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Approximating the Number of
Network Motifs
Mira Gonen and Yuval Shavitt

Abstract. The World Wide Web, the Internet, coupled biological and chemical systems,
neural networks, and social interacting species are only a few examples of systems com-
prising a large number of highly interconnected dynamical units. These networks con-
tain characteristic patterns, network motifs, that occur far more often than in random-
ized networks with the same degree sequence. Several algorithms have been suggested
for counting or detecting the number of occurrences of network motifs as trees and
bounded treewidth subgraphs of size O(log n), at most 7 for some motifs. In addition,
local motif counting, counting the number of motifs in which a node participates, was
recently suggested as a method of classifying nodes in the network. The premise is that
the distribution of motifs in which a node participates is an indication of its function in
the network. Therefore, local counting of network motifs provides a major challenge.
However, no such practical algorithm exists other than local counting of triangles. We
present several algorithms with time complexity O(((3e)k · n · |E| · log 1

δ
)/ε2) that ap-

proximate for every vertex the number of occurrences of the motif in which the vertex
participates, for k-length cycles and k-length cycles with a chord, where k = O(log n),
and algorithms with time complexity O((n · |E| · log 1

δ
)/ε2 + |E|2 · log n + |E| · n log n)

that approximate for every vertex the number of noninduced occurrences of the motif
in which the vertex participates for all motifs of size four. In addition, we show algo-
rithms that approximate the total number of occurrences of these network motifs when
no efficient algorithm exists. Some of our algorithms use the “color-coding” technique.

1. Introduction
1.1. Background and Motivation

The World Wide Web, the Internet, coupled biological and chemical systems,

neural networks, and social interacting species are only a few examples of sys-
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tems comprising a large number of highly interconnected dynamical units. A first

approach to capturing the global properties of such systems is to model them

as graphs whose nodes represent the dynamical units and whose links stand for

the interactions between them. Such networks have been extensively studied by

exploring their global topological features such as power-law degree distribution,

the existence of a dense core, and small diameter [Faloutsos et al. 99, Albert

and Barabási 00, Chen et al. 02, Lakhina et al. 03, Willinger et al. 02, Winick

and Jamin 02, Bu and Towsley 02, Bar et al. 05, Bar et al. 04, Feldman and

Shavitt 08, Shavitt and Shir 05, Li and Chen 03, Bianconi and Barabási 01, Bar-

ford et al. 01, Reittu and Norros 04, Tauro et al. 01, Subramanian et al. 02, Tang-

munarunkit et al. 02, Govindan and Tangmunarunki 07, Brunet and Sokolov 02,

Sagie and Wool 04, Siganos et al. 06]. However, two networks that have similar

global features, such as similar degree sequences, can have significant differences

in structure, which can be captured by examining the local structures they in-

clude: for instance, one of them may include a specific subgraph many more

times than the other. Therefore, it has been suggested that such small sub-

graphs, termed network motifs, may be elementary building blocks that carry

out key functions in the network. The authors of [Milo et al. 02] have found mo-

tifs in networks from biochemistry, neurobiology, ecology, and the World Wide

Web. Moreover, [Hales and Arteconi 08] presents results from a motif analy-

sis of networks produced by peer-to-peer protocols. The authors show that the

motif profiles of such networks closely match protein-structure networks. Thus

efficiently detecting and counting the number of network motifs is a major chal-

lenge. As a result, novel computational tools have been developed for counting

subgraphs in a network and discovering network motifs.

There are quite a few works that deal with finding subgraphs of a certain

kind and counting their number. One of the most elegant techniques devised

is color coding, introduced in [Alon et al. 95] and further applied in [Alon et

al. 97, Arvind and Raman 02, Alon and Gutner 07, Alon et al. 08, Dost et al. 07,

Shlomi et al. 06]. Color coding is an innovative combinatorial approach that

was introduced to detect simple paths, trees, and bounded treewidth subgraphs

in unlabeled graphs. Color coding is based on assigning random colors to the

vertices of an input graph. Then, only the subgraphs each of whose vertices

has a unique color (termed “colorful” subgraphs) are efficiently counted using

dynamic programming, in time polynomial with n, the size of the input graph.

Alon et al. showed that by repeating this procedure sufficiently many times

(polynomial with n, provided that the subgraph we are looking for is of size

O(log n)) it is guaranteed that a specific occurrence of the query subgraph will

be detected with high probability. The color-coding technique is a building block

in some of the algorithms presented in this paper. [Arvind and Raman 02] uses
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color coding and a technique from [Karp and Luby 83] to design a randomized

algorithm for approximately counting the number of subgraphs in a given graph

G that are isomorphic to a bounded treewidth graph H . The running time of

the algorithm is kO(k) · nb+O(1), where n and k are the numbers of vertices in G

and H , respectively, and b is the treewidth of H . [Alon and Gutner 07] uses color

coding and balanced families of perfect hash functions to obtain a deterministic

algorithm for counting simple paths or cycles of size k in time 2O(k log log k)nO(1).

