
Homology, Homotopy and Applications, vol. 14(1), 2012, pp.19–32

A HOMOTOPY COLIMIT THEOREM FOR DIAGRAMS
OF BRAIDED MONOIDAL CATEGORIES

A.R. GARZÓN and R. PÉREZ

(communicated by Graham Ellis)

Abstract
Thomason’s Homotopy Colimit Theorem has been extended

to bicategories and this extension can be adapted, through the
delooping principle, to a corresponding theorem for diagrams of
monoidal categories. In this version, we show that the homotopy
type of the diagram can also be represented by a genuine sim-
plicial set nerve associated with it. This suggests the study of a
homotopy colimit theorem, for diagrams B of braided monoidal
categories, by means of a simplicial set nerve of the diagram.
We prove that it is weak homotopy equivalent to the homotopy
colimit of the diagram, of simplicial sets, obtained from com-
posing B with the geometric nerve functor of braided monoidal
categories.

1. Introduction

The Grothendieck construction
∫
I
C [13] on a diagram of categories C : Iop → Cat

has recently been extended to the context of 2-categories [10] and, more broadly,
of bicategories [5]. These results allowed Thomason’s well-known Homotopy Colimit
Theorem [19] to be extended to diagrams of 2-categories [10, Theorem 4.5] and
diagrams of bicategories [5, Theorem 7.3]. Through the elemental delooping con-
struction [15], a monoidal category M = (M,⊗, a, I, l, r) [16] can be regarded as a
bicategory Ω−1M with only one object, and therefore the latter extension provides
a corresponding theorem for diagrams of monoidal categories. In this theorem, we
note that the homotopy type of the homotopy colimit of the diagram can also be
represented by a genuine simplicial set nerve associated with the diagram. A braided
monoidal category M = (M,⊗, a, I, l, r, c) [14] defines, by double delooping, a one-
object, one-arrow tricategory Ω−2M [3, 15]. Although neither the Grothendieck con-
struction nor the homotopy colimit theorem is known for diagrams of tricategories, the
above remark suggests an extension of Thomason’s theorem to diagrams of braided
monoidal categories B : Iop → BrMonCat. The composite of B with the geometric
nerve Ner of braided monoidal categories [6] gives a diagram of simplicial sets whose
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homotopy colimit is the focus of our study. We use a notion of nerve NerI B, associ-
ated with the diagram B, which is a particular case of a general notion for the nerve
of a pseudofunctor of braided monoidal categories introduced in [7]. In fact, we show
that NerI B can represent the homotopy type of the diagram through the existence
(Theorem 3.1) of a natural weak homotopy equivalence η : hocolimI NerB → NerI B.

2. Preliminaries

We start by fixing notations and terminology and reviewing necessary results from
the background of (bi)simplicial sets used throughout the paper. We employ the
standard symbolism and nomenclature to be found in texts on simplicial homotopy
theory (see [11, 17]).

Hereafter, we shall regard each ordered set [n] = {0, 1, . . . , n} as the category with
exactly one arrow j → i if i 6 j. Then, a non-decreasing map [m] → [n] is a functor
so that we can see ∆, the simplicial category of finite ordinal numbers, as a full sub-
category of Cat, the category of small categories. Simpl.Set denotes the category
of simplicial sets, that is, functors S : ∆op → Set. A weak homotopy equivalence of
simplicial sets is a simplicial map whose geometric realization is a homotopy equiva-
lence.

A bisimplicial set is a functor S : ∆op ×∆op → Set. This amounts to a family of
sets {Sp,q; p, q > 0} together with horizontal and vertical face and degeneracy opera-
tors

Sp+1,q Sp,q

shioo
dhi // Sp−1,q, Sp,q+1 Sp,q

svjoo
dvj // Sp,q−1,

with 0 6 i 6 p and 0 6 j 6 q respectively, such that, for all p and q, both Sp,∗ and
S∗,q are simplicial sets and the horizontal operators commute with the vertical ones.
Bisimpl.Set denotes the category of bisimplicial sets.

We shall use the bar construction on a bisimplicial setWS, also called its codiagonal
or total complex. Let us recall that the functor

W : Bisimpl.Set → Simpl.Set

can be described, for any given bisimplicial set S, as follows [1, §III]: the set of
p-simplices of WS is{

(t0,p, . . . , tp,0) ∈
p∏

m=0

Sm,p−m | dv0tm,p−m = dhm+1tm+1,p−m−1, 0 6 m < p
}

and, for 0 6 i 6 p, the faces and degeneracies of a p-simplex are given by

di(t0,p, . . . , tp,0) = (dvi t0,p, . . . , d
v
i ti−1,p−i+1, d

h
i ti+1,p−i−1, . . . , d

h
i tp,0),

si(t0,p, . . . , tp,0) = (svi t0,p, . . . , s
v
0ti,p−i, s

h
i ti,p−i, . . . , s

h
i tp,0).

