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DEFORMATION BICOMPLEX OF MODULE ALGEBRAS

DONALD YAU

(communicated by Charles Weibel)

Abstract
The deformation bicomplex of a module algebra over a bial-

gebra is constructed. It is then applied to study algebraic defor-
mations in which both the module structure and the algebra
structure are deformed. The cases of module coalgebras, comod-
ule (co)algebras, and (co)module bialgebras are also considered.

1. Introduction

Let H be a bialgebra. An H-module algebra is an associative algebra A that is also
anH-module such that the multiplication map onA becomes anH-module morphism.
This algebraic structure arises often in algebraic topology, quantum groups [11, Chap-
ter V.6], Lie and Hopf algebras theory [3, 15, 18], and group representations [1,
Chapter 3]. For example, in algebraic topology, the complex cobordism MU∗(X) of
a topological space X is an S-module algebra, where S is the Landweber-Novikov
algebra [13, 16] of stable cobordism operations. Likewise, the singular mod p coho-
mology H∗(X;Z/p) of a topological space X is an Ap-module algebra, where Ap is
the Steenrod algebra associated to the prime p [4, 14]. More examples of this form
can be found in [2].

The purpose of this paper is twofold:
1. The deformation bicomplex C∗∗MA(A) for an H-module algebra A is constructed.
2. The deformation bicomplex is used to study algebraic deformations of A, where

deformations are taken with respect to both the H-module structure and the
algebra structure on A.

The deformation bicomplexes (respectively, tricomplexes) of module coalgebras and
comodule (co)algebras (respectively, (co)module bialgebras) are also constructed.

In [20], the author studied algebraic deformations of module algebras, in which
only the H-module structure is deformed. This paper generalizes [20], which in turn
is a generalization of [19]. The current deformation theory of (co)module algebras
(respectively, (co)module coalgebras) also generalizes the classical deformation the-
ory of associative algebras [6] (respectively, coalgebras). Moreover, deformation of
a (co)module bialgebra is a generalization of the Gerstenhaber-Schack deformation
theory of a bialgebra [7, 8].
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In the deformation bicomplex C∗∗MA(A) of an H-module algebra A, the (p, q)-entry
is the module Hom(H⊗q,Hom(A⊗p, A)). The 0th row C∗,0MA(A) coincides with the
Hochschild cochain complex Hoch∗(A,A) of A with coefficients in itself, which is the
deformation complex of A as an associative algebra [6]. In particular, it has a graded
Lie bracket [5]. It is not known, however, whether there is a graded Lie bracket on
the whole bicomplex C∗∗MA(A).

Each higher row

C∗,qMA(A) = Hom(H⊗q,Hom(A⊗∗, A)) (q > 1),

though not a Hochschild cochain complex itself, is isomorphic to one, namely
Hoch∗(A,Hom(H⊗q, A)). Since the module Hom(H⊗q, A) is an associative algebra,
it induces an associative product on Hoch∗(A,Hom(H⊗q, A)), making it into a differ-
ential graded associative algebra. In particular, each row in C∗∗MA(A) is a differential
graded associative algebra. Each higher column

Cp,∗
MA(A) = Hoch∗(H,Hom(A⊗p, A)) (p > 1)

is also a Hochschild cochain complex. However, only the first column C1,∗
MA is known

to admit a non-trivial associative product, which is induced by the algebra structure
on Hom(A,A).

Here is a summary of the various deformation bicomplexes/tricomplexes con-
structed in Section 3 and Sections 6–10.

Theorem 1.1. The deformation bicomplex/tricomplex of A is:
1. C∗∗MA(A) = Hoch∗(H,Hom(A⊗∗, A)) if A is an H-module algebra;
2. C∗∗MC(A) = Hoch∗(H,Hom(A,A⊗∗)) if A is an H-module coalgebra;
3. C∗∗CA(A) = Hoch∗(A,H⊗∗ ⊗A) if A is an H-comodule algebra;
4. C∗∗CC(A) = Hom(A,H⊗∗ ⊗A⊗∗) if A is an H-comodule coalgebra;
5. C∗∗∗MB(A) = Hoch∗(H,Hom(A⊗∗, A⊗∗)) if A is an H-module bialgebra;
6. C∗∗∗CB (A) = Hoch∗(A,H⊗∗ ⊗A⊗∗) if A is an H-comodule bialgebra.

It should be noted that our deformation bicomplex C∗∗MA(A) is different from the
Hopf-Hochschild cochain complex CH∗Hopf(A,A) constructed by Kaygun [12]. The
construction of the cochain complex CH∗Hopf(A,A) is similar to the usual Hochschild
cochain complex of A, but it also takes into account the H-linearity. In particular,
if H is the ground field, then CH∗Hopf(A,A) coincides with the Hochschild cochain
complex of A. Moreover, CH∗Hopf(A,A) has the structure of a brace algebra with
multiplication [21], which leads to a Gerstenhaber algebra structure on the Hopf-
Hochschild cohomology of A.

1.1. Organization
The rest of this paper is organized as follows.
In Section 2, we fix notations that will be used throughout this paper. The defor-

mation bicomplex C∗∗MA(A) of an H-module algebra A is constructed in Section 3. In
Section 4, the various ∪-products in C∗∗MA(A) are constructed.

Algebraic deformations of module algebras are discussed in Section 5. In particular,
infinitesimals are properly identified with 2-cocycles in the deformation bicomplex.
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The vanishing of H2 of the total complex of the deformation bicomplex implies rigid-
ity, in the sense that every deformation is equivalent to the trivial one.

The constructions and arguments in the module algebra case can be adapted to
the cases of module coalgebras, comodule (co)algebras, and (co)module bialgebras.
In Sections 6–10, we construct the deformation bicomplexes/tricomplexes and their
∪-products for these algebraic structures and state the corresponding deformation
results.

2. Preliminaries

The purposes of this preliminary section are to fix notations and to recall some
basic facts about module algebras and Hochschild cohomology.

2.1. Notations
Fix a ground field K once and for all. Modules, linearity, Hom, and ⊗ are all meant

over K, unless otherwise specified. Let (H,µH ,∆H) be a bialgebra with associative
multiplication µH and coassociative comultiplication ∆H .

In a coassociative coalgebra (C,∆), we use Sweedler’s notation [18] for comulti-
plication,

∆p(x) =
∑

(x)
x(1) ⊗ · · · ⊗ x(p+1),

for p > 1. The subscript in
∑

(x) will sometimes be omitted.
Given an associative algebra (A,µA), a derivation on A is a linear self-map ϕ ∈

End(A) = Hom(A,A) such that

ϕ(ab) = aϕ(b) + ϕ(a)b

for all a, b ∈ A. The module of all derivations on A is denoted by Der(A), which is
considered as a submodule of End(A).

2.2. Module algebra
Let (A,µA) be an associative algebra. Then A is said to be an H-module algebra if

and only if there exists an H-module structure λ ∈ Hom(H,End(A)) on A such that
µA becomes an H-module morphism. In other words, λ satisfies the following two
conditions:

λ(xy) = λ(x) ◦ λ(y),

λ(x)(ab) =
∑

(x)
λ(x(1))(a) · λ(x(2))(b),

(1)

for x, y ∈ H and a, b ∈ A.

2.3. Hochschild cohomology
Let M be an A-bimodule. The module of Hochschild n-cochains of A with coeffi-

cients in M [9] is defined to be

Hochn(A,M) def= Hom(A⊗n,M).
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The coboundary map

δn
h : Hochn(A,M) → Hochn+1(A,M)

is given by the alternating sum

δn
h =

n+1∑

i=0

(−1)iδn
h [i],

where

(δn
h [i])(ϕ) =





αl ◦ (IdA⊗ϕ) if i = 0,
ϕ ◦ (IdA⊗(i−1) ⊗µA ⊗ IdA⊗(n−i)) if 1 6 i 6 n,

αr ◦ (ϕ⊗ IdA) if i = n+ 1
(2)

for ϕ ∈ Hochn(A,M). Here αl and αr are the left and right actions of A on M ,
respectively. The nth cohomology module of Hoch∗(A,M) is denoted by HHn(A,M).