These results are improved in [Alon et al. 08] in terms of the dependence on k.

[Przulj et al. 05] offers a description of how to count all induced subgraphs

with up to five vertices in a PPI (protein–protein interaction) network.1 [Hor-

mozdiari et al. 07] develops faster techniques for counting induced subgraphs of

size up to 6, and [Grochow and Kellis 07] develops such techniques for size up

to 7. The running times of these techniques all increase exponentially with the

size of the motif. [Kashtan et al. 04] shows an algorithm for detecting induced

network motifs that sample the network. This algorithm detects induced occur-

rences of small motifs (motifs with k ≤ 7 vertices). [Wernicke 06] claims that

Kashtan et al.’s algorithm suffers from a sampling bias and scales poorly with

increasing subgraph size. Thus, [Wernicke 06] presents an improved algorithm

for network motif detection that overcomes these drawbacks. [Scott et al. 05]

focuses on the subgraph detection problem. [Dost et al. 07] shows how to solve

the subgraph detection problem for subgraphs of size O(log n), provided that

the query subgraph is a simple path, a tree, or a bounded treewidth subgraph.

[Duke et al. 95] gives an algorithm that provides the number of induced copies

of certain subgraphs, with a bounded error. This algorithm has running time of

order O(n1/ log logn ·M(n)), where M(n) is the time needed to square an n× n

matrix with (0, 1)-entries over the integers. [Itzhack et al. 07] presents an al-

gorithm based on network decomposition via node removal for counting k-size

network motifs in large networks, where k is 3 or 4. This algorithm detects

all motifs containing a given node by measuring all its incoming and outgoing

neighbors of degree k − 1, and then removing this node. The algorithm has a

constant memory cost, a CPU cost that is linear with the number of counted

motifs, and is faster than previous full-enumeration algorithms.

[Bianconi and Capocci 03] gives an analytic expression for the number of cycles

of a certain size as a function of the system size in the Barabási–Albert network.

[Bianconi and Marsili 05] evaluates the average number of cycles in random

scale-free networks. The authors show that the most frequent size of a cycle in

a scale-free network is of order the network’s size. Moreover, they indicate that

1Note that G0 is an induced subgraph of a graph G if and only if for each pair of vertices
v0 and w0 in G0 and their corresponding vertices v and w in G there is an edge between v0
and w0 in G0 if and only if there is an edge between v and w in G.
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small-length cycles are more frequent when the second moment of the degree

distribution diverges. [Marinari et al. 07] analyzes the problem of discovering

long cycles in random graphs. The authors propose and test two algorithms for

this task. The first is based on a message-passing procedure, and the second

follows a Monte Carlo Markov chain strategy. [Bianconi and Marsili 06] counts

the average number of cliques in random scale-free networks when the network is

large. The authors show that in contrast to Erdős–Renyi graphs, cliques appear

also when the average degree is finite. In addition, the authors prove that in

random scale-free networks the clique number diverges with the system size.

[Gonen et al. 10] introduces a sublinear algorithm for approximating the num-

ber of constant-size stars. The algorithm is based on querying parts of the graph.

The authors show that their result is tight up to polylogarithmic factors in n

and the dependence in ε (the counting error) by giving a matching lower bound.

They also prove negative results for sublinear counting of length-3 paths and

triangles.

A new systematic measure of a network’s local topology was recently suggested

in [Przulj 07]. The authors term this measure “graphlet distribution” of a vertex.

Namely, they count for each vertex the number of all motifs of size at most five in

which the vertex participates. [Gordon et al. 10] discusses local motif counting as

a method of classifying nodes in the network. The premise is that the distribution

of motifs in which a node participates in an indication of its function in the

network; thus nodes can be divided into functional classes. [Van Kerrebroeck and

Marinari 08] suggests using the number of cycles in which a vertex participates

as a method to quantify the role of vertices in the network. [Becchetti et al. 08]

shows that the distribution of the local number of triangles and the related

clustering coefficient can be used to detect the presence of spamming activity

in large-scale web graphs, as well as to provide useful features for the analysis

of biochemical networks or the assessment of content quality in social networks.

However, no practical algorithm (namely with a running time below O(nk),

where k is the graphlet size) for local counting of other motifs exists. Therefore,

efficient local motif counting is a major challenge.

