
�

�

“imvol3” — 2007/7/25 — 21:25 — page 257 — #1
�

�

�

�

�

�

Internet Mathematics Vol. 3, No. 3: 257-294

Approximating Personalized
PageRank with Minimal Use
of Web Graph Data
David Gleich and Marzia Polito

Abstract. In this paper, we consider the problem of calculating fast and accurate ap-
proximations to the personalized PageRank score of a webpage. We focus on techniques
to improve speed by limiting the amount of web graph data we need to access.

Our algorithms provide both the approximation to the personalized PageRank score
as well as guidance in using only the necessary information—and therefore sensibly
reduce not only the computational cost of the algorithm but also the memory and
memory bandwidth requirements. We report experiments with these algorithms on
web graphs of up to 118 million pages and prove a theoretical approximation bound
for all. Finally, we propose a local, personalized web-search system for a future client
system using our algorithms.

1. Introduction and Motivation

To have web search results that are personalized, we claim that there is no need
to access data from the whole web. In fact, it is likely that the majority of the
webpages are totally unrelated to the interests of any one user.

In the original PageRank paper [Brin and Page 98], Brin and Page proposed a
personalized version of the algorithm for the goal of user-specific page ranking.
While the PageRank algorithm models a random surfer that teleports everywhere
in the web graph, the random surfer in the personalized PageRank Markov chain
only teleports to a few pages of personal interest. As a consequence, the person-
alization vector is usually sparse, and the value of a personalized score will be
negligible or zero on most of the web.

© A K Peters, Ltd.
1542-7951/06 $0.50 per page 257

�

�

“imvol3” — 2007/7/25 — 21:25 — page 258 — #2
�

�

�

�

�

�

258 Internet Mathematics

In this paper, we present accurate and efficient algorithms for computing ap-
proximations of personalized PageRank without having to access the entire web
graph matrix. Our algorithms iteratively divide the vertices of the web graph
into an active set and an inactive set. At each iteration, the set of active vertices
is expanded to include more pages that are likely to have a high personalized
PageRank score. Only the set of active pages and their out-link information
are actually involved in the computation, sensibly decreasing the computational
time. A tolerance threshold is fixed in order to determine the termination of the
approximation algorithm.

We provide theoretical bounds for such approximations, but we also show that
in practice the approximation is even better than the bounds would suggest. We
perform experiments on web graphs of up to 118 million nodes.

Our approach substantially differs from the one followed by Jeh and Widom
[Jeh and Widom 03]. They developed a sophisticated computational scheme
in order to efficiently compute a large number of such personalized PageRank
vectors. This approach involves pre-computation and storage of a number of
personalized vectors or their building blocks. We merely reduce the data used in
the algorithm to save on computation time. In fact, we do need to have random
access to a web graph, but in practice we only need to access a small part of it.
A priori we do not know which part it is, but we iteratively discover this part
while running the algorithms.

In the second set of algorithms, we use coarse level information from the host
graph [Kamvar et al. 03a]. This graph has a vertex for each host, and its edges
summarize all the links between individual pages. The storage space for the host
graph as well as the computational time needed to deal with it are considerably
less than the ones relative to the whole web graph.

In building our algorithms we were inspired and motivated by a possible new
usage model, where the client machine hosts a fully-functional web-search sys-
tem that employs, among many others, our algorithms. The analysis of such a
system is beyond the scope of this paper, but we do provide a high-level vision
of it.

We envision the incremental discovery of the web graph and the computation of
personalized PageRank scores as performed by a client machine via a lightweight
crawler integrated with the algorithm itself. Our algorithms make it feasible to
have a personalized search mostly based on the client. Such a personalized search
engine has important consequences for the privacy of users and for exploitation
of the computational potential of client machines in web search. While we do not
have a complete implementation of such a system yet, we believe it is a feasible
goal. The next-generation machines will have significantly increased processor
speed, memory, and disk-space. In light of these assumptions, we performed our

�

�

“imvol3” — 2007/7/25 — 21:25 — page 259 — #3
�

�

�

�

�

�

Gleich and Polito: Approximating Personalized PageRank with Minimal Use of Web Graph Data 259

experimentation on a high-end machine. We considered it as a proxy for a future
client desktop or laptop of an average web user. Our algorithms are designed
to provide a computational scheme with respect to this context and not to the
standard server-based architecture of most popular search engines.

In Section 2 we give a detailed description of our four algorithms, while in
Section 3 we state and prove theoretical approximation bounds for each algo-
rithm. Then, in Section 4 we describe our experiments with the algorithms
and show that the approximation achieved is acceptable. We also evaluate
the different algorithms in terms of the trade-off between their accuracy and
efficiency.

In Section 5 we give a high-level description of a personalized and privacy-
protecting web-search system. This system uses our approximate algorithms
for part of the ranking functionality and, in fact, motivated their development.
Finally, we analyze the related work in Section 6 and summarize our conclusions
in Section 7 as well as indicate future directions for the development of these
ideas in Section 8.

2. Algorithms for Computing Personalized PageRank

Many authors have described the standard PageRank algorithm applied to an
entire graph [Brin and Page 98, Kamvar et al. 03a, Arasu et al. 02]. We briefly
review the algorithm here. Given an adjacency matrix W for a web graph W
with vertex set V, the PageRank algorithm computes the stationary distribution
of a random-walk Markov chain where, with probability α, the walker follows the
out-links of a given page and, with probability 1 − α, the walker teleports to a
page based on the probability distribution vector v. We summarize the relevant
notation in Table 1.

Algorithm 1. (Standard PageRank algorithm.)

x(0) = v, k = 0
repeat

y = αWT D−1
W x(k)

ω = 1 − ||y||1
x(k+1) = y + ωv
δ = ||x(k+1) − x(k)||1, k = k + 1

until δ is less than stopping tolerance.

�

�

“imvol3” — 2007/7/25 — 21:25 — page 260 — #4
�

�

�

�

�

�

260 Internet Mathematics

Symbol Meaning Sec.

1 − α random teleportation probability 2
A PageRank Markov chain transition matrix 2
B set of host vertices in graph C 2.3
C combination page and host adjacency matrix 2.3
δ total change in PageRank in an iteration 2

DW diagonal matrix of out-degrees for adjacency matrix W 2
D−1

W diagonal matrix of inverse out-degrees for adjacency matrix W 2
dW dangling node indicator vector for adjacency matrix W 2
e vector of all ones 2
ε the expansion tolerance 2.1
F frontier set of pages 2.2
H host graph adjacency matrix 2.3
κ smallest expansion criteria for the boundary set 2.2
L adjacency matrix for a set of active pages 2.1
L set of active pages 2.1
lv number of in-links within a host for page v 2.3
P set of vertices corresponding to separated pages 2.3
p a single personalization vertex 2.1
R restriction matrix for the page to host restriction operator 2.3
S set of pages to separate 2.3
v teleportation distribution 2
V set of vertices in a graph 2
W adjacency matrix for web graph W 2
x(i) the entry in vector x for page i 2.1
∂ the boundary of a domain 2.2

Table 1. Summary of notation and the sections where it is introduced. In general,
lower-case Greek letters are scalar values, lower-case letters are vectors or set
elements, upper-case letters are matrices, and script letters are graphs or sets.

We can efficiently compute this stationary distribution by applying the power
method to the stochastic transition matrix

AT = α(WT D−1
W + vdT

W) + (1 − α)veT ,

where for graph W with adjacency matrix W , DW is the diagonal matrix of
out-degrees for nodes in W , dW is the dangling node indicator vector, and e is
the vector of all ones. This idea gives rise to the standard PageRank algorithm
in Algorithm 1. We use the notation D−1

W to indicate the matrix with the inverse
out-degree for each node. Also, δ, calculated in the algorithm, is the total change
in PageRank in an iteration.

If v is the uniform distribution over all pages, then Algorithm 1 computes a
global PageRank vector. Haveliwela computed and analyzed the topic PageRank
vector by taking v as a uniform distribution over a subset of pages chosen to

�

�

“imvol3” — 2007/7/25 — 21:25 — page 261 — #5
�

�

�

�

�

�

Gleich and Polito: Approximating Personalized PageRank with Minimal Use of Web Graph Data 261

correspond to a particular topic [Haveliwala 02]. If v is a subset of pages chosen
according to a user’s interests, the algorithm computes a personalized PageRank
vector (PPR) [Brin and Page 98].

In the remainder of this section, we will state four algorithms for approxi-
mate personalized PageRank computations. Then, we show that each algorithm
terminates.

2.1. Restricted Personalized PageRank Algorithm

The restricted personalized PageRank algorithm (RPPR) attempts to determine
the set of pages with high personalized PageRank and compute the PageRank
vector corresponding to this limited set. We apply one iteration of the Page-
Rank algorithm to the current set of active nodes and expand any nodes above
the tolerance ε. The motivation for this algorithm is a formula from Jeh and
Widom [Jeh and Widom 03, Section 4.1], which identifies the PageRank value
for a single-page personalization vector with the inverse P -distance in the web
graph. For simplicity of presentation, we assume that this algorithm is only
applied to compute the personalized PageRank vector for a single page p.

In subsequent algorithms, we treat a vector x or y as a function of pages so
that x(i) is the entry in vector x associated with page i. The goal is to compute
a set of active pages, L, and a corresponding active link matrix, L. The matrix L

is the adjacency matrix for all the out-links from pages in L and may reference
pages not in L (but those pages will not have any out-links in L). We then
compute one PageRank iteration on L from a vector x to a vector y and update
both L and L with out-links from any page i that satisfies y(i) > ε.

Algorithm 2 is implemented in the pagerank.m function available from http:
//www.stanford.edu/∼dgleich/programs.html.

Algorithm 2. (Restricted personalized PageRank algorithm.)
x(p) = 1,L = {p}, L = matrix of p to its out-links
repeat

y = αLT D−1
L x {The PageRank iteration is here.}

ω = 1 − ||y||1
y(p) = y(p) + ω
Add out-links for pages v where y(v) > ε to L and L, expanding L as
necessary.
δ = ||x − y||1, x = y

until δ is less than stopping tolerance.