On the other hand, by composing with the diagonal functor diag : ∆op → ∆op ×∆op,
the bisimplicial set S also provides another simplicial set diagS : [n] 7→ Sn,n, whose
face and degeneracy operators are given in terms of those of S by the formulas di =
dhi d

v
i and si = shi s

v
i , respectively.
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For any bisimplicial set S, there is a natural weak homotopy equivalence [8, 9]

Φ: diagS → WS (1)

that carries a p-simplex tp,p ∈ diagS to

Φtp,p =
(
(dh1 )

ptp,p, (d
h
2 )

p−1dv0tp,p, . . . , (d
h
m+1)

p−m(dv0)
mtp,p, . . . , (d

v
0)

ptp,p

)
.

The next subsection is devoted to recalling the extension to bicategories, shown
in [5], of Thomason’s Homotopy Colimit Theorem.

2.1. Thomason’s Homotopy Colimit Theorem for bicategories
Recall that the Grothendieck nerve functor Ner : Cat → Simpl.Set associates,

with every small category C, the simplicial set Ner C whose n-simplices are all functors

F : [n] → C or, equivalently, tuples of arrows in C, F = (Fj
Fi,j−−→ Fi)06i6j6n, such

that Fi,jFj,k = Fi,k for i 6 j 6 k and Fi,i = 1Fi. For any given small category I and
any diagram of categories C : Iop → Cat, the composite Ner C : Iop → Simpl.Set is
just a diagram of simplicial sets. The homotopy colimit construction by Bousfield and
Kan [4] of this diagram is the simplicial set

hocolimI Ner C : ∆op → Set

[n] 7→
∐

[n] σ−→I

Func([n], Cσ0).

Considering the Grothendieck construction
∫
I
C of the diagram C : Iop → Cat,

Thomason’s Homotopy Colimit Theorem states the following:

Theorem 2.1 ([19, Theorem 1.2]). For any diagram of categories C : Iop → Cat,
there is a natural weak homotopy equivalence

η : hocolimI Ner C → Ner

∫
I

C .

In this way, the classifying space of the category
∫
I
C (that is, the geometric real-

ization of its nerve) can be thought of as a homotopy colimit of the classifying spaces
of the categories Ci that arise from the initial input data i → Ci given by the diagram
of categories C.

Below we quickly review the extension to bicategories given in [5] of the above
theorem. For background concerning bicategories, we refer the reader to [2, 12, 18].
Bicat denotes the category of bicategories and homomorphisms between them (i.e.,
lax functors where the structure constraints are invertible). For any diagram of bicat-
egories C : Iop → Bicat, there is [5] a bicategorical Grothendieck construction

∫
I
C

that suitably assembles all bicategories Ci, i ∈ ObI. Also, for any small bicategory C,
we recall that the geometric nerve of C is the simplicial set

∆C : ∆op → Set

[n] 7→ LaxFunc([n], C)

whose n-simplices are all lax functors F : [n] → C. The unitary geometric nerve of C,
∆uC, is defined considering only normal (or unitary, i.e., when the unit constraints
are all identities) lax functors F : [n] → C.
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Then, Thomason’s theorem admits the following generalization to diagrams of
bicategories:

Theorem 2.2 ([5, Theorem 7.3]). For any diagram of bicategories C : Iop → Bicat,
there exists a natural weak homotopy equivalence of simplicial sets

η : hocolimI ∆C → ∆

∫
I

C, (2)

where ∆C : Iop → Simpl.Set is the diagram of simplicial sets obtained by composing
C with the geometric nerve functor ∆: Bicat → Simpl.Set.

Ten different (but homotopically equivalent) ways of defining the classifying space
of any bicategory have been shown in [5, Theorem 6.1]. The above theorem there-
fore establishes how the classifying space of the bicategorical Grothendieck construc-
tion

∫
I
C can be thought of as a homotopy colimit of the classifying spaces of the

bicategories Ci that arise from the initial input data i 7→ Ci given by the diagram of
bicategories C.

In the next subsection, we show how Theorem 2.2 provides a corresponding theorem
for monoidal categories in which, in addition, the homotopy colimit can be represented
by a genuine simplicial set nerve of the diagram.

2.2. Homotopy colimit theorem for monoidal categories

Below, MonCat denotes the category of monoidal categories and monoidal func-
tors between them. Note that every monoidal category M = (M,⊗, a, I, l, r) can be
regarded as a bicategory Ω−1M with only one object, ∗, whose morphisms are the
objects of M and whose deformations are the morphisms of M. The horizontal com-
position is given by the tensor functor ⊗ : M×M → M, the identity at the object
∗ is the unit object I of M, and the associativity, left and right unit constraints
for Ω−1M are just those of the monoidal category. This observation, due to J. Ben-
abou [2], that monoidal categories are essentially the same as bicategories with just
one object, is known as the delooping principle, and the bicategory Ω−1M is called the
delooping of the monoidal category [15, 2.10]. Thus, we have the delooping embedding
Ω−1 : MonCat → Bicat.