1.2. Our Contributions

We present several algorithms with time complexity

O

(
(3e)k · n · |E| · log 1

δ

ε2

)

that for the first time, approximate for every vertex the number of noninduced

occurrences of the motif in which the vertex participates, for k-length cycles and
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k-length cycles with a chord, where k = O(log n). We observe that while [Alon

et al. 08] counts the total number of paths of length O(log n) in a graph, that

technique is based on counting for each vertex the number of paths that start at

the vertex and then summing for the entire network. Thus, their algorithm can

be adapted for counting motifs adjacent to a node. For details see [Gonen and

Shavitt 09]. We also provide algorithms with time complexity

O

(
n · |E| · log 1

δ

ε2
+ |E|2 · logn+ |E| · n logn

)

that for the first time, approximate for every vertex the number of noninduced

occurrences of the motif in which the vertex participates for all motifs of size of

at most 4. In addition, we provide

O

(
(2e)k · n · |E| · log 1

δ

ε2

)

algorithms that for the first time, approximate the total number of noninduced

occurrences of O(log n)-length cycles with a chord. Moreover, we improve the

time complexity of approximating the total number of noninduced occurrences

of “tailed” triangles and 4-cliques over that of existing algorithms. Some of our

algorithms use the “color-coding” technique of [Alon et al. 95] and techniques

for using them [Alon et al. 08].

This paper is organized as follows: In Section 2 we give notation and defini-

tions. In Section 3 we introduce motif-counting approximation algorithms for

O(log n)-size motifs. In Section 4 we present motif-counting algorithms for all

motifs of size 4. We summarize our conclusions in Section 5.

2. Preliminaries

Let G = (V,E) be an undirected graph with n vertices. We assume that G

is represented by an adjacency list. For a vertex v let N(v) denote the set of

neighbors of v and let deg(v) denote the degree of v. A motif H is said to be

isomorphic to a subgraph H ′ in G if there is a bijection between the vertices of

H and the vertices of H ′ such that for every edge between two vertices v and

u of H there is an edge between the vertices v′ and u′ in H ′ that corresponds

to v and u respectively. Such a subgraph H ′ is considered to be a noninduced

occurrence of H in G. For a vertex v we say that v is adjacent to H if v is a

vertex of H . Denote by [k] the set {1, . . . , k}. Denote by col(v) the color of

vertex v.
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Let H be a motif with k vertices, and let G = (V,E) be a graph such that

|V | = n. Assign a color to each vertex of V from the color set [k]. The colors

are assigned to each vertex independently and uniformly at random. A copy of

H in G is said to be colorful if each vertex on it is colored by a distinct color.

Consider a problem f and let #f denote the number of distinct solutions of f .

Definition 2.1. ((ε, δ)-approximation.) An algorithm A for a counting problem f is

an (ε, δ)-approximation if it takes an input instance and two real values ε, δ and

produces an output y such that

Pr[(1− ε) ·#f ≤ y ≤ (1 + ε) ·#f ] ≥ 1− 2δ.

3. Algorithms for Counting Motifs of size O(logn)

Given a graph G = (V,E) and a vertex v, we describe how to count for every

vertex v the approximate number of noninduced occurrences of k-length cycles

and k-length cycles with a chord that are adjacent to v, for k = O(log n). In

addition, for each such motif H we present an algorithm for approximating the

number of noninduced subgraphs of G that are isomorphic to H when no efficient

algorithm exists. Most of our approximation algorithms apply the color-coding

technique of [Alon et al. 95]. Note that we allow overlaps between the motifs

we count, i.e., two occurrences of H , namely H ′ and H ′′, may share vertices; in

fact, the vertex sets of H ′ and H ′′ may be identical. We consider H ′ and H ′′

distinct occurrences of H if the edge sets of H ′ and H ′′ are not identical.

3.1. Counting Cycles

In this section assume that H is a simple cycle of length k:

We present an algorithm to count for every vertex v the approximate number

of subgraphs of G that are isomorphic to H and adjacent to v:

� v

Let t = log(1/δ), and let s = 4kk/ε2k!. Assume that we have a k-coloring of

G, i.e., each vertex is randomly and independently colored with a color in [k].

For each pair of vertices v, x and each color subset S of the color set [k], let

Ci(v, x, S) be the number of colorful paths between v and x using colors in S at

the ith coloring, and let CYi(v, S) be the number of colorful cycles adjacent to

v using colors in S at the ith coloring.
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Algorithm 1. (An (ε, δ)-approximation algorithm for counting simple cycles of length k adjacent
to a vertex v)

1. For j = 1 to t

(a) For i = 1 to s

i. Color each vertex of G independently and uniformly at
random with one of the k colors.

ii. For all x ∈ V , Ci(v, x, [k]) = count-path(v, x, k). [See
Algorithm 2.]

iii. Let CYi(v, [k]) =
1
2

∑
u∈N(v) Ci(v, u, [k]).

iv. Let Xv
i = CYi(v, [k]).

(b) Let Y v
j =

∑s
i=1 Xv

i

s .

2. Let Zv be the median of Y v
1 , . . . , Y

v
t .