�

�

“imvol3” — 2007/7/25 — 21:25 — page 262 — #6
�

�

�

�

�

�

262 Internet Mathematics

Algorithm 3. (Boundary-restricted personalized PageRank algorithm.)
x(p) = 1
repeat

y = αLT D−1
L x {The PageRank iteration is here.}

ω = 1 − ||y||1
y(p) = y(p) + ω
Compute y(F) {The total rank on the frontier.}
while y(F) > κ do

Find the page v ∈ F with maximum value in y.
Add v to L and L, remove the page from F , and update y(F).

end while
δ = ||y − x||1, x = y

until δ is less than stopping tolerance.

2.2. Boundary-Restricted Personalized PageRank Algorithm

Algorithm 3 is a slight modification to the previous algorithm and was suggested
by our theoretical results about the approximation achieved by Algorithm 2.

Instead of expanding pages when the PageRank tolerance is above an expan-
sion tolerance ε, we expand pages until the total rank on the frontier set of pages
is less than κ. Let F denote the set of pages for the frontier. That is,

F = ∂L

is the set of pages that we know exist due to other out-links but have not yet
visited. We borrow the notation ∂ to represent the boundary of a domain—
in this case L, the set of active pages. Algorithm 3 is also implemented in the
pagerank.m function, which is available from http://www.stanford.edu/∼dgleich/
programs.html.

In our implementation, we sort the vector y first so that we can simply examine
the pages in sorted order in y. There are no updates to the PageRank vector
as we are adding pages to L. We simply take the current set of values in y and
add pages to L until the rank on the remainder of the frontier is less than κ.
A complete sorting procedure for y is, in reality, unnecessary, since a limited
number of highest-ranking pages will be removed from the frontier at each step.

2.3. PageHostRank Algorithm

PageHostRank (PHRank) is a hybrid algorithm that attempts to meld ideas
from Algorithms 2 and 3 together with an extra set of global data. The global
data comes in the form of a host graph.

�

�

“imvol3” — 2007/7/25 — 21:25 — page 263 — #7
�

�

�

�

�

�

Gleich and Polito: Approximating Personalized PageRank with Minimal Use of Web Graph Data 263

We use the host graph in the sense of Kamvar et al. [Kamvar et al. 03a]. That
is, we view a host as a collection of webpages that all share the same root in
the URL. For example, the pages http://www.intel.com/ and http://www.intel.
com/personal/index.htm share the same root (www.intel.com), whereas http://
research.intel.com/ir/researchareas/index.asp has a different root (research.intel.
com). The host graph adjacency matrix H then has a nonzero entry hIJ , repre-
senting a weighted edge between the vertices for hosts I and J , if host I contains
any page that links to a page on host J . The weight on the edge is the number
of links from pages on host I to pages on host J .

We can formalize these ideas by using a restriction operator. Let R be the
restriction matrix of the page to host the restriction operator such that RiJ = 1
if webpage i belongs to host J . Then, R is an n × m matrix where n is the
number of pages and m is the number of hosts. There is exactly one nonzero
element in each row of R. The host graph adjacency matrix H is

H = RT WR.

We assume that the PageHostRank algorithm has two pieces of global infor-
mation. The first is the host graph H itself, together with the hosts for each
node in H and a vector of counts of dangling vertices for each host, dH . The
second is a vector l over all pages on the web specifying the number of in-links
from pages on the host to that page. Formally, if RiJ = 1, then li is the number
of links from pages in host J to page i.

In Section 3, we introduce a random surfer model that provides an intuitive
justification for the PageHostRank algorithm. However, that model is not realis-
tic. In our perspective, the PageHostRank algorithm is a way of representing the
actions of a random surfer initially unaware of the content of a host but slowly
discovering that content. This model may not reflect reality, but it does reflect
the level of prior information that we assume when starting the algorithm.

At a high level, the PageHostRank algorithm runs iterations of personalized
PageRank on the host graph. Whenever a host acquires sufficient rank, we sepa-
rate all known pages from the host agglomeration and connect those pages based
on their out-links. These separated pages become active. (In some sense, we
reagglomerate the graph where all separated and active pages become individual
hosts.)

To be precise, let us describe the process of separating one page from its host.
Let C be the hybrid combination graph at the current iteration. Then, C is a
weighted graph where the weight of an edge counts the number of aggregated
links. Within C we have a set P of vertices corresponding to separated pages and
a set B of hosts (or blocks of pages to understand the mnemonic). Let j be the

�

�

“imvol3” — 2007/7/25 — 21:25 — page 264 — #8
�

�

�

�

�

�

264 Internet Mathematics

page that we expand, and let J be the corresponding host (RjJ = 1). Finally,
let F be the frontier set of pages, the set of pages we know exist but have not
yet separated. First, we remove j from F , fetch the out-links for page j, and
insert links with weight 1 for any links between page j and any pages in P. Note
that we can only ever separate pages in the frontier (pages in F) because we do
not know about other pages on the web. If j is a dangling page, subtract one
from the dangling count for host J , dH(J). For any out-links to pages not in P,
we aggregate the out-links at the host level and insert weighted links between j

and any of the hosts in B. Further, we add all such pages to the frontier set F .
Next, we insert any in-links from pages in the set P to j. Then, we add the

page j to the set P. Finally, we insert a weighted in-link from the host J to page
j based on (a) the value lj in the within-host in-link count and (b) the number
of in-links to page j from pages in host J and in P. For example, if we know
that j has ten in-links from the host (lj = 10), and we only see six in-links from
pages in P and in J to j in C, we’ll connect four in-links from host J to page j.

There is one caveat at this last step; we always insist that there exists a weight-
1 link from host J to page j. This condition ensures that any “long-distance”
link from a page i not in P is represented in the path I, J, j, where host I contains
page i.

Finally, we note that, when adding links to graph C, we explicitly adjust the
weight on the links between hosts as we connect j to the graph in the manner
specified. For example, if page j links to page k in host K, then when we add
the link from j to k, and we subtract one from the weight of the link from host
J to host K. The only tricky adjustment is potentially between pages in P and
on host J , which may already have links to page j represented.

For our experiments, we assigned the new rank of the page by setting x(j) =
x(J)/|J ∩ F| (we slightly abuse notation here and consider J as both a set and
a node in this equation). That is, we gave page j the average rank for all the
frontier nodes on host J .

We summarize this discussion with a concise procedure for separating a page.
The procedure is intricate, so we provide a visual example for each of its steps
along with a matching textual description. See Figure 1 for the visual example.

1. Subtract one from dH(J) if page j is dangling.

2. Adjust the weight of links from the current host J to other hosts (except
host J) to account for all the out-links from page j. This step is a host-
to-host (B to B) adjustment. See Figure 1(c).

3. Subtract weight on the links from the host J to pages in the set P and in
the out-links of j. This step is a host-to-page (B to P) adjustment. Here,

�

�

“imvol3” — 2007/7/25 — 21:25 — page 265 — #9
�

�

�

�

�

�

Gleich and Polito: Approximating Personalized PageRank with Minimal Use of Web Graph Data 265

J

(a)

J

(b)

J

-1

-2

(c)

J

-1

-2

-1

(d)

J

-1

-1
-1

-2

-1

(e)

J

-1

-1
-1

-2

-1

(f)

J

-1

-1
-1

-2

-1

(g)

Figure 1. A visual example of the procedure for separating a page. (a) The
combination web graph before running the separate page procedure. In this
example, we separate the dark-shaded page. (b) This figure depicts the first step
of separating the page by finding its out-links. As a visual cue, we represent
these out-links with a dashed line to show that they exist but are not a part of
the graph yet. (c) This picture describes the modification from Step 2 of the
procedure. Because page j links to one page within host J and two pages in
another host, we remove the weight on those links. (d) We know that page j
linked to another page within host J , so we remove some of the weight on the
link from host J to that page in accordance with Step 3 of the procedure. (e)
The new dashed links represent the in-links to page j from other pages in the set
P. In this step, the algorithm adjusts the weight on the links from those pages to
the host J . This figure corresponds to Step 4. (f) Finally, the algorithm adds the
link from host J to page j following Step 5. (g) In Steps 6 and 7 the procedure
adds all the in-links and out-links between pages in P and page j as represented
by the dashed links turning to solid links. Finally, the algorithm adds the striped
page to the frontier set.

we enforce the presence of a minimum of one link between host J and page
j. See Figure 1(d).

4. For any in-links to j from pages in P, adjust the weight on links from pages
in P to host J . Here, we have a page-to-host (P to B) adjustment. See
Figure 1(e).

�

�

“imvol3” — 2007/7/25 — 21:25 — page 266 — #10
�

�

�

�

�

�

266 Internet Mathematics

5. Do our best to estimate the number of in-links from host J to page j.
Here, we know two things: (i) the number of total in-links from pages in
host J to j (lj), and (ii) the current number of in-links from pages in host
J to page j; the difference indicates the number of in-links. However, we
enforce that there is always one in-link to j from J . Add this link to graph
C. See Figure 1(f).

6. Add links from j to any pages in P.

7. Add links from any pages in P to j.

8. For any out-links from j to pages not in P, add those pages to the frontier
set F . Also, aggregate this set of links at the host level, and add links from
j to the hosts in B. See Figure 1(g).

9. Distribute some of the rank from the host vertex J to the newly created
vertex j.

One property of this page-separating procedure is that, when we crawl all
pages, we recover the original web graph adjacency matrix W in a permuted or-
der. There is an extra set of host vertices included in the graph, but these vertices
have no remaining in-links and therefore play no role in the computation of per-
sonalized PageRank. Put another way, if we separate all pages and run the algo-
rithm (given fully in Algorithm 4), we recover the personalized PageRank scores
exactly.

Once we have the algorithm to separate a page, the PageHostRank algorithm
itself is fairly simple. We run iterations of PageRank on the adjacency matrix C

of graph C. At each iteration, we examine the rank on hosts in the set B. For

Algorithm 4. (PageHostRank algorithm.)
C = H, S = {p}, x(R(p)) = 1, F = {p}, P = {}.
repeat

For all pages s ∈ S, separate s and update C, x, dH , F , and P.
y = α(CT + epd

T
H)D−1

C+dHeT
p

x

ω = 1 − ||y||1
y(p) = y(p) + ω
δ = ||y − x||1, x = y
S = {v | v ∈ F , x(R(v)) > ε}

until δ is less than stopping tolerance.
x(F) = 0.