If M : Iop → MonCat, (j
a→ i) 7→ (Mi

a∗

→ Mj), is a diagram of monoidal cate-
gories, then it follows from Theorem 2.2 that the homotopy type of M is modelled by
the bicategory

∫
I
Ω−1M, after the existence, according to (2), of a weak homotopy

equivalence

η : hocolimI ∆Ω1M → ∆

∫
I

Ω−1M. (3)

But, as we shall see in detail below, the homotopy type of the diagram M can also
be represented by a simplicial set associated to it, namely NerI M, the nerve of the
diagram defined in [7].

Recall that a 2-cocycle of I with coefficients in M is a system of data (Y, f)
consisting of:

– For each arrow j
a→ i in I, an object Ya ∈ Mj .
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– For each pair of composable arrows in I, k
b→ j

a→ i, a morphism in Mk

b∗Ya ⊗ Yb

fa,b // Yab,

such that Y1j = I (the unit object of Mj), the morphisms f1,a : a
∗I⊗ Ya → Ya and

fa,1 : Ya ⊗ I → Ya are the canonical isomorphisms given by the unit constraints of
the monoidal category Mj and the monoidal functor a∗, and for any three compos-

able triplet, `
c→ k

b→ j
a→ i, of morphisms in I, the coherence condition given by the

commutativity of the following diagram in M`:

(c∗b∗Ya ⊗ c∗Yb)⊗ Yc

∼= // c∗(b∗Ya ⊗ Yb)⊗ Yc

c∗fa,b ⊗ 1
// c∗Yab ⊗ Yc

fab,c
��

c∗b∗Ya ⊗ (c∗Yb ⊗ Yc)

∼=

OO

1⊗ fb,c // c∗b∗Ya ⊗ Ybc

fa,bc // Yabc

(4)

(where the unnamed isomorphisms are canonical) must hold.

Then, NerI M, the nerve of the diagram, is defined as the simplicial set

NerI M : [n] 7→
⊔

G : [n]→I

Z2
(
[n],MG

)
,

where G : [n] → I is any functor and Z2
(
[n],MG

)
is the set of 2-cocycles of [n] in

the composite functor [n]
G−→ I

M−→ MonCat.

Recalling that the unitary geometric nerve of any small bicategory C is the sim-
plicial set

∆uC : ∆op → Set

[n] 7→ NorLaxFunc([n], C)

whose n-simplices are all normal (or unitary, i.e., when the unit constraints are all
identities) lax functors F : [n] → C, now we can prove the following:

Proposition 2.3. For any diagram of monoidal categories M : Iop → MonCat,
there is a natural isomorphism of simplicial sets

NerI M ∼= ∆u

∫
I

Ω−1M.

Proof. The isomorphism will be clear after describing the simplices of both simplicial
sets in each dimension.

First we observe that, according to the general construction of the bicategorical
Grothendieck construction [5], the bicategory

∫
I
Ω−1M has, as objects, pairs (∗i, i)

where i ∈ Ob I and ∗i is the unique object of Ω−1Mi. Thus, Ob
∫
I
Ω−1M ∼= Ob I. A

morphism from (∗j , j) to (∗i, i) is a pair (X, a), where a : j → i is a morphism in I
and X ∈ ObMj , and a 2-cell from (X, a) to (Y, a) is just a morphism α : X → Y in
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Mj . The horizontal composition functor is given by

(∗k, k)

(Z,b)

&&

(T,b)

88
⇓ β (∗j , j)

(X,a)

%%

(Y,σ)

99
⇓ α (∗i, i) � ◦ // (∗k, k)

(b∗X⊗Z,a b)

((

(b∗Y⊗T,a b)

66
⇓ b∗α⊗ β (∗i, i),

where b∗ : Ω−1Mj → Ω−1Mk is the homomorphism induced by b : k → j.
Then, the unitary geometric nerve of the bicategory

∫
I
Ω−1M is the simplicial set

whose n-simplices, the normal lax functors [n] →
∫
I
Ω−1M, are described as follows

(see [5, Lemma 4.2]):
– In dimension zero, (∆u

∫
I
Ω−1M)0 = Ob

∫
I
Ω−1M ∼= Ob I.

– The 1-simplices F : [1] →
∫
I
Ω−1M of ∆u

∫
I
Ω−1M are the morphisms in∫

I
Ω−1M from F1 = (∗F1, F1) to F0 = (∗F0, F0), that is, pairs (X0,1, F0,1), where

X0,1 : ∗F1 → ∗F1 is a morphism in Ω−1MF1 (i.e., an object of MF1) and F0,1 : F1 →
F0 is a morphism in I.

– The 2-simplices F : [2] →
∫
I
Ω−1M are triangles

(∗F1, F1)

(X0,1,F0,1)

xxqqqqqqqqqq
F̂0,1,2

��
(∗F0, F0) (∗F2, F2),

(X0,2,F0,2)
oo

(X1,2,F1,2)
ffMMMMMMMMMM

where F̂0,1,2 : (X0,1, F0,1) ◦ (X1,2, F1,2) ⇒ (X0,2, F0,2) is a deformation in
∫
I
Ω−1M.