3. Return Zv · kk/k!.

Consider Algorithm 1, which takes as input a graph G = (V,E), a vertex

v ∈ V , the requested cycle length k, an approximation factor ε, and an error

probability δ. The algorithm uses a procedure to compute the number of colorful

paths between v and any other vertex.

Our main theorem here is the following.

Theorem 3.1. Let G = (V,E) be an undirected graph, and let H be a simple cycle

of length k. Then for every vertex v, Algorithm 1 is an (ε, δ)-approximation for

the number of copies of H in G that are adjacent to v, with time complexity

O(((2e)k · n · |E| log(1/δ))/ε2).

For proving Theorem 3.1 we first prove the following lemma.

Lemma 3.2. For all v ∈ V , CYi(v, [k]) can be computed in O(2k · n · |E|) time.

Proof. A vertex v is adjacent to a colorful cycle of length k if and only if it is an

endpoint of a colorful path of length k − 1 that has one of v’s neighbors as an

endpoint:

� v� u
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Algorithm 2. (Procedure count-path(v, x, k) for counting simple paths of length k − 1
between v and x)

1. For all S ⊆ [k] such that S = {�}, and for all u ∈ V ,

Ci(u, x, S) =

{
1 if u = x and coli(u) = �;

0 otherwise.

2. For q = 2 to k

(a) For all S ⊆ [k] such that |S| = q,

Ci(v, x, S) =
∑

u∈N(v)

Ci(u, x, S \ {coli(v)}).

Therefore, we first compute for every edge (u, v) ∈ E the number of colorful

paths of length k− 1 between u and v. Since u is a neighbor of v, we get a cycle

of length k. The running time for computing CY (v, [k]) for all v is then

O

⎛
⎝∑

u∈V

⎛
⎝ ∑

v∈N(u)

deg(v)

⎞
⎠ 2k

⎞
⎠ = O(2k · n · |E|).

Proof of Theorem 3.1. The correctness of the approximation returned by Algorithm 1

is proved using the same techniques as in [Alon et al. 08, Section 2]. Lemma 3.2

implies the correctness of the computation of CYi(v, [k]). The time complexity

of Algorithm 1 is O(((2e)k · n · |E| log(1/δ))/ε2) by Lemma 3.2 and by showing

that the number of colorings used by the algorithm is O((ek log(1/δ))/ε2). This

completes the proof.

3.2. Counting k-Length Cycles with a Chord

In this subsection we assume that H is a simple cycle of length k with a chord:

k − �

�

We present an algorithm to compute the approximate number of subgraphs of

G that are isomorphic to H , and for every vertex v, the number of subgraphs of

G that are isomorphic to H and adjacent to v.
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Algorithm 3. (An (ε, δ)-approximation algorithm for counting simple cycles of length k with a
chord)

1. For j = 1 to t

(a) For i = 1 to s

i. Color each vertex of G independently and uniformly at
random with one of the k colors.

ii. For all (u, v) ∈ E, S ⊆ [k] compute Ci(v, u, S)

iii. Let Xi =
∑

(u,v)∈E

∑k−2
�=2

∑
(S1,S2)∈A�

uv
Ci(u, v, S1)

·Ci(u, v, S2).

(b) Let Yj =
∑s

i=1 Xi

s .

2. Let Z be the median of Y1, . . . , Yt.

3. Return Z · kk/k!.

We first approximate the number of colorful subgraphs of G that are isomor-

phic to H , where H is a k-length cycle with a chord. Let t = log(1/δ), let

s = 4·kk

ε2k! , and let count-path be the procedure defined in Algorithm 2. As-

sume that we have a k-coloring of G, i.e., each vertex is randomly and inde-

pendently colored with a color in [k]. Let Ci(v, u, S) be the number of col-

orful paths between v and u in the ith coloring, using the colors in S. Let

� be the distance between the endpoints of the chord u, v on the cycle, and let

A�
uv = {(S1, S2)|S1, S2 ⊆ [k], S1\{col(v), col(u)}∩S2\{col(v), col(u)} = φ, |S1| =

�+ 1, |S2| = k − �+ 1}.
Consider Algorithm 3, which takes as input a graph G = (V,E), an approxi-

mation factor ε, and an error probability δ.

Our main theorem here is the following.

Theorem 3.3. Let G = (V,E) be an undirected graph, and let H be a simple cycle of

length k with a chord. Then Algorithm 3 is an (ε, δ)-approximation for the num-

ber of copies of H in G, with time complexity O((|E| · n · (2e)k · log(1/δ))/ε2).

For proving Theorem 3.3 we first prove the following lemma.