�

�

“imvol3” — 2007/7/25 — 21:25 — page 267 — #11
�

�

�

�

�

�

Gleich and Polito: Approximating Personalized PageRank with Minimal Use of Web Graph Data 267

any host I with rank that exceeds ε, we separate all pages in the set F and in
host I and distribute the PageRank from this host to the separated pages.

In Algorithm 4, R(i) maps from page i to host I, and S is the set of pages to
separate.

2.4. Boundary PageHostRank Algorithm

Again, we modify the PageHostRank algorithm to restrict the total rank on the
frontier set to κ. See Section 2.2 for more details.

Algorithm 5. (Boundary PageHostRank algorithm.)
C = H, S = {p}, x(R(p)) = 1, F = {p}, P = {}.
repeat

For all pages s ∈ S, separate s and update C, x, F , dH , and P.
y = α(CT + epd

T
H)D−1

C+dHeT
p

x

ω = 1 − ||y||1
y(p) = y(p) + ω
δ = ||y − x||1, x = y
Sort the ranks on each host in decreasing order.
Examine the hosts in the sorted order and add any host J to an expand
host set until the total rank on all remaining hosts is less than κ.
Add any page in the set F and in a host in the expand host set to the
separation set S.

until δ is less than stopping tolerance.
x(F) = 0.

Instead of directly adding pages from the frontier set F as in the boundary-
restricted personalized PageRank algorithm (Section 2.2), we apply the same
idea, but to hosts instead instead of pages. The selection yields a set of hosts
that reduces the rank on the frontier to less than κ. We then expand any page
in the frontier set on those hosts we selected.

2.5. Termination of Algorithms

In this section, we show that the algorithms terminate. In fact, this result is
straightforward. In the matrix formulation of restricted personalized PageRank,
we compute the exact personalized PageRank for the active page graph L. The
largest L can be is the original adjacency matrix W , and we never remove any
page once it is added to L; thus, Algorithm 2 terminates because the power
method applied to the PageRank system always terminates. This argument also
applies to the PageHostRank algorithm, which computes the exact PageRank

�

�

“imvol3” — 2007/7/25 — 21:25 — page 268 — #12
�

�

�

�

�

�

268 Internet Mathematics

on the combination graph C. Although the graph may grow or change during
the computation, at some point the graph must stop changing, and the so the
PageRank algorithm will converge.

3. Approximation Bounds

In this section, we provide a set of theorems demonstrating that our approxi-
mate algorithms for PageRank computing are bounded approximations to the
personalized PageRank vectors.

First, we prove an approximation bound for the simple restricted personalized
PageRank algorithm (Algorithm 2). Then, we show the relationship between
HostRank and PageRank. Finally, we expand the relationship between HostRank
and PageRank to model the PageHostRank algorithm (Algorithm 4), and we
prove an approximation bound for that algorithm.

3.1. Basic Approximation for Restricted PageRank

The lemma that we prove in this section is the basis of our approximation bounds;
it states that we can express the difference between a modified and an exact
solution in terms of the modified solution. Before we begin, let’s establish some
notation.

In contrast with Section 2, let

AT = WT D−1
W + vdT

W .

The matrix AT is column-stochastic, but without the rank-1 modification in
the PageRank Markov chain. In the theorems presented here, we will also be
dealing with modified web graphs that will be denoted by W̃ and corresponding
adjacency matrices denoted by W̃ . In the same manner,

ÃT = W̃T D−1

W̃
+ vdT

W̃
.

In general, the notation of the proofs is self-contained.

Lemma 3.1. Let x∗ be the exact PageRank vector for web graph W and personal-
ization vector v:

x∗ = αAT x∗ + (1 − α)v.

Also, let x̃ be the PageRank vector for a modification of web graph W to W̃ with
the same nodes as W and the same personalization vector v:

x̃ = αÃT x̃ + (1 − α)v.

�

�

“imvol3” — 2007/7/25 — 21:25 — page 269 — #13
�

�

�

�

�

�

Gleich and Polito: Approximating Personalized PageRank with Minimal Use of Web Graph Data 269

Then,
r = x̃ − x∗ =

α

1 − α
ST ∆T x̃,

where
∆T = ÃT − AT

and ST is composed of a set of column vectors that are rescaled solutions to a
PageRank linear system,

ST =
(
s1 s2 . . . sn

)
,[

I − αAT
]
si = (1 − α)ei,

ST = (1 − α)
[
I − αAT

]−1
.

Proof. First, note that the inverse in the definition of ST is well defined because
I − αAT is strictly diagonally dominant for α < 1. This proof proceeds by
applying all the definitions in the statement of the lemma and some simple
algebra. First, we rewrite the solution vectors x∗ and x̃ as solutions to linear
systems: [

I − αAT
]
x∗ = (1 − α)v,

and [
I − αÃT

]
x̃ = (1 − α)v.

Recall that r = x̃ − x∗ by definition, so x̃ = r + x∗. Then,[
I − αÃT

]
x̃ = (1 − α)v,[

I − αÃT
]
(r + x∗) = (1 − α)v,[

I − αÃT − αAT + αAT
]
(r + x∗) = (1 − α)v,[

I − αAT − α
(
ÃT − AT

)]
(r + x∗) = (1 − α)v,[

I − αAT − α∆T
]
(r + x∗) = (1 − α)v,[

I − αAT
]
r +

[
I − αAT

]
x∗ − α∆T (r + x∗) = (1 − α)v,[

I − αAT
]
r +

[
I − αAT

]
x∗ − α∆T x̃ = (1 − α)v.

After we subtract the linear system formulation for the exact vector, we get[
I − αAT

]
r − α∆T x̃ = 0.

Rearranging this last expression yields[
I − αAT

]
r = α∆T x̃,[

I − αAT
]
r = (1 − α)

α

1 − α
∂T x̃.

�

�

“imvol3” — 2007/7/25 — 21:25 — page 270 — #14
�

�

�

�

�

�

270 Internet Mathematics

Figure 2. The hierarchy of sets we use to compute our bounds.

At this point, we have the change in PageRank vectors expressed as the solution
of an unusual PageRank linear system. Multiplying by

[
I − αAT

]−1 and substi-
tuting the definition of ST immediately yields the result.

This result was also shown in [Bianchini et al. 05].
In our approximation algorithms, we bound the maximum rank on all the

unexpanded nodes. Let Γ(N) denote the set of all adjacent vertices to vertices
in N . To be concise, call the set ∂N = Γ(N) − N and U = V − Γ(N) −
N . (Mnemonically, N is the expanded neighborhood of the graph, ∂N is the
boundary, and U is the unknown region.) We illustrate these sets in Figure 2.

In the next two theorems, we bound the results from the restricted personal-
ized PageRank algorithms (Algorithms 2 and 3) in two steps. First, we show a
theoretical bound for the PageRank system modeled in the restricted PageRank
algorithms. Second, we bound the result achieved by each algorithm in light of
the termination criteria for approximately solving the local PageRank problem.

Theorem 3.2. Suppose that x̃ is the PageRank vector for the local graph computed
in either the restricted or boundary-restricted personalized PageRank algorithm
extended to a length-|V| vector with rank 0 on all nodes not in the local graph.
Let r = x̃ − x∗ and

κ =
∑

v∈∂N
x̃(v),

where N is the set from the restricted personalized PageRank algorithm. Then,

||r||1 =
2α

1 − α
κ.

�

�

“imvol3” — 2007/7/25 — 21:25 — page 271 — #15
�

�

�

�

�

�

Gleich and Polito: Approximating Personalized PageRank with Minimal Use of Web Graph Data 271

Proof. We begin by using Lemma 3.1. In restricted personalized PageRank, the
approximate vector x̃ comes from the solution of PageRank on a web graph W̃
with no links from the boundary set ∂N . Hence, the lemma applies, and we can
write

r =
α

1 − α
ST ∆T x̃.

Taking the norm, we have

||r||1 =
α

1 − α
||ST ∆T x̃||1

≤ α

1 − α
||ST ||1||∆T x̃||1.

To further specify and bound factors from this expression, first observe that
||ST ||1 = 1. This fact follows immediately from the definition of the columns of
ST (which are solutions of PageRank-like systems).

Moreover, if we permute ∆ such that the ordering of vertices is N , ∂N ,U , then
we have the following:

||∆T x̃||1 =

∥∥∥∥∥∥∥∥∥

⎛⎜⎜⎜⎝
0 ↑ ↑

0 ∆T
∂N ∆T

U

0 ↓ ↓

⎞⎟⎟⎟⎠
⎛⎜⎜⎝

x̃N

x̃∂N

0

⎞⎟⎟⎠
∥∥∥∥∥∥∥∥∥

1

= ||∆T
∂N x̃∂N ||1 ≤ κ||∆T

∂N ||1.

To understand this statement, let’s study the structure of ∆T . In the expanded
neighborhood, we know all the out-links exactly. Because the personalization
support is entirely within the set N , the matrix ∆ has only zeros in all rows
corresponding to pages in N (respectively, in all columns of ∆T). The notation
∆T

∂N just refers to the subregion of the matrix associated with the out-links of
pages in ∂N (similarly with ∆T

U). In fact, we don’t have to address ∆T
U at all

because it drops out of the equation due to the zeroes in the x̃ vector.
We can further bound ||∆T

∂N ||1 by observing that the sum of each column of
AT and ÃT is 1, so the maximum of the difference of any column is 2. This
difference is achieved by any page in ∂N with at least one out-link. Thus,

||∆T
∂N ||1 ≤ 2.

By combining these results, the theorem follows.

In the next theorem, we adjust the previous result to take into consideration
the fact that we do not solve for the exact PageRank vector of the local graph.

�

�

“imvol3” — 2007/7/25 — 21:25 — page 272 — #16
�

�

�

�

�

�

272 Internet Mathematics

Theorem 3.3. Let x̂ be the vector computed by a restricted personalized PageRank
algorithm with δ as the stopping tolerance. Let r = x̂ − x∗ and

κ =
∑

v∈∂N
x̂(v),

where N is the set from the restricted personalized PageRank algorithm. Then,

||r||1 ≤ 2α

1 − α
κ +

1 + α

(1 − α)2
δ.

Proof. First, the vector x̂ is an approximate solution of the linear system

(I − αÃT)x̃ = (1 − α)v.