Then, F̂0,1,2 : (F
∗
1,2X0,1 ⊗X1,2, F0,1F1,2) ⇒ (X0,2, F0,2), and therefore F0,1F1,2 = F0,2

and F̂0,1,2 is just a deformation F0,1,2 : F
∗
1,2X0,1 ⊗X1,2 → X0,2 in Ω−1MF2, that is,

a morphism in MF2 from F ∗
1,2X0,1 ⊗X1,2 to X0,2.

Then, a 2-simplex of ∆u
∫
I
Ω−1M is a tuple (F0, F1, F2, F0,1, F0,2, F1,2, F0,1,2),

where Fi, i = 0, 1, 2 are objects of I, Fi,j : Fj → Fi, 0 6 i < j 6 2, are morphisms
in I such that F0,1F1,2 = F0,2, and F0,1,2 : F

∗
1,2X0,1 ⊗X1,2 → X0,2 is a morphism in

MF2 with X0,1 ∈ ObMF1 and X1,2, X0,2 ∈ ObMF2.
– If n > 3, then a n-simplex F : [n] →

∫
I
Ω−1M is determined by objects Fi of

I, 0 6 i 6 n; for any 0 6 i < j 6 n, by objects Xi,j ∈ ObMFj and morphisms in
I, Fi,j : Fj → Fi, such that, for any 0 6 i < j < k 6 n, Fi,jFj,k = Fi,k; and, for any
0 6 i < j < k 6 n, by morphisms in MFk, Fi,j,k : F

∗
j,kXi,j ⊗Xj,k → Xi,k such that,

for any 0 6 i < j < k < ` 6 n, the following diagram in MF`, where ‘can’ denotes a
composite of canonical isomorphisms, is commutative:

F ∗
k,`F

∗
j,kXi,j ⊗ F ∗

k,`Xj,k ⊗Xk,`

can

��

1⊗Fj,k,` // F ∗
j,`Xi,j ⊗Xj,`

Fi,j,`

��
F ∗
k,`(F

∗
j,kXi,j ⊗Xj,k)⊗Xk,`

F∗
k,`(Fi,j,k)⊗1

// F ∗
k,`Xi,k ⊗Xk,`

Fi,k,` // Xi,`.

The whole data giving the normal lax functor F : [n] →
∫
I
Ω−1M are obtained

by putting Xi,i = I, 0 6 i 6 n, where I is the unit object of MFi, and Fi,i,j : F
∗
i,jI ⊗

Xi,j → Xi,j and Fi,j,j : Xi,j ⊗ I → Xi,j , 0 6 i < j 6 n, given by canonical (left, right,
unit) constraints of the monoidal category MFj .
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As for the n-simplices of NerI M,⊔
G : [n]→I

Z2
(
[n],MG

)
,

they can be described as follows:

– A 0-simplex consists of a functorG : [0] → I and a 2-cocycle of [0] with coefficients
in MG. Thus, it is determined by the objects G0 of I and therefore

(NerI M)0 ∼= Ob(I) ∼= (∆u

∫
I

Ω−1M)0.

– A 1-simplex is given by a functorG : [1] → I and a 2-cocycle of [1] with coefficients
in MG. A functor G : [1] → I is just a 1-simplex of the nerve of the category I, that
is, a system (Gi,Gi,j : Gj → Gi), where Gi, i = 0, 1 are objects of I and Gi,j , 0 6 i 6
j 6 1, is a morphism in I with Gi,i = 1Gi, i = 0, 1. A 2-cocycle of [1] with coefficients
is MG consists of objects Yi,j ∈ ObMGj , 0 6 i 6 j 6 1, with Yi,i = I the unit object
of MGi. Thus, a 1-simplex consists of a system of data {(Gi,Gi,j : Gj → Gi, Yi,j)},
0 6 i 6 j 6 1, as above and therefore

(NerI M)1 ∼= (∆u

∫
I

Ω−1M)1.

– A 2-simplex is given by a functorG : [2] → I and a 2-cocycle of [2] with coefficients
in MG. A functor G : [2] → I is just a 2-simplex of the nerve of the category I; that
is, a system (Gi,Gi,j : Gj → Gi), where Gi, i = 0, 1, 2 are objects of I and Gi,j ,
0 6 i 6 j 6 2, is a morphism in I such that the equation Gi,jGj,k = Gi,k holds for
0 6 i 6 j 6 k 6 2, with Gi,i = 1Gi, i = 0, 1, 2. A 2-cocycle of [2] with coefficients in
MG is a system (Yi,j , Gi,j,k : G

∗
j,kYi,j ⊗ Yj,k → Yi,k) where Yi,j ∈ ObMGj , 0 6 i 6

j 6 2, with Yi,i = I the unit object of MGi, and where Gi,j,k, 0 6 i 6 j 6 k 6 2, are
morphisms in MGk such that, apart from G0,1,2 : G

∗
1,2Y0,1 ⊗ Y1,2 → Y0,2, Gi,i,j and

Gi,j,j , for any 0 6 i < j 6 2, are given by canonical constraints. All together, we have
the following:

(NerI M)2 ∼= (∆u

∫
I

Ω−1M)2.

