and w. Figure 6 shows
an example of this orientation instance.

Let opt(r) denote the maximum number of satisfied pairs from Pr in any
orientation of Tr . Let opt(r, k) denote the maximum number of satisfied pairs
from Pr in orientations for which the root can be reached from exactly k leaves.
Due to the definition of the pairs, this is equivalent to saying that there exist
exactly k leaves that are reachable from the root: If we flip all edge orientations,
then a pair (v, w) is satisfied if and only if the pair (w, v) was satisfied before.
Thus, flipping all edge orientations does not change the number of satisfied pairs.
By definition, we have opt(r) = max0≤k≤2r opt(r, k).

The main technical arguments of this proof are encapsulated in the following
claim. For k ≥ 1, define g(k) = 2�log k�, the largest power of two that is at most
k. We claim that for every r ≥ 1 and k ≥ 0, we have

opt(r, k) =

{
4r +2g(k)2

3 − g(k)k if k ≥ 1,
4r −4

3 if k = 0.

Once the claim is proven, we know that opt(r, k) is maximized for k =
1, since opt(r, k) is monotone decreasing in k, starting from k ≥ 1. Thus
opt(r) =opt(r, 1) = (4r − 1)/3. An example of an optimal orientation for which
exactly one leaf has a path to the root is shown in Figure 6(b).

We prove the claim by induction over r. For r = 1, we have T1 = , and by
checking all four orientations for this tree, we can see that the claim holds for
all k. We assume that the claim holds for some r ≥ 1 and all k, and prove that
is also holds for r + 1 and all k.

Before we proceed with the proof, we will make a short break for a technical
observation that is enabled by the induction hypothesis and used later on. We
define (r, k) =opt(r, k)−opt(r, k + 1), which is the change of the number of
satisfied pairs in optimal orientations if we require that one more leaf has a path
to the root. So far, g(k) is defined only for k ≥ 1. We extend its definition to
g(0) = −1 and show that (r, k) = g(k) for all k ≥ 0. For k = 0, we have

(r, 0) = (r, 0)− (r, 1) =
4r − 4

3
− 4r − 1

3
= −1.
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Figure 6. (a) The orientation instance constructed in the proof of Lemma 3.4
is shown for r = 3. The tree T3 is drawn with solid edges; it has 24 − 1 vertices.
The pairs from P3 are grouped into pairs having the same end vertices (though
not necessarily the same source and target vertices); every group is depicted by a
gray bidirectional path that connects the two end vertices. The number of ordered
combinations of two leaves whose pairs cross the root is 2 · 42 ; 42 combinations
with first vertex on the left and second vertex on the right side. In P3 there is
exactly one copy for each of these pairs, and thus the number of pairs in P3 that
cross the root is 2 · 42 . All leaf combinations whose pairs do not cross the root
but instead cross a vertex one level beneath appear twice in P3 . In total, the
corresponding number of pairs is 2 · 42 . The same holds if we go down one level
further, where all leaf combinations appear four times as pairs in P3 . In total,
the number of pairs in P3 is 3 · 2 · 42 . (b) An optimal orientation T ′ of Tr that
satisfies 1 + 4 + 16 = (43 − 1)/3 pairs. The pattern of edge orientations in this
example (for every vertex, one child edge is oriented upward, and the other child
edge is oriented downward) can be generalized to construct optimal orientations
for every orientation instance (Tr , Pr ).
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For k ≥ 1, we consider the equalities

(r, k) = (r, k)− (r, k + 1)

=
4r + 2g(k)2

3
− g(k)k −

(
4r + 2g(k + 1)2

3
− g(k + 1)(k + 1)

)

=
2
3
(g(k)2 − g(k + 1)2)− g(k)k + g(k + 1)(k + 1).

If g(k) = g(k + 1), which happens if k + 1 is not a power of 2, we can derive
(r, k) = g(k). If g(k) �= g(k + 1), we know that g(k + 1) = k + 1 = 2g(k) and can
extend the equations from above to

(r, k) =
2
3
(g(k)2 − 4g(k)2)− g(k)k + 4g(k)2 = g(k)(2g(k)− k)

= g(k)(k + 1− k) = g(k).

We proceed to prove the claim for (Tr+1 , Pr+1) and first consider the case
k = 0. The orientations that are possible in this case do not satisfy any of the
pairs that cross the root (because there is no path from a leaf to the root).
As a result, it suffices to optimally orient the two orientation instances that
correspond to the two subtrees beneath the root; they equal Tr , but with each
pair from (the multiset) Pr occurring twice. Thus, using the induction hypothesis
and the fact that (r, k) is maximized for k = 1, we can derive (r + 1, 0) = 2 · 2 ·
max0≤k≤2r (r, k) = 4 · (4r − 1)/3 = (4r+1 − 4)/3 .

Next, we consider k ≥ 1 and optimal orientations among the orientations for
which exactly k leaves have a path to the root. We distinguish two cases: In the
first case, both edges incident to the root are directed toward the root, and in
the second case, one edge incident to the root is oriented away from the root and
the other toward the root.