Note that x̃ and x∗ are the same as in the previous proof. If we write

x̂ + x̄ = x̃,

then x̄ is the error in the approximate solution x̂. Thus,

r = x̂ − x∗ = x̃ − x∗ − x̄,

and by Theorem 3.2

||r||1 ≤ 2α

1 − α
||x̃∂N ||1 + ||x̄||1.

From
(I − αÃT)(x̂ + x̄) = (1 − α)v,

we find that
(I − αÃT)x̄ = (1 − α)v − (I − αÃT)x̂

= αÃT x̂ + (1 − α)v − x̂.

The right-hand side of this expression is the quantity y − x from the algorithm.
In fact, this expression is the residual rLS = b − Ax of the linear system,1 so let
rLS = y − x with y and x from a restricted personalized PageRank algorithm.
Because we terminate when ||rLS||1 ≤ δ, we immediately bound the right-hand
side. Further, because

||(I − αÃT)−1||1 =
1

1 − α

(which follows from ||ST ||1 = 1 in the previous proofs), we find that

x̄ = (I − αÃT)−1rLS

1Of course, the quantities here are expressed in terms of the standard Ax = b linear system
formulation. For our case, b = (1 − α)v and A = (I − αÃT).

�

�

“imvol3” — 2007/7/25 — 21:25 — page 273 — #17
�

�

�

�

�

�

Gleich and Polito: Approximating Personalized PageRank with Minimal Use of Web Graph Data 273

and
||x̄||1 ≤ ||(I − αÃT)−1||1||rLS||1 ≤ 1

1 − α
δ.

In the algorithm, we do not have κ =
∑

v∈∂N x̃(v), but instead

κ =
∑

v∈∂N
x̂(v) = ||x̂∂N ||1.

(That is, κ comes from the approximate solution instead of the exact solution.)
However, from the definition of the error x̄,

x̃∂N = x̂∂N − x̄∂N .

Applying norms yields

||x̃∂N ||1 ≤ κ + ||x̄∂N ||1 ≤ κ + ||x̄||1 ≤ κ +
1

1 − α
δ.

Substituting this expression into the previous bound on ||r||1 yields the theorem.

Remark 3.4. Based on the previous proof, the restricted personalized PageRank
algorithm (Algorithm 2) with expansion tolerance ε and stopping tolerance δ

yields an approximate PageRank vector x̃, where

||x∗ − x̂||1 ≤ 2α

1 − α
ε|Γ(N) −N| + 1 + α

(1 − α)2
δ.

Remark 3.5. The boundary-restricted personalized PageRank algorithm (Algo-
rithm 3) runs until ∑

v∈∂N
x̂(v) ≤ κ

for a fixed κ. Thus, the boundary-restricted personalized PageRank algorithm
yields an approximate personalized PageRank vector x̂, where

||x∗ − x̂||1 ≤ 2α

1 − α
κ +

1 + α

(1 − α)2
δ.

3.2. HostRank and PageRank

In this section, we’ll show the relationship between the PageRank vector and
the HostRank vector. We first need to formally define HostRank. This section

�

�

“imvol3” — 2007/7/25 — 21:25 — page 274 — #18
�

�

�

�

�

�

274 Internet Mathematics

provides one step along the way to showing that the PageHostRank computation
approximates the personalized PageRank vector.

Let R be the restriction matrix of the page to host the restriction operator as
defined in Section 2.3. Then,

H = RT WR

is the weighted adjacency matrix between hosts. Let Ŵ be the dangling-node
adjusted web graph with adjacency matrix

Ŵ = W + dW eT
p ,

where ep is a vector with a one for each personalization page and zero elsewhere.
Recall that dW is the dangling-page indicator. In this modification, we explic-
itly add all the links back to the personalization pages from dangling nodes.
Correspondingly, let

Ĥ = RT ŴR = H + (RT dW)(RT ep)T .

The matrix Ĥ includes all the links added due to the dangling-node adjustment.
With these matrices, we can define HostRank.

Definition 3.6. (HostRank.) Let B correspond to the random-walk scaling of Ĥ,

B = D−1

Ĥ
Ĥ.

In this case, the scaling matrix D−1

Ĥ
has

(D−1

Ĥ
)ii =

{
0

∑
j Ĥij = 0

1∑
j Ĥij

otherwise.

The HostRank vector h is the solution of the following equation:

h = αBT h + (1 − α)RT v,

where v is a uniform distribution over all the personalization pages (and corre-
sponds to the pages used in Ŵ).

In the following discussion, we do our best to disambiguate between two uses
of the symbol I. We use I as both a label of a host and as an index into a vector.
In contrast, we use I to refer to the set of pages on host I. That is, hI refers to
the HostRank of host I, whereas i ∈ I refers to all pages agglomerated together
in host I.

�

�

“imvol3” — 2007/7/25 — 21:25 — page 275 — #19
�

�

�

�

�

�

Gleich and Polito: Approximating Personalized PageRank with Minimal Use of Web Graph Data 275

1 2

3 4

1, 2

3, 4

2 2

1

Figure 3. A counterexample for the simple relationship between HostRank and
PageRank. If we personalize on the shaded pages, then we get a PageRank vec-
tor of x∗ = (0.1174 0.4002 0.0998 0.3826)T . The corresponding HostRank
vector is h = (0.4574 0.5426)T . Clearly, the statement is false.

Ideally, we would like to prove the following statement:

hI =
∑
i∈I

x∗
i ,

where x∗ is the PageRank vector for web graph W with the same personalization.
We call this the summation property.

Unfortunately, this statement is not generally true. See Figure 3 for a coun-
terexample. Horton showed that a solution dependent restriction operator does
give the summation property [Horton 97]. Nevertheless, this restriction operator
depends upon the exact solution for PageRank—or a good approximation of it.

Instead, we show that if we compute PageRank on a deliberately modified web
graph, then we keep the summation property.

We name our modification silent side-step PageRank. Silent side-step Page-
Rank is a modeling artifact to explain what occurs when computing the Page-
Rank of H instead of W . Eventually, this artifact will help relate the Page-
HostRank vector computed to the PageRank vector. In the silent side-step
model, we change the behavior of the random surfer so

• with probability (1 − α), the surfer randomly jumps to any personalized
page;

• with probability α, the surfer randomly jumps to any other page i′ on the
same host and randomly follows an out-link from that page.

In the second case, the surfer only makes one transition move in the Markov
chain—that is, the surfer does not “stop” on page i′. The name comes from this
silent within-host step.

Now, let U be the transition matrix for the silent side-step random surfer:

Ui,j =
∑

i′∈I Ŵi′,j∑
i′∈I,j′ Ŵi′,j′

�

�

“imvol3” — 2007/7/25 — 21:25 — page 276 — #20
�

�

�

�

�

�

276 Internet Mathematics

or
U = D−1

RRT Ŵ
RRT Ŵ .

In this equation, the matrix D−1

RRT Ŵ
normalizes U to be a random-walk transition

matrix. For each page i ∈ I, the corresponding row of the transition matrix is
identical. Likewise, for each page i ∈ I, the normalizing factor in DRRT Ŵ is
equal.

As we foreshadowed in Section 2, the random-surfer interpretation of silent
side-step PageRank is not realistic. It is unlikely that a surfer would jump uni-
formly at random within the host and then take another step. A more realistic
model would weight the intra-host connections, such as in [Kamvar et al. 03a].
However, the silent side-step model should be regarded as a modeling artifact
along the way to showing that the PageHostRank results approximate the per-
sonalized PageRank results.

Theorem 3.7. HostRank and silent side-step PageRank have the summation property.

Proof. The silent side-step PageRank vector u satisfies the following equation:

u = αUT u + (1 − α)v.

If we apply the restriction operator, we have

RT u = αRT UT u + (1 − α)RT v

= αRT ŴT RRT D−1

RRT Ŵ
u + (1 − α)RT v.

First, recall that RT ŴT R = HT . Now, RT D−1

RRT Ŵ
u = D̂−1

RT ŴR
RT u. To justify

this fact, observe that, for each page of one host, the normalization constant is
the same. Further, that normalization constant is the same as the corresponding
entry in D̂−1

RT ŴR
, i.e., the normalization based on the total (weighted) count of

all out-links from a host. Therefore, because all the constants are the same, we
can agglomerate first and divide second. Formally,

(RT D−1

RRT Ŵ
u)i =

∑
i∈I

ui∑
i′∈I Ŵi′,j

=
1∑

i′∈I Ŵi′,j

∑
i∈I

ui = (D̂−1

RT ŴR
RT u)i.

At this point, we are effectively done. To complete the proof, we have

RT u = αHT D̂−1

RT ŴR
RT u + (1 − α)RT v

= αBT RT u + (1 − α)RT v.

Because there is a unique stationary distribution for the HostRank Markov chain,
we know that RT u = h.

�

�

“imvol3” — 2007/7/25 — 21:25 — page 277 — #21
�

�

�

�

�

�

Gleich and Polito: Approximating Personalized PageRank with Minimal Use of Web Graph Data 277

1, 2

3, 4

2 2

1

1 2

3 4

Figure 4. In this figure, we show the agglomerated HostRank graph and the silent
side-step PageRank graph. In the silent side-step PageRank graph, each node
collects all the out-links from each vertex agglomerated together. Recall that h =
(0.4574 0.5426)T . Now we have that u = (0.2287 0.2287 0.1944 0.3481)T

and RT u = (0.4574 0.5426)T .

See Figure 4 for an example that shows that the summation property does
hold.

3.3. PageHostRank

In this section, we’ll provide bounds on the PageRank approximation achieved
by the PageHostRank algorithms. First, we’ll show that a theorem similar to the
result relating silent side-step PageRank and HostRank holds for PageHostRank.
That is, there is a more complicated modification of the Markov chain that keeps
the summation property. Next, we’ll use Lemma 3.1 to relate the modified graph
back to the original web graph, which will provide the approximation bound for
the PageHostRank algorithm (Algorithm 4).

First, we describe the adjacency matrix C for the combination graph C in
Algorithm 4. To do this, we partition the nodes for each host into two sets:
Ia is the set of agglomerated nodes and Ie is the set of expanded nodes. In
this section, we use the index Ia to denote the index for the agglomerated node
corresponding to the set Ia. Thus, for each host I, we have

I = Ia ∪ Ie, Ia ∩ Ie = ∅,

where I is the set of all pages on host I.