Finally,

– If n > 3, a n-simplex of NerI M is given, on one hand, by a functor G : [n] → I;
that is, a system of data (Gi,Gi,j : Gj → Gi)06i<j6n, where Gi ∈ Ob I and Gi,j are
morphisms in I such that Gi,jGj,k = Gi,k for 0 6 i < j < k 6 n and Gi,i = 1Gi for
0 6 i < j < k 6 n. On the other hand, a 2-cocycle of [n] with coefficients in MG
is given by the system of data (Yi,j , Gi,j,k : G

∗
j,kYi,j ⊗ Yj,k → Yi,k)06i<j<k6n, where

Yi,j ∈ ObMGj , with Yi,i = I,, the unit object of MGi, for each 0 6 i 6 n, and Gi,j,k

are morphisms in MGk such that, for any 0 6 i < j 6 n, Gi,i,j and Gi,j,j are given
by the left and right constraints of the monoidal category MGj for the object Yi,j .
Moreover, for all 0 6 i 6 j 6 k 6 ` 6 n, the coherence condition of (4) must hold,
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that is, the following diagram must be commutative:

G∗
k,`G

∗
j,kYi,j ⊗G∗

k,`Yj,k ⊗ Yk,`

can

��

1⊗Gj,k,` // G∗
j,`Yi,j ⊗ Yj,`

Gi,j,`

��
G∗

k,`(G
∗
j,kYi,j ⊗ Yj,k)⊗ Yk,`

G∗
k,`(Gi,j,k)⊗1

// G∗
k,`Yi,k ⊗ Yk,`

Gi,k,` // Xi,` .

Then, for all n > 0,

(NerI M)n ∼= (∆u

∫
I

Ω−1M)n,

and so we have the announced isomorphism.

Since the weak homotopy equivalence (3) remains valid taking unitary geometric
nerves instead of geometric nerves, the above proposition gives us:

Theorem 2.4. For any diagram of monoidal categories M : Iop → MonCat, there
is a natural weak homotopy equivalence

η : hocolimI ∆
uΩ−1M → ∆u

∫
I

Ω−1M ∼= NerI M,

where ∆uΩ−1M : Iop → Simpl.Set is the diagram of simplicial sets obtained by the
composition of M with the unitary geometric nerve functor ∆u : Bicat → Simpl.Set.

In this way, the geometric realization of NerI M can be thought of as the homotopy
colimit of the classifying spaces of the monoidal categories Mi given by the initial
data.

3. Homotopy colimit theorem for braided monoidal categories

In this section, we give an extension of Theorem 2.4 to braided monoidal categories.
Recall that a braided monoidal category, M = (M,⊗, c), consists of a monoidal cat-
egory M = (M,⊗, a, I, l, r) together with a braiding, that is, a family of natural iso-
morphisms c = cX,Y : X ⊗ Y → Y ⊗X, X,Y ∈ ObM, satisfying suitable coherence
conditions [14]. The category of braided monoidal categories, and braided monoidal
functors between them, is denoted by BrMonCat.

Any braided monoidal category M = (M,⊗, c) defines [3, 15], by the categorical
delooping principle, a one-object (say ∗), one-arrow tricategory Ω−2M where the
objects of M are the 2-cells and the morphisms are the 3-cells (thus, Ω−2M(∗, ∗) =
Ω−1M and the braiding provides the interchange 3-cell between the two different
composites of 2-cells).

If B : Iop → BrMonCat is a diagram of braided monoidal categories, then the
above double delooping construction determines a diagram of tricategories. A hypo-
thetical Grothendieck construction for such a diagram, together with the considera-
tion of suitable nerves, should allow the direct extension of Thomason’s Homotopy
Colimit Theorem to braided monoidal categories. However, paralleling the monoidal
case, we can avoid using the Grothendieck construction to measure the homotopy
colimit of the diagram, of simplicial sets, obtained from composing the diagram B
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with the geometric nerve of braided monoidal categories [6, Definition 6.7]. This is
carried out by using the notion of nerve of a pseudofunctor of braided monoidal cat-
egories introduced in [7]. In the particular case of considering a diagram B : Iop →
BrMonCat, we shall prove that the homotopy type of the diagram can be repre-
sented by its nerve, NerI B, a simplicial set that we recall below.

A 3-cocycle of I with coefficients in B is a system of data (Y, f) consisting of:

– For every two composable arrows in I, k
τ−→ j

σ−→ i, an object Yσ,τ of Bk.