Lemma 3.4. One can compute Xi with time complexity O(|E| · n · 2k).
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Proof. For computing Xi we compute for each edge (u, v) ∈ E the number of

colorful paths of length � between u and v using a color set S1 in the ith k-

coloring Ci(u, v, S1) and the number of colorful paths of length k − � between

u and v using a color set S2 in the ith k-coloring Ci(u, v, S2) such that col(v)

and col(u) are the only colors in the intersection of S1 and S2. The number of

colorful subgraphs of G that are isomorphic to H that are counted in the ith

k-coloring of G is then

∑
(u,v)∈E

k−2∑
�=2

∑
(S1,S2)∈A�

uv

Ci(u, v, S1) · Ci(u, v, S2),

where A�
uv = {(S1, S2)|S1, S2 ⊆ [k], S1 \ {col(v), col(u)} ∩ S2 \ {col(v), col(u)} =

φ, |S1| = �+ 1, |S2| = k − �+ 1}.
As for the time complexity of computing Xi, by the proof of Lemma 3.2, the

time complexity of computing Ci(u, v, S) for every pair of vertices u, v and any

color set S is O(|E| · n · 2k). In addition, we have to compute |A�
uv| for every

(u, v) ∈ E and every 2 ≤ � ≤ k − 2. The running time for computing this

operation is then O(|E|∑k−2
�=2

(
k

�−1

)
) = O(|E| · 2k). Thus the total running time

of computing Xi is O(|E| · n · 2k).

Proof of Theorem 3.3. Our proof of the correctness of the approximation returned

by Algorithm 3 follows the technique of [Alon et al. 08]. Lemma 3.4 implies the

correctness of the computation of Xi. The time complexity of Algorithm 3 is

O((|E| · n · (2e)k log(1/δ))/ε2) by Lemma 3.4 and by showing that the number

of colorings used by the algorithm is O((ek log(1/δ))/ε2). This completes the

proof.

We now approximate for every v ∈ V the number of colorful subgraphs of G

that are isomorphic to H and adjacent to v. Let

t = log(1/δ) and s =
4 · kk
ε2k!

.

Assume that we have a k-coloring of G, i.e., each vertex is randomly and inde-

pendently colored with a color in [k]. Let Pi(v, u, w, S) be the number of colorful

paths from u to w that are adjacent to v in the ith coloring, using the colors

in S. Recall that Ci(v, u, S) is the number of colorful paths from v to u in the

ith coloring, using the colors in S. Let Az,b
V ′ (S) = {(S1, S2)|S1, S2 ⊆ [k], |S1| =

z+1, |S2| = b−z+1, S1∪S2 = S, S1\{col(u)|u ∈ V ′}∩S2\{col(u)|u ∈ V ′} = φ}.
Consider Algorithm 4, which takes as input a graph G = (V,E), a vertex v, an

approximation factor ε, and an error probability δ.
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Algorithm 4. (An (ε, δ)-approximation algorithm for counting simple cycles of length k with a
chord that are adjacent to v)

1. For j = 1 to t

(a) For i = 1 to s

i. Color each vertex of G independently and uniformly at
random with one of the k colors.

ii. Xv
i = 0.

iii. For every edge (u,w) ∈ E and S ⊆ [k] such that |S| = �+ 1,

Pi(v, u, w, S)=
∑�−1

z=1

∑
(S1,S2)∈Az,�

v (S)Ci(v, w, S1)·Ci(v, u, S2).

iv. Let

Xv
i = Xv

i +
∑

(u,v)∈E

k−2∑
�=2

∑
(S3,S4)∈A�,k

uw([k])

Pi(v, u, w, S3) · Ci(u,w, S4)

+
∑

(u,v)∈E

k−2∑
�=2

∑
(S3,S4)∈Ak−�,k

uw ([k])

Pi(v, u, w, S3) · Ci(u,w, S4)

+
∑

u∈N(v)

k/2∑
�=2

∑
(S3,S4)∈A�,k

uv ([k])

Ci(v, u, S3) · Ci(v, u, S4).

(b) Let Y v
j =

∑s
i=1 Xv

i

s .

2. Let Zv be the median of Y v
1 , . . . , Y

v
t .

3. Return Zv · kk/k!.

Our main theorem here is the following.

Theorem 3.5. Let G = (V,E) be an undirected graph, and let H be a simple cycle

of length k with a chord. Then for every v ∈ V , Algorithm 4 is an (ε, δ)-

approximation for the number of copies of H in G that are adjacent to v, with

time complexity O((|E| · n · (3e)k log(1/δ))/ε2).

For proving Theorem 3.5 we first prove the following lemma.

Lemma 3.6. One can compute Xv
i with time complexity O(|E| · n · ek).
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Proof. Let (u,w) be the chord. The number of copies of H that are adjacent to v

depends on the position of v. There are two cases: one for which v is on a path

between u and w and is not an endpoint of the chord:

� v
�
wu
,

and one for which v is an endpoint of the chord:

� vu

In the first case, we first count all the colorful paths of length � between u and

w of which v is part for all 2 ≤ � ≤ k−2. We do that by counting all the colorful

paths of length z between v and w and multiplying the result by the number of

colorful paths of length �− z between v and u, where 1 ≤ z ≤ �− 1:

z

�
−

z
v�

wu

k − �

(We assume without loss of generality that � �= k − �.)