For a pair of hosts I and J , we describe the connectivity in C. In the following,
i ∈ Ie and j ∈ Je unless otherwise indicated:

CIa,Ja
=

⎧⎨⎩
∑

i∈I,j∈J Wi,j −
∑

i∈Ie,j∈Ja∪F Wi,j I �= J,

max
(∑

i∈Ia,j∈Ia
Wi,j −

∣∣{k|∑i′∈Ia
Wi′,k = 0}

∣∣ , 0
)

I = J ;

�

�

“imvol3” — 2007/7/25 — 21:25 — page 278 — #22
�

�

�

�

�

�

278 Internet Mathematics

CIa,j = max
(∑
i∈Ia

Wi,j , 1
)

for j ∈ I or 0 if j �∈ I;

Ci,Ja
=

∑
j∈Ja∪F

Wi,j ;

Ci,j = Wi,j if j ∈ Je.

Starting from the top, the weight on the connection between two hosts I and
J is the total weight from all links between I and J without all links from the
nodes expanded from host I. The weight between a host node Ia and itself is the
weight between all agglomerated nodes in Ia without the nodes with artificial
in-links. The max function enforces that the weight does not go negative. The
weight between a host node and an expanded node (on that host) is at least
one or the weight from all agglomerated nodes. There are no links between a
host node and expanded nodes on other hosts. The weight from a page to other
hosts nodes is simply the aggregation of all the links to those pages. Finally, the
weight between expanded pages is 1, if the pages link together.

We next describe an expanded web graph that has a summation property with
the combination graph C. Let C̃ be a web graph with |V|+ |B| nodes (recall that
each host is an entry in B). Each extra node corresponds to a special in-link
aggregation node for links from unexpanded pages to expanded pages on separate
hosts. The web graph C̃ is the original web graph W with two modifications.
First, let Ĩ be the node added for host I. The node Ĩ steals in-links from any
node in Ja to a node in Ie. That is, for any node j ∈ Ja, instead of linking to
i ∈ Ie as in the original web graph, the node Ĩ steals this in-link so that j links
to Ĩ in C̃ (and not to i). Next, the node Ĩ links to any page with a “virtual”
in-link constructed when we invoked the rule that each expanded node on a host
must have one in-link from the agglomerated host node. That is,

C̃Ĩ,i = 1 if
∑

i′∈Ia

Wi′,i = 0.

The second modification of C̃ with respect to W is that all nodes in a set Ia∪ Ĩ

copy out-links. That is, the row of the adjacency matrix C̃ for any node in Ia∪ Ĩ

is identical and is equal to the sum of all rows in Ia ∪ Ĩ in the original adjacency
matrix W modified with the extra host node as above,2 i.e.,

C̃i∈Ia∪Ĩ,: =
∑

i∈Ia∪Ĩ

Wi,:.

2Technically, the correct way of describing this modification is by first introducing the extra
host nodes and then copying out-links in a modification of the modified graph, but we do both
steps at once to slightly ease the notation.

�

�

“imvol3” — 2007/7/25 — 21:25 — page 279 — #23
�

�

�

�

�

�

Gleich and Polito: Approximating Personalized PageRank with Minimal Use of Web Graph Data 279

This leads to the next theorem.

Theorem 3.8. If x is a PageHostRank vector, then there exists a web graph W̃ with
|V|+ |B| vertices, such that the personalized PageRank vector on W̃ , x̃, satisfies

xI = x̃Ĩ +
∑

i∈I∩(V−P)

x̃i for all I ∈ B,

xi = x̃i for all i ∈ P,

where P is from the PageHostRank algorithm.

Proof. The modified web graph W̃ equals C̃ as defined above. The summation
property follows because we defined C̃ such that all nodes within a host are
lumpable [Kemeny and Snell 83]. Thus, when we aggregate them together, the
corresponding stationary probability vectors have the summation property.

We could have used the lumpable property in the proof for the HostRank
algorithm. However, we believe that presenting that result with an explanation
such as the silent side-side step move gives more intuition about what occurs.

Using Theorem 3.8, we can conclude that PageHostRank gives us an approx-
imation to personalized PageRank.

Theorem 3.9. Suppose that x̃ is the solution from the full PageHostRank model on
|V| + |B| vertices, x is the PageRank vector for the PageHostRank model on the
small graph C, and x∗ is the exact PageRank vector extended with |B| extra nodes
with rank 0. Let r = x̃ − x∗ and

κ =
∑
v �∈P

x(v),

where P is the expanded page set from the PageHostRank algorithm. Then,

||r||1 ≤ 2α

1 − α
κ.

Proof. By the summation property from Theorem 3.8, we know that

κ =
∑
v �∈P

x̃(v)

�

�

“imvol3” — 2007/7/25 — 21:25 — page 280 — #24
�

�

�

�

�

�

280 Internet Mathematics

as well. The remainder of the proof is virtually identical to the analogous bound
for restricted PageRank. We begin with

r =
α

1 − α
ST ∆T x̃,

where ∆T = ÃT −AT for Ã corresponding to C̃. This lemma still applies because
we can model x∗ as the exact solution of personalized PageRank on a web graph
with |B| fictitious, unlinked nodes.

Getting the final bound for this problem is slightly easier than for restricted
PageRank. We find that again, for all pages in P, all the out-links are represented
exactly. So,

||∆T x̃||1 =
∥∥∥∥(

0 ∆T
V∪B−P

) (
x̃P

x̃V∪B−P

)∥∥∥∥
1

≤ 2||x̃V∪B−P ||1 = 2κ.

Hence,

||r||1 ≤ α

1 − α
||ST ||1||∆T x̃||1 ≤ 2α

1 − α
κ.

In our algorithm implementation, we set x(¬P) = 0 (i.e., everything not in P)
as the final step because we want the rank on the separated set of pages to
come from a PageRank vector. (The fictitious “hosts” modeled in the algorithm
are not actual pages.) Technically, this means our bound only applies the total
change in the PageHostRank vector on the pages P in relationship with the exact
PageRank on P, i.e.,

||xP − x̃P ||1 ≤ ||x − x̃||1.
In the next theorem, we relate the vector computed from the algorithm, in-

cluding the error due to the stopping criteria.

Theorem 3.10. Let x̂ be the vector computed in PageHostRank algorithm with stop-
ping tolerance δ, then

||x̂P − x∗
P ||1 ≤ 2α

1 − α
κ +

1 + α

(1 − α)2
δ.

Proof. The proof is identical to the analogous result for restricted PageRank,
Theorem 3.3, after using the result Theorem 3.9.

4. Experimentation on Web Graphs

We used our approximate PageRank algorithms on a few publicly available data
sets. The corresponding web graphs had variable size from 10,000 to 118 million

�

�

“imvol3” — 2007/7/25 — 21:25 — page 281 — #25
�

�

�

�

�

�

Gleich and Polito: Approximating Personalized PageRank with Minimal Use of Web Graph Data 281

vertices. We report on the experiments with the largest data set, the Web-
Base graph of approximately 118 million vertices. Sources of our data sets were
[Kamvar 03] and [Boldi and Vigna 04, Vigna 06].

We performed the experiments on an IntelTM ItaniumTM 2 system, with 32 GB
of shared RAM. Because of the large size of the memory, it was possible to keep
the adjacency matrix of the web graph, in sparse format, in memory and to work
efficiently with it. We used the values κ = 0.001, ε = 0.0001, and α = 0.85 for the
approximation algorithms.

Because of the additivity property of personalized PageRank with respect to
the personalization vector, we investigated the approximation accuracy of PPR
vectors where the personalization vector is supported on a single page. We
experimented with 40 different vectors.

For each one of these experiments corresponding to a single personalization
page, we computed the exact PPR value on the whole web graph, then computed
restricted personalized PageRank (RPPR, Section 2.1), boundary-restricted per-
sonalized PageRank (BRPPR, Section 2.2), PageHostRank (PHR, Section 2.3),
and boundary PageHostRank (BPHR, Section 2.4).

We chose to evaluate the difference between exact and
approximate scoring with several metrics. In Figures 5 and 6, we use box-plots
to represent compactly the results of all of our 40 experiments. The box-plot
represents the values in a sample by using a horizontal box, two dashed lines,
and a set of outliers marked as crosses. The lines in the box denote the
lower quartile, median, and the upper quartile. The dashed lines extend
1.5 quartiles beyond the lower and upper quartiles to show reasonable values
for the rest of the data. Outliers are values outside of the dashed
lines.

In Figure 5 we show a set of results indicating the correlation in ranking
between the exact and approximate personalized PageRank vectors. Each figure
displays a box-plot of the results over all 40 experiments, where the box encloses
the region between the upper and lower quartiles. The values computed for
each experiment are Kendall’s τ correlation coefficients. A value of 1 indicates
a perfect rank correlation, thus distributions of values near 1 are better results.
In the figures, Tn is the set of n pages with the highest personalized PageRank
and T̂n is the set of n pages with highest approximate personalized PageRank
scores. Likewise, the vector x∗ is the exact personalized PageRank vector and
x̂ is an approximate personalized PageRank vector. We show the distribution
of the Kendall τ coefficient for the first 100 and 1000 pages according to each
method. The τ coefficient is based on the number of transpositions between
different rankings, and we choose to evaluate this measure at two different sets
of pages to provide a comparison of the algorithms at different levels of precision.

�

�

“imvol3” — 2007/7/25 — 21:25 — page 282 — #26
�

�

�

�

�

�

282 Internet Mathematics

0.5 0.6 0.7 0.8 0.9 1
V alues

τ(ppr,rppr)

τ(ppr,brppr)

τ(ppr,phr)

τ(ppr,bphr)

(a)

0.5 0.6 0.7 0.8 0.9 1
V alues

τ(rppr,ppr)

τ(brppr,ppr)

τ(phr,ppr)

τ(bphr,ppr)

(b)

0.5 0.6 0.7 0.8 0.9 1
V alues

τ(ppr,rppr)

τ(ppr,brppr)

τ(ppr,phr)

τ(ppr,bphr)

(c)

0.5 0.6 0.7 0.8 0.9 1
V alues

τ(rppr,ppr)

τ(brppr,ppr)

τ(phr,ppr)

τ(bphr,ppr)

(d)

Figure 5. The ranking changes between the exact personalized PageRank vector
and the approximations computed by the four different algorithms. The quanti-
ties computed for each plot are (a) τ(x∗(T100), x̂(T100)), (b) τ(x̂(T̂100), x

∗(T̂100)),
(c) τ(x∗(T1000), x̂(T1000)), and (d) τ(x̂(T̂1000), x

∗(T̂1000)). In all cases, the approx-
imate algorithm is identified by the label on the left of the plot.