– For every three composable arrows in I, `
γ−→ k

τ−→ j
σ−→ i, a morphism of B`

fσ,τ,γ : γ
∗Yσ,τ ⊗ Yστ,γ → Yτ,γ ⊗ Yσ,τγ

such that, for any four composable arrows in I, m
δ−→ `

γ−→ k
τ−→ j

σ−→ i, the following
diagram in Bm (in which we have omitted the associativity constraints) is commuta-
tive:

δ∗(γ∗Yσ,τ ⊗ Yστ,γ)⊗ Yστγ,δ,

δ∗fσ,τ,γ⊗1

��

can // δ∗γ∗Yσ,τ ⊗ δ∗Yστ,γ ⊗ Yστγ,δ

1⊗fστ,γ,δ

��
δ∗(Yτ,γ ⊗ Yσ,τγ)⊗ Yστγ,δ

can

��

δ∗γ∗Yσ,τ ⊗ Yγ,δ ⊗ Yστ,γδ

c⊗1

��
δ∗Yτ,γ ⊗ δ∗Yσ,τγ ⊗ Yστγ,δ

1⊗fσ,τγ,δ

��

Yγ,δ ⊗ δ∗γ∗Yσ,τ ⊗ Yστ,γδ

1⊗fσ,τ,γδ

��
δ∗Yτ,γ ⊗ Yτγ,δ ⊗ Yσ,τγδ

fτ,γ,δ⊗1
// Yγ,δ ⊗ Yτ,γδ ⊗ Yσ,τγδ,

Moreover, Y1,σ = I = Yσ,1, fσ,τ,1 = cYσ,τ ,I : Yσ,τ ⊗ I → I⊗ Yσ,τ , fσ,1,γ : γ
∗I⊗ Yσ,γ →

I⊗ Yσ,γ is the composite of 1I⊗Yσ,γ with the unit constraint of the monoidal functor γ∗,
and f1,τ,γ : γ

∗I⊗ Yτ,γ → Yτ,γ ⊗ I is the composite of cI,Yτ,γ
with the unit constraint

of the monoidal functor γ∗.
Then, the nerve NerI B of the diagram is defined as the simplicial set [7]

NerI B : [n] 7→
∐

G : [n]→I

Z3([n],BG), (5)

where G : [n] → I is any functor and Z3([n],BG) is the set of 3-cocycles of [n] with

coefficients in the composite functor [n]
G−→ I

B−→ BrMonCat. Thus, an n-simplex
can be described as a system of data

G = {Gi,j,k, Gi,j,k,`}06i6j6k6`6n ,

where
– Gi,j,k ∈ ObBGk for 0 6 i 6 j 6 k 6 n, with Gi,i,j = Gi,j,j = I, the unit object of

the braided monoidal category BGj .
– Gi,j,k,` : G

∗
k,`Gi,j,k ⊗Gi,k,` → Gj,k,` ⊗Gi,j,`, for 0 6 i 6 j 6 k 6 ` 6 n, is a mor-

phism in BG`, where G∗
k,` : BGk → BG` is the braided monoidal functor associated

to the morphism ` → k of [n], with Gi,i,j,k the composite of cI,Gi,j,k
with the unit

constraint of G∗
j,k, Gi,j,j,k the composite of 1I⊗Gi,j,k

with the unit constraint of G∗
j,k

and Gi,j,k,k = cGi,j,k,I.
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Moreover, for all 0 6 i 6 j 6 k 6 ` 6 m 6 n, the following diagram in BGm must
be commutative:

G∗
`,m(G∗

k,`Gi,j,k ⊗Gi,k,`)⊗Gi,`,m

G∗
`,mGi,j,k,`⊗1

��

can // G∗
`,mG∗

k,`Gi,j,k ⊗G∗
`,mGi,k,` ⊗Gi,`,m

1⊗Gi,k,`,m

��
G∗

`,m(Gj,k,` ⊗Gi,j,`)⊗Gi,`,m

can

��

G∗
`,mG∗

k,`Gi,j,k ⊗Gk,`,m ⊗Gi,k,m

c⊗1

��
G∗

`,mGj,k,` ⊗G∗
`,mGi,j,` ⊗Gi,`,m

1⊗Gi,j,`,m

��

Gk,`,m ⊗G∗
k,mGi,j,k ⊗Gi,k,m

1⊗Gi,j,k,m

��
G∗

`,mGj,k,` ⊗Gj,`,m ⊗Gi,j,m
Gj,k,`,m⊗1

// Gk,`,m ⊗Gj,k,m ⊗Gi,j,m .

(6)

Particularly, if the diagram B : Iop → BrMonCat is a constant braided monoidal
category M = (M,⊗, c), the notion of a 3-cocycle of I with coefficients in B is just
that of a 3-cocycle of I in M ([6, Definition 6.6]) and, in this case, NerI B is the
geometric nerve, NerM = Z3(M,⊗, c), of the braided monoidal category M ([6,
Definition 6.7]), that is, the simplicial set

NerM : ∆op → Set

[n] 7→ Z3([n],M),

where Z3([n],M) is the set of 3-cocycles of [n] in M. This defines the geometric
nerve functor of braided monoidal categories, Ner : BrMonCat → Simpl.Set, which
associates with each braided monoidal category M its geometric nerve NerM.