2.4. DGA and Hochschild cup product
A differential graded associative algebra (DGA in what follows)

C = (C∗, d∗,∪)

consists of a cochain complex (C∗, d∗) and an associative graded product on C∗ such
that the Leibniz identity,

d(x ∪ y) = (dx) ∪ y + (−1)|x|x ∪ (dy),

is satisfied for x, y ∈ C∗.
Suppose that M is an A-bimodule and is an associative algebra itself. Suppose in

addition that the following three conditions are satisfied for all a ∈ A and m1,m2 ∈
M :

a(m1m2) = (am1)m2,

(m1a)m2 = m1(am2),
(m1m2)a = m1(m2a).

(3)

Then it can be checked easily that the Hochschild cochain complex Hoch∗(A,M)
becomes a DGA whose product, denoted by ∪, is given by

(ϕ ∪ ψ)(a1,r+s) = ϕ(a1,r) · ψ(ar+1,r+s) (4)

for ϕ ∈ Hochr(A,M), ψ ∈ Hochs(A,M), and a1, . . . , ar+s ∈ A. Here ap,q denotes the
element

ap ⊗ · · · ⊗ aq

whenever p 6 q. We will continue to use this shorthand throughout the rest of this
paper.

The three conditions in (3) are satisfied, for example, when f : A→M is a mor-
phism of algebras and A acts on M via f .
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3. Deformation bicomplex of module algebras

From here on until the end of Section 5, A will denote an H-module algebra
with H-module structure map λ ∈ Hom(H,End(A)). The purpose of this section is
to construct the deformation bicomplex C∗∗MA(A) of A. Deformations, which will be
discussed in Section 5, are taken with respect to both the H-module structure λ and
the multiplication structure µA on A. As will be seen below, this bicomplex can be
more explicitly denoted by

Hoch∗(H,Hom(A⊗∗, A)).

Further structures of the deformation bicomplex will be discussed in Section 4.

3.1. H-bimodule structure on Hom(A⊗n, A)
When A is an H-module algebra, there is an H-bimodule structure on the module

Hom(A⊗n, A) for each n > 1. The left and right actions are given by

(xϕ)(a1,n) = λ(x)(ϕ(a1,n)),

(ϕx)(a1,n) =
∑

(x)

ϕ(λ(x(1))(a1)⊗ · · · ⊗ λ(x(n))(an))

for x ∈ H, ϕ ∈ Hom(A⊗n, A), and a1, . . . , an ∈ A.
In particular, there is a Hochschild cochain complex Hoch∗(H,Hom(A⊗n, A)) of

H with coefficients in the H-bimodule Hom(A⊗n, A).

3.2. Deformation bicomplex
The deformation bicomplex of the H-module algebra A is the first quadrant, coho-

mological bicomplex

C∗∗MA(A) =
{
Cp, q

MA(A), dp, q, (−1)p+1bp, q
}

whose (p, q)-entry is

Cp, q
MA(A) =





0 if p = 0,
Der(A) if (p, q) = (1, 0),
Hom(H⊗q,Hom(A⊗p, A)) otherwise.

The vertical and horizontal differentials in C∗∗MA(A) are denoted by

(−1)p+1bp, q : Cp, q
MA(A) → Cp, q+1

MA (A),

dp, q : Cp, q
MA(A) → Cp+1, q

MA (A),

respectively. These differentials are defined as follows. Note that

Cp, q
MA(A) = Hochq(H,Hom(A⊗p, A)).

For p > 1, set

bp, q def= δq
h : Hochq(H,Hom(A⊗p, A)) → Hochq+1(H,Hom(A⊗p, A)),
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i.e. the Hochschild coboundary. In particular, we have that

bp, q =
q+1∑

j=0

(−1)jbp, q[j],

where

bp, q[j] = δq
h[j]

as in (2). The only exception is that b1, 0 is the restriction of δ0h to the submodule
Der(A) ⊆ Hom(A,A). In what follows, such exceptions will be made for the (1, 0)-
entry automatically without further comments.

To define the horizontal differentials, note that

Cp, 0
MA(A) = Hom(A⊗p, A) = Hochp(A,A).

In the 0th row C∗, 0MA(A), the differentials are defined by

dp, 0 def= δp
h : Hochp(A,A) → Hochp+1(A,A).

In particular, we have that

dp, 0 =
p+1∑

i=0

(−1)idp, 0[i],

where

dp, 0[i] = δp
h[i]

as in (2).
For q > 1, define the horizontal differential by

dp, q def=
p+1∑

i=0

(−1)idp, q[i],

where

(dp, q[i]ϕ)(x1,q)(a1,p+1) =



∑
λ(x1(1) · · ·xq(1))(a1) · ϕ(x1(2) ⊗ · · · ⊗ xq(2))(a2,p+1) if i = 0,

ϕ(x1,q)(a1,i−1 ⊗ (aiai+1)⊗ ai+2,p+1) if 1 6 i 6 p,∑
ϕ(x1(1) ⊗ · · · ⊗ xq(1))(a1,p) · λ(x1(2) · · ·xq(2))(ap+1) if i = p+ 1.

Here ϕ ∈ Cp, q
MA(A), x1, . . . , xq ∈ H, and a1, . . . , ap+1 ∈ A.

So far we only know that the columns and the 0th row in C∗∗MA(A) are cochain
complexes. To see that C∗∗MA(A) is a bicomplex, we need the following observations.

Theorem 3.1. 1. For each q > 1 and 0 6 k < l 6 p+ 2, the equality

dp+1, q[l] ◦ dp, q[k] = dp+1, q[k] ◦ dp, q[l − 1] (5)

holds.
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2. For p > 1, q > 0, 0 6 i 6 p+ 1, and 0 6 j 6 q + 1, the equality

dp, q+1[i] ◦ bp, q[j] = bp+1, q[j] ◦ dp, q[i] (6)

holds.

Proof. Both statements can be proved by direct inspections on a case-by-case basis.
For instance, for (6) when i = j = 0, we have that

(bp+1, q[0] ◦ dp, q[0])(ϕ)(x1,q+1)(a1,p+1)
= λ(x1) ((dp, q[0])(ϕ)(x2,q+1)(a1,p+1))

= λ(x1)
(∑

λ(x2(1) · · ·xq+1(1))(a1) · ϕ(x2(2) ⊗ · · · ⊗ xq+1(2))(a2,p+1)
)

(i)
=

∑
λ(x1(1))

(
λ(x2(1) · · ·xq+1(1))(a1)

) ·
λ(x1(2))

(
ϕ(x2(2) ⊗ · · · ⊗ xq+1(2))(a2,p+1)

)

(ii)
=

∑
λ(x1(1) · · ·xq+1(1))(a1) · λ(x1(2))

(
ϕ(x2(2) ⊗ · · · ⊗ xq+1(2))(a2,p+1)

)

=
∑

λ(x1(1) · · ·xq+1(1))(a1) · (bp, q[0]ϕ)(x1(2) ⊗ · · · ⊗ xq+1(2))(a2,p+1)

= (dp, q+1[0] ◦ bp, q[0])(ϕ)(x1,q+1)(a1,p+1).

Here the equalities (i) and (ii) follow from the module algebra axioms (1).
Similarly, if i = 0 and 1 6 j 6 q, then we have that

(bp+1, q[j] ◦ dp, q[0])(ϕ)(x1,q+1)(a1,p+1)

=
∑

λ(x1(1) · · ·xq+1(1))(a1)·
ϕ

(
x1(2) ⊗ · · · ⊗ xj−1(2) ⊗ (xj(2)xj+1(2))⊗ xj+2(2) ⊗ · · · ⊗ xq+1(2)

)
(a2,p+1)

= (dp, q+1[0] ◦ bp, q[j])(ϕ)(x1,q+1)(a1,p+1).