We have omitted the results from the first 10 pages because they were almost
always ranked identically for all algorithms.

Figure 6 presents on the 1- and ∞-norm distances between PageRank vec-
tors. We calculate these distances on the whole vector, as well as on the subset
of entries corresponding to active and frontier pages. Each box-plot shows the
distribution of results over all 40 experiments. A value of 0 indicates that we
computed the result exactly. The first two figures, (a) and (b), show the differ-
ence in the 1-norm and ∞-norm on the set of pages in the active set, that is, the
subset of pages where we know the out-links. The second set of figures shows
the difference in each norm on the frontier set, the pages that we know exist but
we do not know their out-links. The final set, (e) and (f), show the difference in
norm over all pages.

The results in Figure 5 show that the ranking of the top 100 pages for the
BRPPR, PHR, and BPHR algorithms are similar. The results from the top
1000 results show that the algorithms are missing some pages with respect to
the exact solution. This follows from the more negative results of Figure 5(c)
compared with Figure 5(d). The most likely explanation of these results is that
there are a few pages with high personalized PageRank known to the exact

�

�

“imvol3” — 2007/7/25 — 21:25 — page 283 — #27
�

�

�

�

�

�

Gleich and Polito: Approximating Personalized PageRank with Minimal Use of Web Graph Data 283

0 0.01 0.02 0.03 0.04 0.05
V alues

||ppr
S

 − rppr
S

||

||ppr
S

 − brppr
S

||

||ppr
S

 − phr
S

||

||ppr
S

 − bphr
S

||

(a)

0 0.01 0.02 0.03 0.04 0.05
V alues

||ppr
S

 − rppr
S

||

||ppr
S

 − brppr
S

||

||ppr
S

 − phr
S

||

||ppr
S

 − bphr
S

||

(b)

0 0.01 0.02 0.03 0.04 0.05
V alues

||ppr
S

 − rppr
S

||

||ppr
S

 − brppr
S

||

||ppr
S

 − phr
S

||

||ppr
S

 − bphr
S

||

(c)

0 0.01 0.02 0.03 0.04 0.05
V alues

||ppr
S

 − rppr
S

||

||ppr
S

 − brppr
S

||

||ppr
S

 − phr
S

||

||ppr
S

 − bphr
S

||

(d)

0 0.01 0.02 0.03 0.04 0.05
V alues

||ppr
S

 − rppr
S

||

||ppr
S

 − brppr
S

||

||ppr
S

 − phr
S

||

||ppr
S

 − bphr
S

||

(e)

0 0.01 0.02 0.03 0.04 0.05
V alues

||ppr
S

 − rppr
S

||

||ppr
S

 − brppr
S

||

||ppr
S

 − phr
S

||

||ppr
S

 − bphr
S

||

(f)

Figure 6. The difference in norm between the exact personalized PageRank (PPR)
vector and the approximate vectors. The norms and sets for each figure are (a)
1-norm, S = active set; (b) ∞-norm, S = active set; (c) 1-norm, S = frontier
set; (d) ∞-norm, S = frontier set; (e) 1-norm, S = all pages; and (f) ∞-norm,
S = all pages.

algorithm ranked between 100–1000 that are unknown to the approximations.
The difference in ranking of these few pages causes the τ results to shift to the
left away from 1. However, from Figure 5(d), among the top 1000 pages found
by each algorithm, the ranking is approximately preserved.

The results from Figure 6 reveal a similar pattern. Again, the BRPPR, PHR,
and BPHR algorithms perform the best. On the active set of pages, the difference
between the exact and approximate vectors is extremely small (Figures 6(a)
and (b)). Further, even among all pages, the difference between the personalized
PageRanks of any two pages is small (Figure 6(f)). Interestingly, according to
the τ measure, the PHR algorithm is better than the BRPPR algorithm, but
according to the norm measures, the BRPPR algorithm is better.

�

�

“imvol3” — 2007/7/25 — 21:25 — page 284 — #28
�

�

�

�

�

�

284 Internet Mathematics

Method Median Mean Std. Dev.

RPPR 0.11 0.16 0.15
BRPPR 1.02 8.21 16.05
PHRank 965.58 969.02 362.05

BPHRank 1343.16 9813.91 23,730.21

Table 2. Each row summarizes the execution times of all experiments for each
approximation algorithm. All values are in seconds.

In aggregate, RPPR is the worst algorithm. In contrast, BPHR is the best
algorithm. That said, even the approximations from RPPR are good, whereas
those from the other three algorithms are excellent. These results verify our
intuition that using some coarse-level information about the set of pages helps
these algorithms achieve better approximations.

However, using that coarse information is expensive. In Table 2 we summarize
the time necessary for the experiments.

While the median time for RPPR and BRPPR was below two seconds, the
median time for the PHRank algorithms was around 20 minutes (with the
longest run at 34 hours). This still compares favorably to the exact algo-
rithm, which always takes over one hour to compute and requires all the data in
the graph.

5. An Application to Privately Personalized Web Search

In this section, we envision a personalized web search scenario involving the use
of our approximation algorithms for PageRank. We indicate how, in the near
future, our algorithms can help provide personalized search results to a web
user without violating the user’s privacy. Concurrently, our model exploits the
under-utilized potential of the client machine.

It is beyond the scope of this paper to describe and evaluate an actual im-
plementation of the envisioned personalized web search engine, as we will treat
this topic in a separate work. However, we want to provide further motivation
for our current work and explain how our algorithm will be essential in such a
scenario.

On personal machines, users store an abundance of information. Much of this
information is about the taste and preferences of the users. Many users bookmark
pages that contain significant information and value. We propose to utilize these
pages for a personalized PageRank algorithm. We use the bookmarks as the reset
distribution for personalized PageRank.

�

�

“imvol3” — 2007/7/25 — 21:25 — page 285 — #29
�

�

�

�

�

�

Gleich and Polito: Approximating Personalized PageRank with Minimal Use of Web Graph Data 285

An exact computation of personalized PageRank requires the link structure
for the entire web. However, we presented algorithms that compute a good
approximation of the personalized PageRank examining only a portion of the
web that is close to the favorites themselves, where the distance is measured
in terms of clicks away. We propose a definition of Local Web based on this
criterion.

Definition 5.1. The Local Web of a user is formed by the webpages that have a
personalized PageRank score larger than a fixed threshold ε, where the person-
alization vector is uniform on the user’s favorites.

With our definition of the Local Web, we need to state how it can be built and
used. Initially, in our system, the client machine performs a targeted crawling
from the user’s favorites. The crawling algorithm is guided by the approximate
algorithms from Section 2. For each page, the client stores the URL and the
outgoing links. Later, the system computes an approximation of the personalized
PageRank score for the page. Because the personalized PageRank scores are
additive with respect to the personalization vector, it suffices to work with only
one favorite at a time [Jeh and Widom 03].

As an initial estimate to investigate the feasibility of the system, we wanted to
estimate the size of the Local Web. Toward that end, we verified in smaller-scale
experiments the claim that there is only a small percentage of webpages with
nonnegligible personalized PageRank scores. Thus, we anticipate that the Local
Web will not exceed 0.1–1% of the total pages.

The current estimate of the size of the crawled web is around 20 billion
pages [Mayer 05]; this yields a Local Web of 20–200 million pages. We esti-
mate that the storage required for just the link structure of such a web is less
than 20 GB.

The scenario we envision, therefore, requires higher computational power and
memory than the current average desktop or laptop. However, this amount is
feasible for current high-end machines, and it is reasonable to assume that soon
we will have local machines able to deal with such data structures in memory.

When the user decides to add a favorite, two things need to be updated:

• the personalized score of the pages currently in the Local Web and

• the set of pages forming the Local Web and their personalized scores.

Our approximate algorithms (Section 2) perform the first task in real time.
The second task, guided by the same approximate algorithms, could be per-
formed offline. Hopefully, this task will last at most overnight.

�

�

“imvol3” — 2007/7/25 — 21:25 — page 286 — #30
�

�

�

�

�

�

286 Internet Mathematics

Introducing the Local Web motivates a new usage model for web search. In
this new model, the user inputs a query, and the client machine receives a set
of URLs relevant to the query from the server—as it is done today. In the
new scenario, however, the URLs would be accompanied by some score of their
relevance and are not simply preranked.

The next step is to select results from the Local Web relevant to the query,
together with their personal ranking. After the client machine has selected some
local results, the client combines the result lists from the search server and the
local personalization information to generate the final set of results. In the
following paragraphs, we discuss a few possibilities for how these operations
might be implemented.

We envision two possibilities for selecting a set of local pages relevant to the
query. In the first, the client machine has a Local Web search engine, which
locally retrieves the pages related to the query. This option guarantees that we
fully exploit the potential of the Local Web but requires larger storage space
for an inverted index. A second option is based on the assumption that the
client is able to receive a large number or URLs from the server quickly. In this
scenario, the client only uses the subset of returned results contained within the
Local Web. This requires the client machine to only store the web graph and
the URLs of the local pages. In this scenario, however, it is possible that we lose
some pages that are contained in the Local Web but were not included in the
large list communicated by the server.

Once we have selected a potential set of pages from the Local Web, the client
still needs to combine the global search data with the local personalization data.
For each page of the Local Web, we have a score—the approximate personalized
PageRank score. In a complete web-search scenario, we will have more scoring
components associated with each page—as is the case for scoring systems of
popular web search engines. In this paper, we focus on link analysis scores;
hence, we’ll indicate one combination procedure for PageRank scores. Similar
procedures can be performed with combinations of other scores.

At this point, we have a set of pages relevant to the query, coming from the
server, from the Local Web, or from both. Each one has two PageRank scores:
one from the server relative to a global teleportation vector and one privately
stored on the client relative to a personalized teleportation vector. This second
score is indeed an accurate approximation of the exact score, computed locally
and without disclosing personalization parameters. We propose to use a weighted
linear combination of the two. By the linearity property of the solution of the
PageRank linear system, this corresponds to computing a PageRank vector with
a teleportation distribution that is a weighted combination of a uniform vector
and the personalized one.