For any diagram B : Iop → BrMonCat, we can consider the bisimplicial set

S =
∐

G∈Ner I

NerBG0 =
∐

G : [q]→I

Z3([p],BG0)

whose(p, q)-simplices are pairs (G, G), where G : [q] → I is a functor and G : [p] →
BG0 is a 3-cocycle of [p] in BG0. If α : [p′] → [p] and β : [q′] → [q] are maps in the
simplicial category, then the respective horizontal and vertical induced maps are
defined by

α∗h(G, G) = (Gα,G);α∗v(G, G) = (G∗
0,β0G, Gβ),

where Gβ : [q′]
β−→ [q]

G−→ I, Gα : [p′]
α−→ [p]

G−→ BG0 is a 3-cocycle of [p′] in BG0 and
G∗

0,β0G : [p] → BGβ0 is the 3-cocycle of [p] in BGβ0 obtained by composing G with
the braided monoidal functor G∗

0,β0 associated to the morphism Gβ0 → G0 of I. In
particular, the horizontal and vertical faces of S are given by

dhi (G, G) = (Gdi, G), 0 6 i 6 p,

and

dvj (G, G) = (G, Gdj), 1 6 j 6 q, while dv0(G, G) = (G∗
0,1G, Gd0).
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The diagonal of this bisimplicial set is just the homotopy colimit, hocolimI NerB,
of the diagram of simplicial sets

Iop
B−→ BrMonCat

Ner−−→ Simpl.Set.

Thus, hocolimI Ner C = diagS is the simplicial set whose n-simplices are pairs (G, G),
where G : [n] → I is a functor and G : [n] → BG0 is a 3-cocycle of [n] in BG0.

Now we are ready to prove our main result:

Theorem 3.1 (Homotopy Colimit Theorem for braided monoidal categories). For
any diagram of braided monoidal categories B : Iop → BrMonCat, there exists a
natural weak homotopy equivalence of simplicial sets

η : hocolimI NerB → NerI B,

where NerB : Iop → Simpl.Set is the diagram of simplicial sets, obtained by the com-
position of the diagram B with the geometric nerve functor of braided monoidal cate-
gories Ner: BrMonCat → Simpl.Set, and NerI B is the nerve (5) of the diagram.

Proof. Let (G, G) be an n-simplex of hocolimI NerB. Then, G : [n] → I is a functor
and G : [n] → BG0 is a 3-cocycle of [n] in BG0, that is, a system of data

G = {Gi,j,k, Gi,j,k,` : Gi,j,k ⊗Gi,k,` → Gj,k,` ⊗Gi,j,`}06i6j6k6`6n

where Gi,j,k are objects and Gi,j,k,` are morphisms of BG0 such that:
– Gi,i,j = Fi,j,j = I, the unit object of BG0;
– Gi,i,j,k is the composite of cI,Gi,j,k

with the unit constraint of G∗
j,k, Gi,j,j,k is the

composite of 1I⊗Gi,j,k
with the unit constraint of G∗

j,k and Gi,j,k,k = cGi,j,k,I;
– And, moreover, for all 0 6 i 6 j 6 k 6 ` 6 m 6 n, the following diagram in BG0

is commutative:

(Gi,j,k ⊗Gi,k,`)⊗Gi,`,m

Gi,j,k,`⊗1

��

can // Gi,j,k ⊗ (Gi,k,` ⊗Gi,`,m)

1⊗Gi,k,`,m

��
(Gj,k,` ⊗Gi,j,`)⊗Gi,`,m

can

��

Gi,j,k ⊗ (Gk,`,m ⊗Gi,k,m)

can(c⊗1)can

��
Gj,k,` ⊗ (Gi,j,` ⊗Gi,`,m)

1⊗Gi,j,`,m

��

Gk,`,m ⊗ (Gi,j,k ⊗Gi,k,m)

can(1⊗Gi,j,k,m)

��
Gj,k,` ⊗ (Gj,`,m ⊗Gi,j,m)

(Gj,k,`,m⊗1)can
// (Gk,`,m ⊗Gj,k,m)⊗Gi,j,m .

(7)

Then we define a map

η : (hocolimI NerB)n → (NerI B)n, (G, G) 7→ (G′, G),

where

G′ =
{
G′

i,j,k, G
′
i,j,k,` : G

∗
k,`G

′
i,j,k ⊗G′

i,k,` → G′
j,k,` ⊗G′

i,j,`

}
06i6j6k6`6n

is the 3-cocycle of [n] with coefficient in BG, defined as follows:
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– The objects of BGk, G
′
i,j,k = G∗

0,kGi,j,k, for 0 6 i < j < k 6 n, and G′
i,i,j = G′

i,j,j

= I, 0 6 i 6 j 6 n, where I denotes the unit object of BGj .
– The morphisms G′

i,j,k,` in BG`, 0 6 i 6 j 6 k 6 ` 6 n, given as the dotted arrow
in the following diagram:

G∗
k,`G

′
i,j,k ⊗G′

i,k,`

G′
i,j,k,` //

can

��

G′
j,k,` ⊗G′

i,j,`

G∗
0,`(Gi,j,k ⊗Gi,k,`)

G∗
0,kGi,j,k,` // G∗

0,`(Gj,k,` ⊗Gi,j,`).

can

OO

It is straightforward to check that, in this way, (G′, G) is actually an n-simplex of
NerI B. For instance, the commutativity of diagram (6) for G′ is deduced from the
commutativity of (7) for G.