Note that only the bialgebra structure on H is used in proving this condition.
Likewise, when i = 0 and j = q + 1, we have that

(bp+1, q[q + 1] ◦ dp, q[0])(ϕ)(x1,q+1)(a1,p+1)

=
∑

λ(x1(1) · · ·xq+1(1))(a1)·
ϕ(x1(2) ⊗ · · · ⊗ xq(2))(λ(xq+1(2))(a2)⊗ · · · ⊗ λ(xq+1(p+1))(ap+1))

= (dp, q+1[0] ◦ bp, q[q + 1])(ϕ)(x1,q+1)(a1,p+1).

This proves (6) when i = 0.
If 1 6 i 6 p, then we have that

(dp, q+1[i] ◦ bp, q[j])(ϕ)(x1,q+1)(a1,p+1) =




λ(x1) (ϕ(x2,q+1)(a1,i−1 ⊗ (aiai+1)⊗ ai+2,p+1)) if j = 0,
ϕ(x1,j−1 ⊗ (xjxj+1)⊗ xj+2,q+1)(a1,i−1 ⊗ (aiai+1)⊗ ai+2,p+1) if 1 6 j 6 q,∑
ϕ(x1,q)(λ(xq+1(1))(a1)⊗ · · ·
⊗λ(xq+1(i))(aiai+1)⊗ · · · ⊗ λ(xq+1(p))(ap+1)) if j = q + 1

= (bp+1, q[j] ◦ dp, q[i])(ϕ)(x1,q+1)(a1,p+1).
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This proves (6) when 1 6 i 6 p. This cases when i = p+ 1 are similar to the cases
when i = 0.

The condition (5) is proved by a similar analysis.

From the condition (5), it follows as usual that

dp+1, q ◦ dp, q = 0.

Therefore, each row (C∗, q
MA(A), d∗, q) is a cochain complex. From the condition (6), it

follows that
dp, q+1 ◦ bp, q = bp+1, q ◦ dp, q.

In other words, each square in C∗∗MA(A) anti-commutes. This leads to the following
result.

Corollary 3.2. The above definitions give a first quadrant, cohomological bicomplex
C∗∗MA(A) =

{
Cp, q

MA, d
p, q, (−1)p+1bp, q

}
.

...
...

...

Hoch3(H,End(A))

b1,3

OO

d1,3
// Hoch3(H,Hom(A⊗2, A))

−b2,3

OO

d2,3
// Hoch3(H,Hom(A⊗3, A))

b3,3

OO

Hoch2(H,End(A))

b1,2

OO

d1,2
// Hoch2(H,Hom(A⊗2, A))

−b2,2

OO

d2,2
// Hoch2(H,Hom(A⊗3, A))

b3,2

OO

Hoch1(H,End(A))

b1,1

OO

d1,1
// Hoch1(H,Hom(A⊗2,, A))

−b2,1

OO

d2,1
// Hoch1(H,Hom(A⊗3, A))

b3,1

OO

Der(A)

b1,0

OO

d1,0=0 // Hoch2(A,A)

−b2,0

OO

d2,0
// Hoch3(A,A)

b3,0

OO

The bicomplex C∗∗MA(A) is called the deformation bicomplex of A. Omitting the 0th
column, which is the 0 cochain complex, the first three columns of C∗∗MA(A) appear
as above.

Note that the deformation bicomplex C∗∗MA(A) contains the cochain complex F∗(A)
constructed in [20]. In fact, F∗(A) is, up to a shift in degree, the total complex of the
sub-bicomplex of C∗∗MA(A) consisting of the first row C∗, 1MA(A) and the first column
C1, ∗

MA(A).

3.3. Total complex and cohomology
Denote by (C∗MA(A), d∗MA) the total complex of the deformation bicomplex

C∗∗MA(A). In particular:

Cn
MA(A) =





0 if n = 0,
Der(A) if n = 1,⊕n

i=1 Hochn−i(H,Hom(A⊗i, A)) if n > 2.
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The cochain complex (C∗MA(A), d∗MA) is called the deformation complex of A.
Define the cohomology module

Hn
MA(A) def= Hn(C∗MA(A), d∗MA).

The deformation complex and its cohomology modules will be used in Section 5 to
study algebraic deformations of A.

4. Cup product

In this section, we observe that each row in the deformation bicomplex C∗∗MA(A) is
a differential graded associative algebra. Moreover, each row C∗, q

MA(A) is canonically
isomorphic to a Hochschild cochain complex. Under this isomorphism, the product
in each row corresponds to a Hochschild ∪-product.

4.1. Cup product in C∗, q
MA(A)

The Hochschild ∪-product in the 0th row

C∗, 0MA(A) = Hoch∗(A,A)

generalizes to the higher rows C∗, q
MA(A) (q > 1). In fact, one can define a product

− ∪− : Hom(H⊗q,Hom(A⊗r, A))⊗Hom(H⊗q,Hom(A⊗s, A))

→ Hom(H⊗q,Hom(A⊗(r+s), A))

by setting

(ϕ ∪ ψ)(x1,q)(a1,r+s)
def=

∑
ϕ(x1(1) ⊗ · · · ⊗ xq(1))(a1,r) · ψ(x1(2) ⊗ · · · ⊗ xq(2))(ar+1,r+s) (7)

for ϕ ∈ Hom(H⊗q,Hom(A⊗r, A)), ψ ∈ Hom(H⊗q,Hom(A⊗s, A)), xi ∈ H, and aj ∈
A.

Theorem 4.1. The product defined in (7) is associative and satisfies the Leibniz
identity,

dr+s, q(ϕ ∪ ψ) = (dr, qϕ) ∪ ψ + (−1)rϕ ∪ (ds, qψ). (8)

In particular,
(
C∗, q

MA(A), d∗, q,∪)
is a DGA.

Proof. The associativity of the ∪-product is a consequence of the coassociativity of
the comultiplication ∆H in H and the associativity of the multiplication µA in A.
The Leibniz identity can be checked by a simple inspection of both sides of (8) when
applied to x1,q ∈ H⊗q and then to a1,r+s+1 ∈ A⊗(r+s+1).

The Leibniz identity implies, as usual, that the ∪-product descends to cohomology,
which leads to the following consequence.
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Corollary 4.2. For each q > 0,

⊕

n>1

Hn(C∗, q
MA(A), d∗, q),∪




is a graded associative algebra.

There is a more conceptual way to obtain the ∪-product above by realizing it as a
Hochschild ∪-product, which we do next.

4.2. Alternative description of C∗, q
MA(A)

Fix an integer q > 1. Using the second module algebra axiom in (1), one obtains
an A-bimodule structure on the module Hom(H⊗q, A) via the actions

(af)(x1,q) =
∑

λ(x1(1) · · ·xq(1))(a) · f(x1(2) ⊗ · · · ⊗ xq(2)),

(fa)(x1,q) =
∑

f(x1(1) ⊗ · · · ⊗ xq(1)) · λ(x1(2) · · ·xq(2))(a)

for a ∈ A, f ∈ Hom(H⊗q, A), and x1, . . . , xq ∈ H.
Moreover, the module Hom(H⊗q, A) is an associative algebra via the product

(f · g)(x1,q) =
∑

f(x1(1) ⊗ · · · ⊗ xq(1)) · g(x1(2) ⊗ · · · ⊗ xq(2))

for f, g ∈ Hom(H⊗q, A) and xi ∈ H. The three conditions in (3) can be checked eas-
ily in this case. It follows as in Section 2.4 that the Hochschild cochain complex
Hoch∗(A,Hom(H⊗q, A)) is a DGA whose associative ∪-product is given by

(ϕ ∪ ψ)(a1,r+s)(x1,q)

=
∑

ϕ(a1,r)(x1(1) ⊗ · · · ⊗ xq(1)) · ψ(ar+1,r+s)(x1(2) ⊗ · · · ⊗ xq(2))

for ϕ ∈ Hochr(A,Hom(H⊗q, A)), ψ ∈ Hochs(A,Hom(H⊗q, A)), ai ∈ A, and xj ∈ H.