�

�

“imvol3” — 2007/7/25 — 21:25 — page 287 — #31
�

�

�

�

�

�

Gleich and Polito: Approximating Personalized PageRank with Minimal Use of Web Graph Data 287

6. Related Work

While we believe our work in this area to be novel, there are some strong rela-
tionships with previous work in five areas: personalized PageRank computing,
focused crawling, community finding, private personalized search, and decen-
tralized search. Further, there are many excellent survey results about Page-
Rank and personalized PageRank computation. Two we wish to highlight are
Berkhin [Berkhin 05] and Langville [Langville and Meyer 04b].

6.1. Personalized PageRank

Jeh and Widom created a hub and skeleton system to efficiently compute a
large number of personalized PageRank vectors [Jeh and Widom 03]. In this
system, each user has a unique personalized PageRank vector that is biased to-
ward his or her interests. There are two problems with this approach. First,
users must disclose a set of pages representing their interests to the search en-
gine. The search engine must keep these records on file in order to produce
the personalization at query time. Second, it creates a large computation task
for the web search server, which we believe would be more appropriate to per-
form on the client. Other work on PageRank acceleration focuses on using the
full web graph data in the most effective manner for global PageRank [Kam-
var et al. 03b, Langville and Meyer 04a, McSherry 05]. Our ideas focus on
using less web graph data to quickly compute an approximation to personalized
PageRank.

Kamvar et al. exploited the block structure of the web to speed up the com-
putation of PageRank; they also propose a fast computation of personalized
PageRank, with the restriction that the user is allowed to choose only hosts as
personal teleportation targets [Kamvar et al. 03a]. All these methods are very
appealing if the goal is to compute, store, and retrieve tens of thousands of dif-
ferent personalized vectors on a server; however, we believe that our algorithms
bring considerable advantages when computing a few hundreds of personalized
PageRank vectors on a client-side machine.

A different approach that does not require full storage of the web graph was
proposed by Abiteboul et al. [Abiteboul et al. 03]. Their algorithm continually
updates a page ranking vector as a crawler processes through the web. While this
method does not compute a personalized PageRank score, it computes something
with similar properties.

An alternative approach that does compute an approximation to personalized
PageRank was presented by Fogaras et al. [Fogaras et al. 04]. To compute per-
sonalized PageRank scores, they use a Monte Carlo approximation to precom-

�

�

“imvol3” — 2007/7/25 — 21:25 — page 288 — #32
�

�

�

�

�

�

288 Internet Mathematics

pute a manageable-size index. This index provides personalization scores for
online queries. Their idea differs from previous approaches and yields personal-
ized PageRank scores for any personalization vector, instead of personalization
vectors that combine a few topic vectors or have a limited number of personaliza-
tion pages. Our work differs because our focus is to reduce the use of web graph
data and our framework does not involve any precomputation or a central server
or any randomness. Thus, our work is decentralized and allows total privacy
of the personalization parameters. Another related approximation method was
recently proposed [Sarlós et al. 06].

We also found that Chien et al. used an algorithm similar to our restricted
personalized PageRank algorithm to compute the change in PageRank following
small changes in web graph structure [Chien et al. 04].

Other flavors of personalized or topic-biased PageRank exist: Haveliwala’s
topic-sensitive PageRank enforces random restarts on a selected number of pages
relative to a specific topic in order to obtain a PageRank biased toward that
topic [Haveliwala 02]. Richardson and Domingos proposed a modified Page-
Rank algorithm where a probabilistic model of the relevance of the page to the
query “guides” the “random surfer” [Richardson and Domingos 01]. However,
an efficient execution requires precomputing of a considerable number of such
PageRank vectors, for several possible query words.

Both Berkhin [Berkhin 06] and Andersen et al. [Andersen et al. 06] pro-
posed approximate personalized PageRank algorithms based on similar PageR-
ank properties to the ones that we exploit. The key difference is that these
algorithms focus on “single-page” modifications to the PageRank vector. That
is, rather than taking a power method step on the local graph as in our algo-
rithms, Berkhin and Andersen analyze “micro-steps” or “push” operations that
correspond to the portion of the step that a power method takes. Both of these
papers provide detailed runtime bounds for their algorithms. As the vision of a
Local Web search system running on a client motivated the development of our
algorithm, we decided instead to focus on empirical evaluation of computational
times in common cases rather than on a theoretical analysis of it. Nevertheless,
we gave theoretical bounds on their accuracy.

6.2. Focused Crawling

One possible interpretation of the goal of our approximate algorithms is to build
a focused crawler for the user’s personalization interests. Cho et al. used an
algorithm similar to our restricted personalized PageRank algorithm to guide a
crawler to find all the hot pages on the web (pages with high PageRank) [Cho

�

�

“imvol3” — 2007/7/25 — 21:25 — page 289 — #33
�

�

�

�

�

�

Gleich and Polito: Approximating Personalized PageRank with Minimal Use of Web Graph Data 289

et al. 98]. Our work differs in that we are concerned only with personalized
PageRank, which represents a smaller and more tractable goal from a crawling
perspective. Chakrabarti et al. used a classification process to guide the crawler
to pages that are likely to be related [Chakrabarti et al. 99].

6.3. Community Finding

Another set of related work stems from community finding on the web. We can
equivalently cast our algorithms as attempts to find the community of pages
related to the user’s interests. This follows from the assumption that the com-
munity of pages forming the user’s Local Web (and therefore, influencing the
personalized PageRank score) is clustered. Because the PageRank vector is re-
lated to a random walk on the underlying web graph, we would suspect that the
PageRank values would experience a step-like threshold if there are good cuts
in the graph near the personalization pages. Flake et al. used graph cuts to
infer community structure in the web graph [Flake et al. 00], and hence, we can
view our approximate algorithms as personalized community search. Andersen
and Lang expanded a seed set into a community with small conductance and a
strong relationship to the seed, while examining only a small neighborhood of
the entire graph [Andersen and Lang 06]. Later, the same authors proposed a
local graph partitioning algorithm based on personalized PageRank [Andersen
et al. 06].

6.4. Personalization Privacy

The concern of protecting user’s privacy in personalizing web search results was
expressed by Teevan et al. [Teevan et al. 05]. They proposed a solution that would
involve the computational potential of the client. They focused on extracting
personalization information from web data already present on the desktop and
on reranking the web search results on the client side. Pitkow et al. proposed a
similar method as well as a query-modification method based on personalization
data [Pitkov et al. 02]. Our approach for using our algorithms in the context
of personalized search differs in the sense that the client machine is involved
in discovering new personally relevant data, namely the Local Web. This goes
beyond the previously proposed scenario where the client machine utilizes data
already present on the desktop to retrieve a personal profile of the user.

6.5. Decentralized Search

Recently, several models and prototypes have been proposed for peer-to-peer
web search systems (see, e.g., [Bender et al. 05, Suel et al. 03, Reynolds and

�

�

“imvol3” — 2007/7/25 — 21:25 — page 290 — #34
�

�

�

�

�

�

290 Internet Mathematics

Vadhat 03]). Those system do not rely on a central server to provide the user with
web search results, but rather they explore distributed indexing and peer-to-peer
communication techniques. In each of these models, peers contain collections of
webpages. The research into these models is analyzing how to search different
peer collections. However, there is no indication of what a single collection should
contain. The experiments presented in these papers use thematic collections of
webpages on each peer. Our work is complementary to these ideas. We provide
algorithms for guiding the collection of a local set of pages that have a personal
value and are a good approximation to the set of pages with high personalized
PageRank.

7. Conclusion

In this paper we proposed efficient algorithms that allow us to compute accurate
approximations of personalized PageRank scores by utilizing only the strictly
necessary information out of the web graph data. We evaluated these algorithms
on various web graphs, with size as large as 118 million nodes. One of our
algorithms (Algorithm 3, boundary-restricted personalized PageRank) showed
very good performance in terms of approximation and can almost run in real time
to update scores following an update of the personalization parameters. Another
(Algorithm 5, boundary PageHostRank) demonstrated excellent performance.
It requires a larger, yet manageable, amount of data from the web graph to be
used. While this algorithm takes considerably longer to run, we believe a parallel
implementation can be developed to reduce the runtime.

Our algorithms also support the possibility of building a web search system
that offers personalized search results to a web user without violating the user’s
privacy. Our model harnesses extra computation power on the client computer
in a hybrid client-server usage model.

8. Future Work

We are currently working on the parallelization potential of our approximation
algorithms, in order to fully take advantage of current and future client machine
features and to improve the speed of PageHostRank.

More experiments are needed to establish accuracy and efficiency of the ap-
proximation algorithms when varying the tolerance parameter. In particular,
we need to perform a comparison between the approximation algorithms under
different fixed conditions than the tolerance parameter, such as the time that
the algorithm is allowed to run and the number of active pages allowed.

�

�

“imvol3” — 2007/7/25 — 21:25 — page 291 — #35
�

�

�

�

�

�

Gleich and Polito: Approximating Personalized PageRank with Minimal Use of Web Graph Data 291

Finally, there are many details inside the algorithms that we have heuristically
chosen for this paper. First, in the boundary-restricted personalized PageRank
algorithm, the theoretical result only depends on pushing the rank on the frontier
below κ and does not depend at all on the details of how this occurs. This
suggests that some heuristics may yield algorithms with better performance in
terms of the number of pages explored. Likewise, the PageHostRank algorithm
may perform better with more sophisticated models of the host graph. The
theoretical bounds apply as long as there is some way to relate the agglomerated
graph to a lumpable graph over all vertices along with an additional set of host
vertices.

A specific crawling system needs to be built in order to construct data sets
that represent the Local Web exactly following our definition. Moreover, the
client machine contains more information such as the web cache, or click history,
that could indicate more personalization direction.

We designed the algorithms in this paper to be accurate and efficient inside of
a client-side Local Web search system. However, these algorithms may also be
useful in a server-based system. The key issue is how best to use them inside of a
server-based system in conjunction with other methods such as those suggested
by Jeh and Widom [Jeh and Widom 03].