Thus for all S ⊆ [k] such that |S| = �+ 1, we have

Pi(v, u, w, S) =

�−1∑
z=1

∑
(S1,S2)∈Az,�

v (S)

Ci(v, w, S1) · Ci(v, u, S2).

Therefore the total number of copies of H that are adjacent to v in the first case

is the number of �-length colorful paths between u and w that are adjacent to v,

multiplied by the number of (k− �)-length colorful paths between u and w with

disjoint sets of colors (except for the colors of u and w):∑
(S3,S4)∈A�,k

uw([k])

Pi(v, u, w, S3) · Ci(u,w, S4).

This should be computed for all 2 ≤ � ≤ k − 2 and all (u,w) ∈ E. The second

case is computed as follows. We count the number of �-length colorful paths

between u and v and multiply the result by the number of (k− �)-length colorful

paths between u and v, using disjoint sets of colors besides the colors of u and

v. This is done for all 2 ≤ � ≤ k/2. To compute the running time, according

to the proof of Lemma 3.2, the time complexity for computing Ci(v, w, S) for
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every color set S and every pair of vertices v, w is O(2k · n · |E|). The running

time of computing Pi(v, u, w, S) for fixed vertices v, u, w, and every color set S

(assuming that Ci(v, w, S) is already computed) is

O

(
k∑

�=1

�−1∑
z=1

(
k

�

)
·
(
�

z

))
= O

(
k∑

�=1

(
k

�

)
· 2�
)

= O(3k).

Therefore the time complexity of computing the first case is

O

⎛
⎝∑

v∈V

∑
(u,w)∈E

3k

⎞
⎠+O(2k · n · |E|) = O(3k · n · |E|).

The time complexity of the second case (besides computing Ci(v, w, S)) is

O

⎛
⎝∑

v∈V

∑
w∈N(v)

k∑
�=1

(
k

�

)⎞⎠ = O(|E| · 2k).

Thus the total time complexity is O(|E| · n · 3k).
Proof of Theorem 3.5. The correctness of the approximation returned by Algorithm 4

is proved in the same manner as in the proof of Theorem 3.3. Lemma 3.6 implies

the correctness of the computation of Xv
i . The time complexity of Algorithm 4

is O((|E| · n · (3e)k log(1/δ))/ε2) by Lemma 3.6 and by showing that the number

of colorings used by the algorithm is O((ek log(1/δ))/ε2). This completes the

proof.

4. Algorithms for Counting All Size-Four Motifs

Given a graph G = (V,E) and a vertex v, we describe how to count for every

vertex v the approximate number of noninduced occurrences of each possible

motif H appearing in [Gordon et al. 10] that are adjacent to v. In addition,

for each motif H that appears in [Gordon et al. 10] we present an algorithm for

approximating the number of noninduced subgraphs of G that are isomorphic to

H when no efficient algorithm exists. Note that we allow overlaps between the

motifs, as in the previous section.

4.1. Counting “Tailed Triangles”

In this section assume that H is a triangle with a “tail” of length one:
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We present an algorithm that approximates the number of subgraphs of G

that are isomorphic to H and for every vertex v, approximates the number of

subgraphs of G that are isomorphic to H and adjacent to v.

We first approximate the latter. There are three cases: one for which v is an

endpoint of the path and adjacent to the triangle:

v�

one for which v is not an endpoint of the path and adjacent to the triangle:

v �

and one for which v is an endpoint of the path but not adjacent to the triangle:

v�

Let TRG(v) be the approximation of the total number of triangles in G that are

adjacent to v, according to Algorithm 1. Let Gv = (Vv, Ev), where Vv = V \ {v}
and Ev is the induced set of edges obtained by removing all edges adjacent to v.

Consider Algorithm 5, which takes as input a graph G = (V,E), a vertex v, an

approximation factor ε, and an error probability δ. Let TLG(v) be the number

of “tailed triangles” in G returned by the algorithm.

Theorem 4.1. Let G = (V,E) be an undirected graph, and let H be a triangle with

a “tail” of length one. Then for every vertex v, the number of copies of G that

are isomorphic to H and adjacent to v can be (ε, δ)-approximated, with time

complexity O((n · |E| log(1/δ))/ε2) .

Proof. In the first case

v�

we get that the number of subgraphs of G that are isomorphic to H and adjacent

to v is

TRG(v) · (|N(v)| − 2).