Theorem 4.3. There is a canonical isomorphism

ζ :
(
Hochp(A,Hom(H⊗q, A)), δp

h,∪
)
p>1

∼=−→ (
C∗, q

MA(A), d∗, q,∪)

of DGAs defined by

(ζϕ)(x1,q)(a1,p)
def= ϕ(a1,p)(x1,q) (9)

for ϕ ∈ Hochp(A,Hom(H⊗q, A)), xi ∈ H, and aj ∈ A.

Proof. It is clear that the map ζ defined in (9) is a linear isomorphism. In fact, it is just
the usual Hom−⊗ adjunction applied twice. Direct inspections then show that under
the isomorphism ζ, δ∗h corresponds to d∗, q and the ∪-product in Hoch∗(A,Hom(H⊗q,
A)) corresponds to the one in C∗, q

MA(A).

Passing to cohomology, this leads to the following result.



DEFORMATION BICOMPLEX OF MODULE ALGEBRAS 107

Corollary 4.4. The isomorphism ζ (9) induces an isomorphism

ζ :


⊕

n>1

HHn(A,Hom(H⊗q, A)),∪

 ∼=−→


⊕

n>1

Hn(C∗, q
MA(A), d∗, q),∪




of graded associative algebras.

Note that the ∪-product in the first row C∗, 1MA(A) coincides with the one in F∗1(A)
constructed in [20].

5. Deformations of module algebras

In this section, we show that the deformation complex C∗MA(A) is actually the
cochain complex that controls the deformations, in the sense of Gerstenhaber [6], of
an H-module algebra A, in which both the H-module structure λ ∈ Hom(H,End(A))
and the multiplication µA ∈ Hom(A⊗2, A) on A are deformed. This generalizes the
treatment in [20], in which only the H-module structure is deformed. However, once
the correct definitions are made, the arguments here are similar to those in [20].

5.1. Deformation
A deformation of A is a power series

Θ =
∑

n>0

θnt
n,

with θ0 = (λ, µA) ∈ C2
MA(A) and each θn = (λn, πn) ∈ C2

MA(A), satisfying the follow-
ing three conditions. Writing

Λ =
∑

n>0

λnt
n (λ0 = λ)

and

Π =
∑

n>0

πnt
n (π0 = µA),

the three conditions are:

Λ(xy) = Λ(x) ◦ Λ(y), (10a)

Λ(x) (Π(a, b)) =
∑

(x)
Π

(
Λ(x(1))(a),Λ(x(2))(b)

)
, (10b)

Π (Π(a, b), c) = Π (a,Π(b, c)) (10c)

for x, y ∈ H and a, b, c ∈ A. Such a deformation will also be denoted by Θ = (Λ,Π).
The linear coefficient θ1 = (λ1, π1) of a deformation Θ is called the infinitesimal.

The trivial deformation is the deformation Θ = θ0 = (λ, µA).
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5.2. Equivalence
A formal automorphism of A is a power series

Φ =
∑

n>0

φnt
n,

in which φ0 = IdA and each φn ∈ End(A), such that the first non-zero φn (n > 1) is
a derivation on A. Note that φ1 is necessarily a derivation on A.

Two deformations Θ = (Λ,Π) and Θ = (Λ,Π) are said to be equivalent if and only
if there exists a formal automorphism Φ such that the following two conditions are
satisfied:

Π = Φ−1 ◦Π ◦ Φ⊗2, (11a)

Λ = Φ−1ΛΦ. (11b)

On the right-hand side of (11b), we use the interpretation

(φiλjφk)(x) = φi ◦ λj(x) ◦ φk

for x ∈ H. In the above situation, we write

Θ = Φ−1ΘΦ.

This defines an equivalence relation.
Given a deformation Θ = (Λ,Π) and a formal automorphism Φ, one can define an

equivalent deformation Θ = Φ−1ΘΦ using (11a) and (11b).
The H-module algebra A is said to be rigid if every deformation of A is equivalent

to the trivial deformation.

Theorem 5.1. Let A be an H-module algebra. Then the following statements hold.
1. The infinitesimal θ1 of any deformation Θ of A is a 2-cocycle in the deformation

complex C2
MA(A) whose cohomology class is determined by the equivalence class

of Θ.
2. If H2

MA(A) = 0, then A is rigid.

Proof. The deformation arguments in [6] and [20] can be adapted to the present
situation. For example, the deformation axioms (10) can be rewritten as:

λn(xy) =
∑

i+j=n

λi(x) ◦ λj(y), (12a)

∑

i+j=n

λi(x) (πj(a, b)) =
∑

(x)

∑

i+j+k=n

πi

(
λj(x(1))(a), λk(x(2))(b)

)
, (12b)

∑

i+j=n

πi (πj(a, b), c) =
∑

i+j=n

πi (a, πj(b, c)) (12c)

for n > 1, x, y ∈ H, and a, b, c ∈ A. When n = 1, these three conditions state that

b1, 1λ1 = 0,

d1, 1λ1 − b2, 0π1 = 0,

d2, 0π1 = 0.

These three statements together state that θ1 = (λ1, π1) ∈ C2
MA(A) is a 2-cocycle.
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Moreover, if Θ = Φ−1ΘΦ for some formal automorphism Φ, then the condition on
the linear coefficients can be restated as

θ1 − θ1 = d1
MAφ1,

which is a 2-coboundary in C2
MA(A). This proves statement (1). Statement (2) is

proved similarly by adapting Proposition 3.5 in [20].

6. Deformation bicomplex of module coalgebras

In this section, the deformation bicomplex

C∗∗MC(A) = Hoch∗(H,Hom(A,A⊗∗))

for an H-module coalgebra A is constructed, in which both the H-module struc-
ture and the coalgebra structure on A are deformed. The corresponding deformation
results are then listed. The proofs can be adapted from the module algebra case.

6.1. Module coalgebra
Throughout this section, let A = (A,∆A) be a coassociative coalgebra. A coderiva-

tion on A is a linear self-map ϕ ∈ Hom(A,A) such that

∆A ◦ ϕ = (IdA⊗ϕ+ ϕ⊗ IdA) ◦∆A.

The set of coderivations on A is denoted by Coder(A), which is considered as a
submodule of Hom(A,A).

An H-module coalgebra structure on A consists of an H-module structure λ ∈
Hom(H,End(A)) on A such that the map ∆A : A→ A⊗A becomes an H-module
morphism, i.e.,

∆A(λ(x)(a)) =
∑

(a)(x)

λ(x(1))(a(1))⊗ λ(x(2))(a(2))

for all x ∈ H and a ∈ A. For the rest of this section, A will denote an H-module
coalgebra with H-module structure map λ.

6.2. Hochschild coalgebra cohomology
The deformation bicomplex of A uses the coalgebra version of Hochschild coho-

mology [10, 17], which we now recall.
Let M be an A-bicomodule with left A-coaction ψl and right A-coaction ψr. Define

the module of Hochschild coalgebra n-cochains of A with coefficients in M as

Hochn
c (M,A) =

{
0 if n = 0,
Hom(M,A⊗n) if n > 1.