We start with the first case and consider orientations of the form . Since
no pair that crosses the root is satisfied and a total of k leaves have a path to the
root, we obtain the equation (r + 1, k) = max0≤l≤k 2 · (r, l) + 2 · (r, k − l), where
l and k − l are the respective numbers of leaves with paths to the root from the
left and right subtrees. Which l maximizes the expression 2 · (r, l) + 2 · (r, k − l)?
We consider the difference between the expression for two consecutive values
of l and derive the following equalities using the induction hypothesis and the
technical observation from above:

2 · (r, l) + 2 · (r, k − l)− (2 · (r, l + 1) + 2 · (r, k − l − 1))
= 2 · (r, l)− 2 · (r, k − l − 1) = 2(g(l)− g(k − l − 1)).

The expression 2(g(l)− g(k − l − 1)) is at most 0 for l = 0 and at least 0 for
l = k − 1. Moreover, it is monotonically increasing for constant k and increasing
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l. Thus the smallest value of l for which 2(g(l)− g(k − l − 1)) is at least 0 gives
us an l that maximizes 2 · (r, l) + 2 · (r, k − l). If k is a power of 2, this happens
for l = k/2 = g(l) and implies

(r + 1, k) = 2 · (r, l) + 2 · (r, k − l) = 4 ·
(

r,
k

2

)
=

4r+1 + 2g(k)2

3
− g(k)k.

If k is not a power of 2, which means that k = 2t + d for some t and d with
0 < d < 2t , it happens for l = 2t−1 whenever d < 2t−1 , and d whenever d ≥ 2t−1 .
Both times we have g(l) = g(k − l − 1) = g(k)/2. This implies

(r + 1, k) = 2 · (r, l) + 2 · (r, k − l)
= 2 · (r, l)− 2 · (r, k − l − 1) + 2 · (r, k − l − 1)

= 2
(

4r + 2g(l)2

3
− g(l)l

)
− 2g(k − l − 1)

+ 2
(

4r + 2g(k − l − 1)2

3
− g(k − l − 1)(k − l − 1)

)

=
4r+1

3
+

8
3

g(k)2

4
− g(k)(l + k − l − 1 + 1) =

4r+1 + 2g(k)2

3
− g(k)k.

Now we consider the second case with orientations like . In this case, we
can write the optimum as (r + 1, k) = max0≤l≤2r 2 · (r, l) + 2 · (r, k) + lk, where
l denotes that number of leaves that are reachable from the root in the left
subtree. Similarly to the above case, we write down the difference between two
subsequent expressions, this time deriving the equation

2 · (r, l) + 2 · (r, k) + lk − (2 · (r, l + 1) + 2 · (r, k) + (l + 1)k)
= 2 · (r, l)− k = 2g(l)− k.

The expression 2g(l)− k increases with increasing values of l and has its first
positive value at l = g(k). This can be used to derive

(r + 1, k) = 2 · (r, l) + 2 · (r, k) + lk

= 2
(

2r + 2g(k)2

3
− g(k)k

)
+ 2

(
2r + 2g(k)2

3
− g(k)2

)

=
4r+1 + 2g(k)2

3
− g(k)k.

Taking all steps of the induction proof together proves the claim.
Note that the proved statement also holds if the orientation instance pairs are

kept in sets instead of multisets. In this case, we cannot have multiple copies of
the same pair, but the proof can be fixed by replacing every leaf with a cycle
whose size equals the number of pairs that use the leaf as an end vertex. Then the



230 Internet Mathematics

pairs are redirected to have unique end vertices. Since for optimal orientations
we can restrict to the case that cycles are oriented in a consistent direction, the
proof generalizes to this case.
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[Dorn et al. 11] B. Dorn, F. Hüffner, D. Krüger, R. Niedermeier, and J. Uhlmann. “Ex-
ploiting Bounded Signal Flow for Graph Orientation Based on Cause–Effect Pairs.”
In Proceedings of the 1st International ICST Conference on Theory and Practice
of Algorithms in (Computer) Systems (TAPAS 2011), Lecture Notes in Computer
Science 6595, pp. 104–115. New York: Springer, 2011.

[Elberfeld et al. 11] M. Elberfeld, D. Segev, C. R. Davidson, D. Silverbush, and R. Sha-
ran. “Approximation Algorithms for Orienting Mixed Graphs.” Proceedings of the
22nd Annual Symposium on Combinatorial Pattern Matching (CPM 2011), Lecture
Notes in Computer Science 6661, pp. 416–428. New York: Springer, 2011.

[Fields 05] S. Fields. “High-Throughput Two-Hybrid Analysis. The Promise and the
Peril.” FEBS Journal 272:21 (2005), 5391–5399.

[Frederickson and Johnson 80] G. N. Frederickson and D. B. Johnson. “Generating and
Searching Sets Induced by Networks.” In Proceedings 7th International Colloquium
on Automata, Languages and Programming (ICALP 1980), Lecture Notes in Com-
puter Science 85, pp. 221–233. New York: Springer, 1980.

[Gamzu and Segev 10] I. Gamzu and D. Segev. “A Sublogarithmic Approximation for
Highway and Tollbooth Pricing.” In Proceedings of the 37th International Collo-
quium on Automata, Languages and Programming (ICALP 2010), Lecture Notes in
Computer Science 6198, pp. 582–593. New York: Springer, 2010.

[Gamzu et al. 10] I. Gamzu, D. Segev, and R. Sharan. “Improved Orientations of Phys-
ical Networks.” In Proceedings of the 10th International Workshop on Algorithms in
Bioinformatics (WABI 2010), Lecture Notes in Computer Science 6293, pp. 215–225.
New York: Springer, 2010.



Elberfeld et al.: On the Approximability of Reachability-Preserving Network Orientations 231
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