In the second case

v �
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Algorithm 5. (An (ε, δ)-approximation algorithm for counting simple “tailed triangles” adjacent
to v)

1. TLG(v) = 0.

2. TRG(v) = result of Algorithm 1 (G,v, k = 3, ε, δ).

3. TLG(v) = TLG(v) + TRG(v) · (|N(v)| − 2).

4. For all u ∈ N(v):

(a) Compute N(v) ∩N(u):

i. Go over all the vertices in the adjacency list of v and the
adjacency list of u, and add each vertex to a list. (Thus a
vertex can appear several times in the list.)

ii. For each vertex in the list count the number of times it
appears in the list. If it appears twice, then add the vertex
to a list �(u, v).

(b) For all w ∈ �(u, v) TLG(v) = TLG(v) + degw − 2 + deg u− 2.

5. Compute Gv by going over the whole adjacency list and removing v
any time is appears in the list.

6. For all u ∈ N(v), TRGv(u)= result of Algorithm 1 (Gv,u, k = 3, ε, δ).

7. TLG(v) = TLG(v) +
∑

u∈N(v) TRGv(u).

8. Return TLG(v).

we get that the number of subgraphs of G that are isomorphic to H and adjacent

to v is ∑
u∈N(v)

∑
w∈N(v)∩N(u)

(degw − 2 + deg u− 2).

In the third case

v�

we get that the number of subgraphs of G that are isomorphic to H and adjacent

to v is ∑
u∈N(v)

TRGv(u).



364 Internet Mathematics

Thus the total number of subgraphs of G that are isomorphic to H and adjacent

to v is

TRG(v)·(|N(v)|−2)+
∑

u∈N(v)

∑
w∈N(v)∩N(u)

(degw − 2 + deg u− 2)+
∑

u∈N(v)

TRGv(u).

Let r̂v be the approximated value for the number of subgraphs of G that

are isomorphic to H and adjacent to v in the first and third cases. Let rv be

the exact number. In a similar manner to that of Theorem 3.1, r̂v is an (ε, δ)-

approximation to the number of subgraphs of G that are isomorphic to H and

adjacent to v in the first and third cases. For the second case, Algorithm 5 gives

an exact solution. Let av be the number of subgraphs of G that are isomorphic to

H and adjacent to v contributed by this case. We need to show that r̂v+av is an

(ε, δ)-approximation for the total number of subgraphs of G that are isomorphic

to H and are adjacent to v:

Pr[r̂v + av ∈ [(1− ε)(rv + av), (1 + ε)(rv + av)]]

≥ Pr[r̂v + av ∈ [(1− ε)rv + av, (1 + ε)rv + av]]

≥ 1− 2δ.

This completes the proof of the correctness of the algorithm.

Assuming that the degree of every vertex is known, the time complexity of

finding the total number of subgraphs ofG that are isomorphic toH and adjacent

to v is the time of computing the number of triangles that are adjacent to v,

for every v, plus the time of computing Gv for every vertex v, plus the time of

computing N(v) ∩N(u) for every u ∈ N(v), for every vertex v, plus the time of

computing the number of triangles that are adjacent to u for every vertex u ∈
N(v), for every vertex v. By Theorem 3.1, the time complexity of computing the

number of triangles that are adjacent to v for every v is O((n · |E| log(1/δ))/ε2).
The time complexity of computing Gv for every vertex v is O(n · |E|). The time

complexity for computing N(v) ∩N(u) for every u ∈ N(v), for every v ∈ V , is

O

⎛
⎝∑

v∈V

∑
u∈N(v)

deg u+ deg v

⎞
⎠ = O

⎛
⎝∑

v∈V

∑
u∈N(v)

n

⎞
⎠

= O

(
n ·
∑
v∈V

deg v

)
= O(|E| · n).

Thus the total time complexity is

O

(
n · |E| log(1/δ)

ε2

)
+O(n · |E|) = O

(
n · |E| log(1/δ)

ε2

)
.
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We now count the number of subgraphs of G that are isomorphic to H , where

H is a tailed triangle. According to the above, the number of subgraphs of G

that are isomorphic to H is

∑
v∈V

TRG(v) · (|N(v)| − 2).

Assuming that for every v, deg v is known, by Theorem 4.1 the time complexity

is O((n · |E| log(1/δ))/ε2). Therefore we immediately get the following theorem.

Theorem 4.2. Let G = (V,E) be an undirected graph, and let H be a triangle with

a “tail” of length 1. Then the number of copies of G that are isomorphic to H

can be (ε, δ)-approximated, with time complexity O((n · |E| log(1/δ))/ε2) .

4.2. Counting 4-Cliques

In this section we assume that H is a clique of size four:

We present an algorithm that exactly computes the number of subgraphs of G

that are isomorphic to H and for every vertex v, the number of subgraphs of G

that are isomorphic to H and adjacent to v.

We first compute, for every vertex v, the number of subgraphs of G that are

isomorphic to H and adjacent to v:

v�

Let Cl(v) be the number of four-cliques in the graph that are adjacent to v.