The coboundary is defined by

δcσ = (IdA⊗σ) ◦ ψl +
n∑

i=1

(−1)i (IdA⊗(i−1) ⊗∆A ⊗ IdA⊗(n−i)) ◦ σ

+ (−1)n+1(σ ⊗ IdA) ◦ ψr

for σ ∈ Hochn
c (M,A).
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Suppose, in addition, that M = (M,∆M ) is a coassociative coalgebra such that
the following three conditions, dual to (3), are satisfied:

(IdA⊗∆M ) ◦ ψl = (ψl ⊗ IdM ) ◦∆M ,

(∆M ⊗ IdA) ◦ ψr = (IdM ⊗ψr) ◦∆M ,

(ψr ⊗ IdM ) ◦∆M = (IdM ⊗ψl) ◦∆M .

(13)

Then the Hochschild coalgebra cochain complex Hoch∗c(M,A) becomes a DGA with
the product

f ∪ g = (f ⊗ g) ◦∆M (14)

for f, g ∈ Hoch∗c(M,A).

6.3. H-bimodule structure on Hom(A, A⊗n)
For n > 1, there is an H-bimodule structure on Hom(A,A⊗n) defined as follows.

The left and right H-actions on Hom(A,A⊗n) are given by

(xϕ)(a) =
∑

λ(x(1))(ϕ(a)1)⊗ · · · ⊗ λ(x(n))(ϕ(a)n),

(ϕx)(a) = ϕ(λ(x)(a))

for x ∈ H, ϕ ∈ Hom(A,A⊗n), and a ∈ A. In the left H-action, we use the notation

ϕ(a) =
∑

ϕ(a)1 ⊗ · · · ⊗ ϕ(a)n ∈ A⊗n.

In particular, we can consider the Hochschild cochain complex

Hoch∗(H,Hom(A,A⊗n)).

6.4. Module coalgebra deformation bicomplex
The deformation bicomplex of the H-module coalgebra A is the first quadrant,

cohomological bicomplex

C∗∗MC(A) =
{
Cp, q

MC(A), dp, q, (−1)p+1bp, q
}

with

Cp, q
MC(A) =





0 if p = 0,
Coder(A) if (p, q) = (1, 0),
Hom(H⊗q,Hom(A,A⊗p)) otherwise.

For each p > 1, set

bp, q def= δq
h : Hochq(H,Hom(A,A⊗p)) → Hochq+1(H,Hom(A,A⊗p)).

In the 0th row C∗, 0MC(A), define the horizontal differential as the Hochschild coal-
gebra coboundary,

d∗, 0 def= δ∗c : Hoch∗c(A,A) → Hoch∗+1
c (A,A).

For q > 1, the horizontal differential

dp, q : Cp, q
MC(A) → Cp+1, q

MC (A)
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is defined as the alternating sum

dp, q =
p+1∑

i=0

(−1)idp, q[i],

where

(dp, q[i]ϕ)(x1,q)(a) =



∑
λ(x1(1) · · ·xq(1))(a(1))⊗ ϕ(x1(2) ⊗ · · · ⊗ xq(2))(a(2)) if i = 0,

(IdA⊗(i−1) ⊗∆A ⊗ IdA⊗(p−i))(ϕ(x1,q)(a)) if 1 6 i 6 p,∑
ϕ(x1(1) ⊗ · · · ⊗ xq(1))(a(1))⊗ λ(x1(2) · · ·xq(2))(a(2)) if i = p+ 1.

Here ϕ ∈ Cp, q
MC(A), xj ∈ H, and a ∈ A.

Theorem 3.1 still holds in the module coalgebra case with essentially the same
proof. It follows that C∗∗MC(A) is indeed a bicomplex. Denote its total complex by
C∗MC(A), which is called the deformation complex of A. The nth cohomology module
of C∗MC(A) is denoted by Hn

MC(A).
Note that the cochain complex F∗mc(A) constructed in [20] is the total complex

of the sub-bicomplex of C∗∗MC(A) consisting of the first column C1, ∗
MC(A) and the first

row C∗, 1MC(A).

6.5. Cup product
As in the module algebra case, each row (C∗, q

MC(A), d∗, q) is a DGA whose product
is defined by

(ϕ ∪ ψ)(x1,q)(a)
def=

∑
ϕ(x1(1) ⊗ · · · ⊗ xq(1))(a(1))⊗ ψ(x1(2) ⊗ · · · ⊗ xq(2))(a(2))

for ϕ ∈ Cr, q
MC(A) and ψ ∈ Cs, q

MC(A).

6.6. Module coalgebra deformation
A deformation of the H-module coalgebra A is a power series Θ =

∑
n>0 θnt

n

with θ0 = (λ,∆A) and each θn = (λn,∆n) ∈ C2
MC(A) such that the following three

conditions are satisfied. Writing

Λ =
∑

n>0

λnt
n (λ0 = λ)

and
D =

∑

n>0

∆nt
n (∆0 = ∆A),

the three conditions are:
Λ(xy) = Λ(x) ◦ Λ(y),

D ◦ Λ(x) =
{ ∑

(x)
Λ(x(1))⊗ Λ(x(2))

}
◦D,

(D ⊗ IdA) ◦D = (IdA⊗D) ◦D

(15)

for x, y ∈ H. Such a deformation is also denoted by Θ = (Λ, D). The linear coefficient
θ1 ∈ C2

MC(A) is called the infinitesimal. The trivial deformation is the deformation
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Θ = θ0 = (λ,∆A).
A formal automorphism of A is a power series Φ =

∑
n>0 φnt

n with φ0 = IdA and
each φn ∈ End(A) such that the first non-zero φn (n > 1) is a coderivation on A.

Two deformations Θ = (Λ, D) and Θ = (Λ, D) are said to be equivalent if and only
if there exists a formal automorphism Φ such that the following two conditions hold:

D = (Φ−1)⊗2 ◦D ◦ Φ,

Λ = Φ−1ΛΦ.
(16)

The H-module coalgebra A is said to be rigid if every deformation of A is equivalent
to the trivial deformation.

The following result is the module coalgebra analogue of Theorem 5.1 and can be
proved by similar arguments.

Theorem 6.1. Let A be an H-module coalgebra. Then the following statements hold.

1. The infinitesimal θ1 of any deformation Θ of A is a 2-cocycle in the deformation
complex C2

MC(A) whose cohomology class is determined by the equivalence class
of Θ.

2. If H2
MC(A) = 0, then A is rigid.

7. Deformation bicomplex of comodule algebras

The purposes of this section are to construct the deformation bicomplex

C∗∗CA(A) = Hoch∗(A,H⊗∗ ⊗A)

of an H-comodule algebra A and to list the corresponding deformation results. Defor-
mations are taken with respect to both the H-comodule structure and the algebra
structure on A.

7.1. Comodule algebra
For an associative algebra A = (A,µA), an H-comodule algebra structure on A

consists of an H-comodule structure ρ ∈ Hom(A,H ⊗A) on A such that the map
µA : A⊗A→ A becomes an H-comodule morphism, i.e.,

ρ ◦ µA = (µH ⊗ µA) ◦ (IdH ⊗τ(A,H) ⊗ IdA) ◦ ρ⊗2.

Here and in what follows, given two modules X and Y ,

τ(X,Y ) : X ⊗ Y ∼= Y ⊗X

denotes the twist isomorphism. For the rest of this section, A will denote an H-
comodule algebra with structure map ρ.

In general, for n > 2, the module A⊗n becomes an H-comodule whose structure
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map

ρn : A⊗n → H ⊗A⊗n

is defined by the commutative diagram:

A⊗n ρn

−−−−→ H ⊗A⊗n

ρ⊗n

y
xµn

H⊗IdA⊗n

(H ⊗A)⊗n −−−−→
shuffle

H⊗n ⊗A⊗n.

Here

µn
H : H⊗n → H

is the multiplication map defined by

µn
H(x1,n) = x1 · · ·xn (17)

for xi ∈ H.