Furthermore, the Local Web itself needs further analysis. We can calculate
other link-analysis scoring algorithms—even significantly more expensive algo-
rithms than are not possible on the full web. For example, Kleinberg’s HITS
algorithm [Kleinberg 99] could be computed locally in response to a query, and
the hub and authority scores could be substituted for personalized PageRank
scores to compute a final ranking. Also, extremely intricate content analysis is
possible if we compute and store an inverted index along with the link struc-
ture. We need to perform user-evaluation experiments with suitable evaluation
criteria.

The coarse-level vision that we provided in Section 5 needs to be refined, and
more components than PageRank need to be integrated. Moreover, our envi-
sioned system stresses privacy and does not address the need for collaboration
between users that has recently emerged in popular applications and in research
work on P2P web search (e.g., [Bender et al. 05, Suel et al. 03, Reynolds and
Vadhat 03]). The concepts and algorithms presented in this paper need to be
integrated in a larger system, where peers voluntarily share (partial) information
of each one’s Local Web and personalized ranking.

Acknowledgements. We are grateful to Ara Nefian and Carole Dulong for the numerous
discussions and inputs in the definition and development stages of this project. We
would also like to thank the reviewers for their insightful suggestions and comments on

�

�

“imvol3” — 2007/7/25 — 21:25 — page 292 — #36
�

�

�

�

�

�

292 Internet Mathematics

the first version of this paper. Work by both authors was performed at the Application
Research Lab, Microprocessor Technology Labs, Intel Corporation, Santa Clara, CA
95052.

References

[Abiteboul et al. 03] S. Abiteboul, M. Preda, and G. Cobena. “Adaptive On-Line Page
Importance Computation.” In Proceedings of the 12th International Conference
on World Wide Web, pp. 280–290. New York: ACM Press, 2003.

[Andersen and Lang 06] R. Andersen and K. J. Lang. “Communities from Seed Sets.”
In Proceedings of the 15th International Conference on World Wide Web, pp. 223–
232. New York: ACM Press, 2006.

[Andersen et al. 06] R. Andersen, F. Chung, and K. J. Lang. “Local Graph Partition-
ing Using PageRank Vectors.” In 47th Annual IEEE Symposium on Foundations
of Computer Science, pp. 475–486. Los Alamitos, CA: IEEE Press, 2006.

[Arasu et al. 02] A. Arasu, J. Novak, A. Tomkins, and J. Tomlin. “PageRank Com-
putation and the Structure of the Web: Experiments and Algorithms.” In The
11th International Conference on World Wide Web Posters Proceedings. Available
online (http://www2002.org/CDROM/poster/173.pdf), 2002.

[Bender et al. 05] M. Bender, S. Michel, P. Triantafillou, G. Weikum, and C. Zimmer.
“MINERVA: Collaborative P2P Search.” In Proceedings of the 31st International
Conference on Very Large Data Bases, pp. 1263–1266. New York: VLDB Endow-
ment, 2005.

[Berkhin 05] P. Berkhin. “A Survey on PageRank Computing.” Internet Mathematics
2:1 (2005), 73–120.

[Berkhin 06] P. Berkhin. “Bookmark Coloring Approach to Personalized PageRank.”
Internet Mathematics 3:1 (2006), 41–62.

[Bianchini et al. 05] M. Bianchini, M. Gori, and F. Scarselli. “Inside PageRank.” ACM
Trans. Inter. Tech. 5:1 (2005), 92–128.

[Boldi and Vigna 04] P. Boldi and S. Vigna. “The WebGraph Framework I: Compres-
sion Techniques.” In Proceedings of the 13th International Conference on World
Wide Web, pp. 595–602. New York: ACM Press, 2004.

[Brin and Page 98] S. Brin and L. Page. “The Anatomy of a Large-Scale Hypertextual
(Web) Search Engine.” Computer Networks 30 (1998), 107–117.

[Chakrabarti et al. 99] S. Chakrabarti, M. van den Berg, and B. Dom. “Focused Crawl-
ing: A New Approach to Topic-Specific Web Resource Discovery.” Proc. WWW8,
Computer Networks 31:11–16 (1999), 1623–1640.

[Chien et al. 04] S. Chien, C. Dwork, R. Kumar, D.R. Simon, and D. Sivakumar. “Link
Evolution: Analysis and Algorithms.” Internet Mathematics 1:3 (2004), 277–304.

[Cho et al. 98] J. Cho, H. Garćıa-Molina, and L. Page. “Efficient Crawling Through
URL Ordering.” Proc. WWW7, Computer Networks 30:1–7 (1998), 161–172.

�

�

“imvol3” — 2007/7/25 — 21:25 — page 293 — #37
�

�

�

�

�

�

Gleich and Polito: Approximating Personalized PageRank with Minimal Use of Web Graph Data 293

[Flake et al. 00] G. Flake, S. Lawrence, and C. Lee Giles. “Efficient Identification of
Web Communities.” In Proceedings of the Sixth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 150–160. New York:
ACM Press, 2000.

[Fogaras et al. 04] D. Fogaras, B. Rácz, K. Csalogány, and T. Sarlós. “Towards Scal-
ing Fully Personalized PageRank.” In Algorithms and Models for the Web-Graph:
Third International Workshop, WAW 2004, Rome, Italy, October 16, 2004, Pro-
ceedings, Lecture Notes in Computer Science 3243, pp. 105–117. Berlin: Springer
Verlag, 2004.

[Haveliwala 02] T. Haveliwala. “Topic-Sensitive PageRank.” In Proceedings of the 11th
International Conference on World Wide Web, pp. 517–526. New York: ACM
Press, 2002.

[Horton 97] G. Horton. “On the Multilevel Solution Algorithm for Markov Chains.”
Technical Report NASA CR-201671 ICASE Report No. 97-17, NASA Langley
Research Center, 1997.

[Jeh and Widom 03] G. Jeh and J. Widom. “Scaling Personalized Web Search.” In
Proceedings of the 12th international conference on World Wide Web, pp. 271–279.
New York: ACM Press, 2003.

[Kamvar 03] Sepandar D. Kamvar. Sepandar D. Kamvar’s homepage. Data section
includes Stanford and Stanford-Berkeley data sets. Available online (http://www.
stanford.edu/∼sdkamvar/research.html), 2003.

[Kamvar et al. 03a] S. Kamvar, T. Haveliwala, C. Manning, and G. Golub. “Exploiting
the Block Structure of the Web for Computing PageRank.” Technical report,
Stanford University, 2003.

[Kamvar et al. 03b] S. D. Kamvar, T. H. Haveliwala, C. D. Manning, and G. H. Golub.
“Extrapolation Methods for Accelerating PageRank Computations.” In Proceed-
ings of the 12th International Conference on World Wide Web, pp. 261–270. New
York: ACM Press, 2003.

[Kemeny and Snell 83] J. Kemeny and J. L. Snell. Finite Markov Chains, Undergrad-
uate Texts in Mathematics. New York: Springer Verlag, 1983.

[Kleinberg 99] J. M. Kleinberg. “Authoritative Sources in a Hyperlinked Environ-
ment.” Journal of the ACM 46:5 (1999), 604–632.

[Langville and Meyer 04a] A. Langville and C. Meyer. “Updating PageRank with It-
erative Aggregation.” In Proceedings of the 13th International World Wide Web
Conference on Alternate Track Papers & Posters, pp. 392–393. New York: ACM
Press, 2004.

[Langville and Meyer 04b] Amy N. Langville and Carl D. Meyer. “Deeper Inside
PageRank.” Internet Mathematics 1:3 (2004), 335–380.

[Mayer 05] Tim Mayer. “Our Blog is Growing Up—And So Has Our Index,”
Yahoo! Search Blog. Available online (http://www.ysearchblog.com/archives/
000172.html), 2005.

[McSherry 05] F. McSherry. “A Uniform Approach to Accelerated PageRank Compu-
tation.” In Proceedings of the 14th International Conference on World Wide Web,
pp. 575–582. New York: ACM Press, 2005.

�

�

“imvol3” — 2007/7/25 — 21:25 — page 294 — #38
�

�

�

�

�

�

294 Internet Mathematics

[Pitkov et al. 02] J. Pitkov, H. Schutze, T. Cass, R. Cooley, D. Turnbull, A. Edmonds,
E. Adar, and T. Breuel. “Personalized Search.” Communications of the ACM
45:9 (2002), 50–55.

[Reynolds and Vadhat 03] P. Reynolds and A. Vadhat. “Efficient Peer-to-Peer Key-
word Searching.” In Middleware 2003: ACM/IFIP/USENIX International Mid-
dleware Conference, Rio de Janeiro, Brazil, June 16–20, 2003, Proceedings, Lec-
ture Notes in Computer Science 2672, pp. 21–40. New York: Springer, 2003.

[Richardson and Domingos 01] M. Richardson and P. Domingos. “The Intelligent
Surfer: Probabilistic Combination of Link and Content Information in Page-
Rank.” Advances in Neural Information Processing Systems 14. Available online
(http://books.nips.cc/papers/files/nips14/AA57.pdf), 2001.

[Sarlós et al. 06] T. Sarlós, A. A. Benczúr, K. Csalogány, D. Fogaras, and B. Rácz.
“To Randomize or Not To Randomize: Space Optimal Summaries for Hyperlink
Analysis.” In Proceedings of the 15th International Conference on World Wide
Web, pp. 297–306. New York: ACM Press, 2006.

[Suel et al. 03] T. Suel, C. Mathur, J.-W. Wu, J. Zhang, A. Delis, M. Kharrazi,
X. Long, and K. Shanmugasundaram. “ODISSEA: A Peer-to-Peer Architecture
for Scalable Web Search and Information Retrival.” International Workshop on
the Web and Databases (WebDB).

[Teevan et al. 05] J. Teevan, S. T. Dumais, and E. Horvitz. “Personalizing Search
via Automated Analysis of Interests and Activities.” In Proceedings of the 28th
Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval, pp. 449–456. New York: ACM Press, 2005.

[Vigna 06] Sebastiano Vigna. “WebGraph.” Available online (http://webgraph.dsi.
unimi.it/), 2006.

David Gleich, Institute for Computation and Mathematical Engineering, Stanford
University, Stanford, CA 94305 (dgleich@stanford.edu)

Marzia Polito, ABInventio, Altadena, CA 91101 (marzia@abinventio.com)

Received April 14, 2006; accepted October 4, 2006.