Algorithm 6 takes as input a graph G = (V,E) and a vertex v.

Theorem 4.3. Let G = (V,E) be an undirected graph, and let H be a clique of size

four. Then for all v ∈ V , Algorithm 6 counts the number of copies of H in G

that are adjacent to v, with time complexity O(|E| · n logn+ |E|2 · logn).

Proof. The correctness of Algorithm 6 is trivial. Using a computation similar to the

one in the proof of Theorem 4.1, we get the following for the time complexity of
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Algorithm 6. (Algorithm for counting 4-cliques that are adjacent to v)

1. Cl(v) = 0.

2. For every vertex u ∈ N(v):

(a) Compute N(v) ∩N(u):

i. Go over all the vertices in the adjacency list of v and the
adjacency list of u, and add each vertex to a list. (Thus a
vertex can appear several times in the list.)

ii. For each vertex in the list count the number of times it
appears in the list. If it appears twice then add the vertex
to a list �(u, v).

iii. Sort the list �(u, v) according to the names of the vertices.

(b) For all w ∈ �(u, v) go over the adjacency list of w and for each
vertex t �= v, u in this adjacency list check whether t ∈ �(u, v). If
t ∈ �(u, v) then Cl(v) := Cl(v) + 1.

3. Return Cl(v)/6.

Algorithm 6:

O

⎛
⎝∑

v∈V

∑
u∈N(v)

deg u+ deg v

⎞
⎠

+O

⎛
⎝∑

v∈V

∑
u∈N(v)

|N(v) ∩N(u)| log(|N(v) ∩N(u)|)

+
∑

w∈N(v)∩N(u)

degw · log(|N(v) ∩N(u)|)
⎞
⎠

= O (|E| · n logn) +O

⎛
⎝∑

v∈V

∑
u∈N(v)

∑
w∈N(v)∩N(u)

degw · log(|N(v) ∩N(u)|)
⎞
⎠

= O(|E| · n logn) +O

⎛
⎝∑

v∈V

∑
u∈N(v)

∑
w∈V

degw · logn
⎞
⎠

= O(|E| · n logn) +O(|E|2 · logn).
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We now count the number of subgraphs of G that are isomorphic to H , where

H is a four-clique. Let Cl be the total number of four-cliques in the graph. Then

computing Cl immediately follows by the previous algorithm:

Cl =
1

4

∑
v∈V

Cl(v).

Theorem 4.4. Let G = (V,E) be an undirected graph, and let H be a clique of size

four. Then the number of copies of H in G can be computed with time complexity

O(|E| · n logn+ |E|2 · logn).

4.3. Counting Small Trees

In this section assume that H is a tree of size four that consists of a vertex and

three of its neighbors. We present an algorithm that exactly computes, for every

vertex v, the number of subgraphs of G that are isomorphic to H and adjacent

to v. There are two cases: one for which v is an endpoint of all edges of the tree:

v �

and one for which v is an endpoint of only one edge:

v �

In the first case we get
(|N(v)|

3

)
. In the second case, for every u ∈ N(v) we count

all subsets of size 2 of N(u) (not including v). Therefore this case contributes∑
u∈N(v)

(
deg(u)−1

2

)
subgraphs of G that are isomorphic to H and are adjacent

to v. Thus the total number of subgraphs of G that are isomorphic to H and

adjacent to v is (
deg(v)

3

)
+

∑
u∈N(v)

(
deg(u)− 1

2

)
.

Assuming that the degree of every vertex is known, the time complexity is∑
v∈V

(O(1) +O(deg(v))) = O(|E| + n).

Thus we immediately get the following theorem.

Theorem 4.5. Let G = (V,E) be an undirected graph, and let H be a tree of size

four that consists of a vertex and three of its neighbors. Then for every vertex

v, the number of subgraphs of G that are isomorphic to H and adjacent to v can

be found with time complexity O(|E| + n).
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Note that the total number of subgraphs of G that are isomorphic to H can

be easily counted using the first case, for all v, with time complexity O(n).

5. Conclusions

In this work we have presented algorithms with time complexity

O

(
(3e)k · n · |E| · log 1

δ

ε2

)

that for the first time, approximate for every vertex the number of noninduced

occurrences of the motif of which the vertex is part, for k-length cycles and k-

length cycles with a chord, where k = O(log n). We also designed algorithms

with time complexity

O

(
n · |E| · log 1

δ

ε2
+ |E|2 · logn+ |E| · n logn

)

that for the first time, approximate for every vertex the number of noninduced

occurrences of the motif of which the vertex is part, for all motifs of size at most

four. In addition, we have given algorithms that approximate the total number

of noninduced occurrences of these network motifs when no efficient algorithm

exists. Approximating the number of noninduced occurrences of the motif of

which a vertex is part for other motifs of size O(logn) is left for future work.
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