7.2. H⊗q as an H-bimodule
For q > 2, the module H⊗q is an H-bimodule whose left and right H-actions are

defined by

µq
l,H(x, y1 ⊗ · · · ⊗ yq) =

∑
(x)
x(1)y1 ⊗ · · · ⊗ x(q)yq,

µq
r,H(y1 ⊗ · · · ⊗ yq, x) =

∑
(x)
y1x(1) ⊗ · · · ⊗ yqx(q)

for x, y1, . . . , yq ∈ H.

7.3. H⊗q ⊗ A as an A-bimodule
For each q > 1, the module H⊗q ⊗A becomes an A-bimodule via the structure

maps

(µq
l,H ⊗ µA) ◦ (IdH ⊗τ(A,H⊗q) ⊗A) ◦ (ρ⊗ IdH⊗q⊗A) : A⊗ (H⊗q ⊗A) → H⊗q ⊗A,

(µq
r,H ⊗ µA) ◦ (IdH⊗q ⊗τ(A,H) ⊗ IdA) ◦ (IdH⊗q⊗A⊗ρ) : (H⊗q ⊗A)⊗A→ H⊗q ⊗A.

In particular, we can consider the Hochschild cochain complex Hoch∗(A,H⊗q ⊗A).

7.4. Comodule algebra deformation bicomplex
The deformation bicomplex of the H-comodule algebra A is the first quadrant,

cohomological bicomplex

C∗∗CA(A) =
{
Cp, q

CA (A), dp, q, (−1)p+1bp, q
}

with

Cp, q
CA (A) =





0 if p = 0,
Der(A) if (p, q) = (1, 0),
Hom(A⊗p,H⊗q ⊗A) otherwise.
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In the qth row for q > 0, define the horizontal differential as the Hochschild cobound-
ary,

d∗, q def= δ∗h : Hoch∗(A,H⊗q ⊗A) → Hoch∗+1(A,H⊗q ⊗A).

For p > 1, the vertical differential

(−1)p+1bp, q : Hom(A⊗p,H⊗q ⊗A) → Hom(A⊗p,H⊗(q+1) ⊗A)

is defined by the alternating sum

bp, q =
q+1∑

i=0

(−1)ibp, q[i],

where

bp, q[i](ϕ) =





(IdH⊗q ⊗ρ) ◦ ϕ if i = 0,(
IdH⊗(q−i) ⊗∆H ⊗ IdH⊗(i−1)⊗A

) ◦ ϕ if 1 6 i 6 q,

(IdH ⊗ϕ) ◦ ρp if i = q + 1.

An analogue of Theorem 3.1 holds in the comodule algebra context. The total com-
plex of the deformation bicomplex C∗∗CA(A) is denoted by C∗CA(A) and is called the
deformation complex of A. The nth cohomology module of C∗CA(A) is denoted by
Hn

CA(A).
Note that the cochain complex F∗ca(A) constructed in [20] is the total complex of

the sub-bicomplex of C∗∗CA(A) consisting of the first column C1, ∗
CA (A) and the first row

C∗, 1CA (A).

7.5. Cup product
The module H⊗q ⊗A is an associative algebra whose multiplication map is defined

as

µH⊗q⊗A
def= (µH⊗q ⊗ µA) ◦ (

IdH⊗q ⊗τ(A,H⊗q) ⊗ IdA

)
,

where

µH⊗q (x1 ⊗ · · · ⊗ xq, y1 ⊗ · · · ⊗ yq) = x1y1 ⊗ · · · ⊗ xqyq

for xi, yj ∈ H. The three conditions in (3) hold in this case. It follows that each row

C∗, q
CA (A) = Hoch∗(A,H⊗q ⊗A)

admits a Hochschild ∪-product as in (4). Explicitly, given ϕ ∈ Cr, q
CA(A) and ψ ∈

Cs, q
CA(A), their ∪-product is given by

ϕ ∪ ψ = µH⊗q⊗A ◦ (ϕ⊗ ψ).

7.6. Comodule algebra deformation
A deformation of A is a power series Θ =

∑
n>0 θnt

n with θ0 = (ρ, µA) and each
θn = (ρn, πn) ∈ C2

CA(A), satisfying the following three conditions. Writing

R =
∑

n>0

ρnt
n (ρ0 = ρ)
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and
Π =

∑

n>0

πnt
n (π0 = µA),

the three conditions are:
(IdH ⊗R) ◦R = (∆H ⊗ IdA) ◦R,

R ◦Π = (µH ⊗Π) ◦ (IdH ⊗τ(A,H) ⊗ IdA) ◦R⊗2,

Π(Π(a, b), c) = Π(a,Π(b, c))

(18)

for a, b, c ∈ A. Such a deformation is also denoted by Θ = (R,Π). The linear coefficient
θ1 ∈ C2

CA(A) is called the infinitesimal. The trivial deformation is the deformation
Θ = θ0 = (ρ, µA).

A formal automorphism of A is a power series Φ =
∑

n>0 φnt
n with φ0 = IdA and

each φn ∈ End(A) such that the first non-zero φn (n > 1) is a derivation on A.
Two deformations Θ = (R,Π) and Θ = (R,Π) are said to be equivalent if and only

if there exists a formal automorphism Φ such that the following two conditions are
satisfied:

R = (IdH ⊗Φ−1) ◦R ◦ Φ,

Π = Φ−1 ◦Π ◦ Φ⊗2.
(19)

The H-comodule algebra A is said to be rigid if every deformation of A is equivalent
to the trivial deformation.

The following result is the comodule algebra analogue of Theorem 5.1.

Theorem 7.1. Let A be an H-comodule algebra. Then the following statements hold.
1. The infinitesimal θ1 of any deformation Θ of A is a 2-cocycle in the deformation

complex C2
CA(A) whose cohomology class is determined by the equivalence class

of Θ.
2. If H2

CA(A) = 0, then A is rigid.

8. Deformation bicomplex of comodule coalgebras

The purposes of this section are to construct the deformation bicomplex

C∗∗CC(A) = Hom(A,H⊗∗ ⊗A⊗∗)

of an H-comodule coalgebra A and to list the corresponding deformation results.
Deformations are taken with respect to both the H-comodule structure and the coal-
gebra structure on A.

8.1. Comodule coalgebra
For this section, let A = (A,∆A) be a coassociative coalgebra. An H-comodule

coalgebra structure on A consists of an H-comodule structure ρ ∈ Hom(A,H ⊗A) on
A such that the comultiplication map ∆A is an H-comodule morphism, i.e.,

(IdH ⊗∆A) ◦ ρ = (µH ⊗ IdA⊗2) ◦ (IdH ⊗τ(A,H) ⊗ IdA) ◦ ρ⊗2 ◦∆A.

For the rest of this section, A will denote an H-comodule coalgebra with structure
map ρ.
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8.2. Comodule coalgebra deformation bicomplex
The deformation bicomplex of A is the first quadrant, cohomological bicomplex

C∗∗CC(A) =
{
Cp, q

CC (A), dp, q, (−1)p+1bp, q
}

with

Cp, q
CC (A) =





0 if p = 0,
Coder(A) if (p, q) = (1, 0),
Hom(A,H⊗q ⊗A⊗p) otherwise.

For p > 1, the vertical differential

(−1)p+1bp, q : Hom(A,H⊗q ⊗A⊗p) → Hom(A,H⊗(q+1) ⊗A⊗p)

is defined by the alternating sum

bp, q =
q+1∑

i=0

(−1)ibp, q[i],

where

bp, q[i](ϕ) =





(IdH⊗q ⊗ρp) ◦ ϕ if i = 0,(
IdH⊗(q−i) ⊗∆H ⊗ IdH⊗(i−1)⊗A⊗p

) ◦ ϕ if 1 6 i 6 q,

(IdH ⊗ϕ) ◦ ρ if i = q + 1

for ϕ ∈ Hom(A,H⊗q ⊗A⊗p). Here ρp is the H-comodule structure map on A⊗p

defined in Section 7.1.
In the 0th row C∗, 0CC (A), define the horizontal differential as the Hochschild coal-

gebra coboundary,

dp, 0 def= δp
c : Hochp

c(A,A) → Hochp+1
c (A,A).