Since hocolimI NerB = diagS we have, according to (1), a natural weak homotopy
equivalence Φ: hocolimI NerB → WS, and we will prove that η is also a weak homo-
topy equivalence by showing a simplicial isomorphism Ψ: WS ∼= NerI B making the
following diagram of simplicial sets commutative:

hocolimI NerB

Φ

'

&&NNNNNNNNNNN
η // NerI B

WS.

Ψ

∼=
::vvvvvvvvv

According to the general description of the simplices of WS recalled in Section 2,,
a p-simplex of WS, in our case, can be described as a list of pairs:

χ = ((G(0, G(p), . . . , (G(m, G(p−m), . . . , (G(p, G(0))

where each G(p−m : [p−m] → I is a functor and each G(m : [m] → bG(p−m0 is a
3-cocycle of [m] in BG(p−m0, such that the following equalities:

G(p−md0 = G(p−m−1, G
(p−m∗
0,1 G(m = G(m+1dm+1

hold for all 0 6 m < p.
Writing G(p : [p] → I simply as G : [p] → I, an iterated use of the above equalities

proves that

G(p−m = Gd0
(m
· · ·d0 : [p−m] → I, 0 6 m 6 p

and

G(m+1dm+1 · · · dk+1 = G∗
k,m+1G(k : [k] → BG(m+1)0 6 k 6 m < p.

Since each 3-cocycle G(m is a system of data {G(m
i,j,k, G

(m
i,j,k,`}, these latter equations

mean that

G
(`
i,j,k = G∗

k,`G
(k
i,j,k, i 6 j 6 k 6 `;G

(m
i,j,k,` = G∗

`,mG
(`
i,j,k,`, i 6 j 6 k 6 ` 6 m.

Thus, a p-simplex χ of WS is uniquely determined by a functor G : [p] → I, the

objects G
(k
i,j,k of BGk and the morphisms G

(`
i,j,k,` of BG`, for any 0 6 i 6 j 6 k 6 ` 6 p.

Then we observe that there is a 3-cocycle G′ = {G′
i,j,k, G

′
i,j,k,`} of [p] with coefficients
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in BG defined by G′
i,j,k = G

(k
i,j,k, for any 0 6 i < j < k 6 p, and G′

i,j,k,` = G
(`
i,j,k,`, for

any 0 6 i < j < k < ` 6 p, and therefore a p-simplex χ of WS defines a p-simplex
(G′, G) of NerI B, which itself uniquely determines χ. In this way, we obtain an
injective simplicial map Ψ: WS −→ NerI B

((G(0), G(p)), . . . , (G(p), G(0))) 7→ (G′, G) = ({G(k)
i,j,k, G

(l)
i,j,k,l}, G

(p)).

However, Ψ is also surjective. In fact, let (G′, G) be any p-simplex of NerI B, that is,
let G : [p] → I be a functor and let G′ =

{
G′

ijk, G
′
ijk`

}
be a 3-cocycle of [p] with coef-

ficients in BG. Then we can consider the p-simplex χ = (G(m, G(p−m) of WS where,

for each 0 6 m 6 p, G(p−m : [p−m] → I is the composite [p−m]
(d0)m−−−−→ [p]

G−→ I and
the 3-cocycle G(m of [m] in BG(p−m0 is defined as follows:

– The objects G
(m
i,j,k = G∗

k,mG′
i,j,k;

– The morphisms G
(m
i,j,k,` : G

(m
i,j,k ⊗G

(m
i,k,` → G

(m
j,k,` ⊗G

(m
i,j,` are given as the dotted

arrow in the following diagram:

G∗
k,mG′

i,j,k ⊗G∗
`,mG′

i,k,`

can

��

G
(m
i,j,k,` // G∗

`,mG′
j,k,` ⊗G`,mG′

i,j,`

G∗
`,m(G∗

k,`G
′
i,j,k ⊗G′

i,k,`)
G∗

`,mG′i,j,k,`

// G∗
`,m(G′

j,k,` ⊗G′
i,j,`).

can

OO

It is easy to check that Ψ(χ) = (G′, G), whence we conclude that the simplicial
map Ψ is surjective and, therefore it is an isomorphism.

Finally, since η = ΨΦ, Ψ is an isomorphism and Φ is a natural weak homotopy
equivalence, then η is a natural weak homotopy equivalence as claimed.

This theorem allows one to regard the geometric realization of NerI B as the homo-
topy colimit of the classifying spaces of the braided monoidal categories Bi given by
the initial data of the diagram B : Iop → BrMonCat.
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