In the qth row C∗, q
CC (A) for q > 1, define the horizontal differential as the alternating

sum

dp, q =
p+1∑

i=0

(−1)idp, q[i],

where

dp, q[i](ϕ) =




(
µq

l,H ⊗ IdA⊗(p+1)

)
◦ (

IdH ⊗τ(A,H⊗q) ⊗ IdA⊗p

) ◦ (ρ⊗ ϕ) ◦∆A if i = 0,(
IdH⊗q⊗A⊗(i−1) ⊗∆A ⊗ IdA⊗(p−i)

) ◦ ϕ if 1 6 i 6 p,(
µq

r,H ⊗ IdA⊗(p+1)

)
◦ (

IdH⊗q ⊗τ(A⊗p,H) ⊗ IdA

) ◦ (ϕ⊗ ρ) ◦∆A if i = p+ 1

for ϕ ∈ Hom(A,H⊗q ⊗A⊗p). Here µq
∗,H (∗ = l, r) are the H-bimodule structure maps

on H⊗q defined in Section 7.2.
The comodule coalgebra analogue of Theorem 3.1 holds. The total complex of the

deformation bicomplex C∗∗CC(A) is denoted by C∗CC(A) and is called the deformation
complex of A. The nth cohomology module of C∗CC(A) is denoted by Hn

CC(A).



DEFORMATION BICOMPLEX OF MODULE ALGEBRAS 117

Note that the cochain complex F∗cc(A) constructed in [20] is the total complex of
the sub-bicomplex of C∗∗CC(A) consisting of the first column C1, ∗

CC (A) and the first row
C∗, 1CC (A).

8.3. Cup product
For each q > 0, the qth row (C∗, q

CC (A), d∗, q) is a DGA whose product is defined as

ϕ ∪ ψ def= (µH⊗q ⊗ IdA⊗(r+s)) ◦ (
IdH⊗q ⊗τ(A⊗r,H⊗q) ⊗ IdA⊗s

) ◦ (ϕ⊗ ψ) ◦∆A

for ϕ ∈ Cr, q
CC(A) and ψ ∈ Cs, q

CC (A).

8.4. Comodule coalgebra deformation
A deformation of A is a power series Θ =

∑
n>0 θnt

n with θ0 = (ρ,∆A) and each
θn = (ρn,∆n) ∈ C2

CC(A), satisfying the following three conditions. Writing

R =
∑

n>0

ρnt
n (ρ0 = ρ)

and
D =

∑

n>0

∆nt
n (∆0 = ∆A),

the three conditions are:
(IdH ⊗R) ◦R = (∆H ⊗ IdA) ◦R,
(IdH ⊗D) ◦R = (µH ⊗ IdA⊗2) ◦ (

IdH ⊗τ(A,H) ⊗ IdA

) ◦R⊗2 ◦D,
(D ⊗ IdA) ◦D = (IdA⊗D) ◦D.

(20)

Such a deformation is also denoted by Θ = (R,D). The linear coefficient θ1 ∈ C2
CC(A)

is called the infinitesimal. The trivial deformation is the deformation Θ = θ0 =
(ρ,∆A).

A formal automorphism of A is a power series Φ =
∑

n>0 φnt
n with φ0 = IdA and

each φn ∈ End(A) such that the first non-zero φn (n > 1) is a coderivation on A.
Two deformations Θ = (R,D) and Θ = (R,D) are said to be equivalent if and only

if there exists a formal automorphism Φ such that the following two conditions are
satisfied:

R = (IdH ⊗Φ−1) ◦R ◦ Φ,

D = (Φ−1)⊗2 ◦D ◦ Φ.
(21)

TheH-comodule coalgebra A is said to be rigid if every deformation of A is equivalent
to the trivial deformation.

The following result is the comodule coalgebra analogue of Theorem 5.1.

Theorem 8.1. Let A be an H-comodule coalgebra. Then the following statements
hold.

1. The infinitesimal θ1 of any deformation Θ of A is a 2-cocycle in the deformation
complex C2

CC(A) whose cohomology class is determined by the equivalence class
of Θ.

2. If H2
CC(A) = 0, then A is rigid.
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9. Deformation tricomplex of module bialgebras

In this section, we construct the deformation tricomplex

C∗∗∗MB(A) = Hoch∗(H,Hom(A⊗∗, A⊗∗))

of an H-module bialgebra A and list the corresponding deformation results. Both the
H-module structure and the bialgebra structure on A are deformed. This deformation
tricomplex contains the deformation bicomplexes C∗∗MA(A) and C∗∗MC(A) for module
(co)algebras and the Gerstenhaber-Schack bicomplex C∗∗GS(A) [7, 8] for a bialgebra.
Unlike the (co)module (co)algebra deformation bicomplexes, each cochain complex
obtained from C∗∗∗MB(A) by fixing two of the three dimensions is a DGA. In fact,
each such cochain complex is either a Hochschild (coalgebra) cochain complex or
is isomorphic to one. The relevant products can be identified with the Hochschild
(coalgebra) ∪-products.

For the rest of this paper, let A = (A,µA,∆A) be a bialgebra with associative
multiplication µA and coassociative comultiplication ∆A.

9.1. Biderivation
A biderivation on A is a linear self-map ϕ ∈ End(A) that is both a derivation and

a coderivation on A. The set of biderivations on A is denoted by Bider(A), and it is
considered as a submodule of End(A).

9.2. Module bialgebra
An H-module bialgebra structure on A is an H-module structure λ ∈

Hom(H,End(A)) on A that makes A into an H-module algebra and an H-module
coalgebra simultaneously. For the rest of this section, let A be an H-module bialgebra
with structure map λ.

For example, let G1 and G2 be two groups. Then any group homomorphism

φ : G1 → Aut(G2)

gives rise to a K[G1]-module bialgebra structure on the group bialgebra K[G2] via
the action

λ(x)(y) = φ(x)(y) (22)

for x ∈ G1 and y ∈ G2 [1, Example 3.6]. Similarly, suppose that L1 and L2 are Lie
algebras and that

φ : L1 → Der(L2)

is a Lie algebra morphism. Then the same formula (22) gives rise to a U(L1)-module
bialgebra structure on the enveloping bialgebra U(L2) [1, Example 3.7].

9.3. H-bimodule structure on Hom(A⊗p, A⊗q)
When A is anH-module bialgebra, there is anH-bimodule structure on the module

Hom(A⊗p, A⊗q) for p, q > 1. The left and right H-actions are given as follows:

(xϕ)(a1,p) =
∑

λ(x(1))(ϕ(a1,p)1)⊗ · · · ⊗ λ(x(q))(ϕ(a1,p)q),

(ϕx)(a1,p) =
∑

ϕ
(
λ(x(1))(a1)⊗ · · · ⊗ λ(x(p))(ap)

)
.
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Here x ∈ H, ϕ ∈ Hom(A⊗p, A⊗q), ai ∈ A, and

ϕ(a1,p) =
∑

ϕ(a1,p)1 ⊗ · · · ⊗ ϕ(a1,p)q.

This generalizes the constructions in Sections 3.1 and 6.3. In particular, we can con-
sider the Hochschild cochain complex Hoch∗(H,Hom(A⊗p, A⊗q)).

9.4. Module bialgebra deformation tricomplex

The deformation tricomplex of the H-module bialgebra A is the first octant, coho-
mological tricomplex

C∗∗∗MB(A) =
{
Cp, q, r

MB (A), (−1)q+1dp, q, r
I , (−1)r+1dp, q, r

II , (−1)p+1dp, q, r
III

}

with

Cp, q, r
MB (A) =





0 if p = 0 or q = 0,
Bider(A) if (p, q, r) = (1, 1, 0),
Hom(H⊗r,Hom(A⊗p, A⊗q)) otherwise.

The differential

(−1)q+1dp, q, r
I : Cp, q, r

MB (A) → Cp+1, q, r
MB (A)

is defined using the alternating sum

dp, q, r
I =

p+1∑

i=0

(−1)idp, q, r
I [i],

where

(dp, q, r
I [i]ϕ) (x1,r)(a1,p+1) =



∑
µq

l,A

(
λ(x1(1) · · ·xr(1))(a1), ϕ(x1(2) ⊗ · · · ⊗ xr(2))(a2,p+1)

)
if i = 0,

ϕ(x1,r)(a1,i−1 ⊗ (aiai+1)⊗ ai+2,p+1) if 1 6 i 6 p,∑
µq

r,A

(
ϕ(x1(1) ⊗ · · · ⊗ xr(1))(a1,p), λ(x1(2) · · ·xr(2))(ap+1)

)
if i = p+ 1

for ϕ ∈ Cp, q, r
MB (A), xk ∈ H, and al ∈ A. Here µq

l,A and µq
r,A are the left and right

actions of A on A⊗q, defined as in Section 7.2.

The differential

(−1)r+1dp, q, r
II : Cp, q, r

MB (A) → Cp, q+1, r
MB (A)

is defined using the alternating sum

dp, q, r
II =

q+1∑

i=0

(−1)idp, q, r
II [i],
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where

(dp, q, r
II [i]ϕ) (x1,r)(a1,p) =




∑
λ(x1(1) · · ·xr(1))(a1(1) · · · ap(1))
⊗ ϕ(x1(2) ⊗ · · · ⊗ xr(2))(a1(2) ⊗ · · · ⊗ ap(2)) if i = 0,

(IdA⊗(i−1) ⊗∆A ⊗ IdA⊗(q−i)) (ϕ(x1,r)(a1,p)) if 1 6 i 6 q,∑
ϕ(x1(1) ⊗ · · · ⊗ xr(1))(a1(1) ⊗ · · · ⊗ ap(1))
⊗ λ(x1(2) · · ·xr(2))(a1(2) · · · ap(2)) if i = q + 1.

Finally, the differential

(−1)p+1dp, q, r
III : Cp, q, r

MB (A) → Cp, q, r+1
MB (A)

is defined using the Hochschild coboundary

dp, q, r
III

def= δr
h : Hochr(H,Hom(A⊗p, A⊗q)) → Hochr+1(H,Hom(A⊗p, A⊗q)).

In particular, dp, q, r
III is the alternating sum

dp, q, r
III =

r+1∑

i=0

(−1)idp, q, r
III [i],

where
dp, q, r

III [i] = δr
h[i]

as in (2).
The following observations, which are the module bialgebra analogue of Theo-

rem 3.1, ensure that C∗∗∗MB(A) is indeed a tricomplex.

Theorem 9.1. Let A be an H-module bialgebra. Then:
1. The following statements hold for all possible values of p, q, r, and k < l:

dp+1, q, r
I [l] ◦ dp, q, r

I [k] = dp+1, q, r
I [k] ◦ dp, q, r

I [l − 1],

dp, q+1, r
II [l] ◦ dp, q, r

II [k] = dp, q+1, r
II [k] ◦ dp, q, r

II [l − 1],

dp, q, r+1
III [l] ◦ dp, q, r

III [k] = dp, q, r+1
III [k] ◦ dp, q, r

III [l − 1].

2. The following statements hold for all possible values of p, q, r, i, and j:

dp+1, q, r
II [j] ◦ dp, q, r

I [i] = dp, q+1, r
I [i] ◦ dp, q, r

II [j],

dp, q, r+1
II [j] ◦ dp, q, r

III [i] = dp, q+1, r
III [i] ◦ dp, q, r

II [j],

dp+1, q, r
III [j] ◦ dp, q, r

I [i] = dp, q, r+1
I [i] ◦ dp, q, r

III [j].

In particular, every two-dimensional plane in C∗∗∗MB(A) is a bicomplex.

9.5. Boundary planes
Observe that the boundary planes of the deformation tricomplex C∗∗∗MB(A) are either

known or have been discussed in previous sections. In fact:
1. The p = 1 plane C1, ∗, ∗

MB (A) coincides with the deformation bicomplex C∗∗MC(A)
in which A is regarded as an H-module coalgebra (see Section 6).



DEFORMATION BICOMPLEX OF MODULE ALGEBRAS 121

2. The q = 1 plane C∗, 1, ∗
MB (A) coincides with the deformation bicomplex C∗∗MA(A)

in which A is regarded as an H-module algebra (see Section 3).
3. The r = 0 plane C∗, ∗, 0MB (A) coincides with the Gerstenhaber-Schack deformation

bicomplex C∗∗GS(A) (denoted by Ĉ•, •b (A,A) in [7, 8]) in which A is regarded as
only a bialgebra.

As in the (co)module (co)algebra cases, the only exception to the above remarks is
the entry C1, 1, 0

MB (A) = Bider(A).

9.6. Cup products
Each cochain complex in the deformation tricomplex C∗∗∗MB(A) has an associative

∪-product that makes it into a DGA.
In the direction of dI , fix q > 1 and r > 0. Then the cochain complex C∗, q, r

MB (A) is
a DGA whose product is defined as

(ϕ ∪ ψ)(x1,r)(a1,p1+p2)
def=

µA⊗q

(
ϕ(x1(1) ⊗ · · · ⊗ xr(1))(a1,p1), ψ(x1(2) ⊗ · · · ⊗ xr(2))(ap1+1,p1+p2)

)
(23)

for ϕ ∈ Cp1, q, r
MB (A) and ψ ∈ Cp2, q, r

MB (A). This generalizes the ∪-product in C∗, r
MA(A)

discussed in Section 4.
In fact, it can be identified with a Hochschild ∪-product. There is a canonical

isomorphism of cochain complexes,
(
C∗, q, r

MB (A), (−1)q+1d∗, q, r
I

) ∼= (−1)q+1
(
Hoch∗(A,Hom(H⊗r, A⊗q)), δh

)
(24)

given by the Hom−⊗ adjunction (twice). The left and right actions of A on
Hom(H⊗r, A⊗q) are given by

(af)(x1,r) =
∑

µq
l,A

(
λ(x1(1) · · ·xr(1))(a), f(x1(2) ⊗ · · · ⊗ xr(2))

)
,

(fa)(x1,r) =
∑

µq
r,A

(
f(x1(1) ⊗ · · · ⊗ xr(1)), λ(x1(2) · · ·xr(2))(a)

)

for a ∈ A, f ∈ Hom(H⊗r, A⊗q), and xi ∈ H. The module Hom(H⊗r, A⊗q) is an asso-
ciative algebra via the product

(f · g)(x1,r) = µA⊗q

(
f(x1(1) ⊗ · · · ⊗ xr(1)), g(x1(2) ⊗ · · · ⊗ xr(2))

)

such that the conditions (3) are satisfied. The resulting Hochschild ∪-product corre-
sponds, via the isomorphism (24), to the ∪-product defined in (23).

In the direction of dII , fix p > 1 and r > 0. Then the cochain complex Cp, ∗, r
MB (A)

is a DGA whose product is defined as

(ϕ ∪ ψ)(x1,r)(a1,p)
def=

∑
ϕ(x1(1) ⊗ · · · ⊗ xr(1))(a1(1) ⊗ · · · ⊗ ap(1))⊗

ψ(x1(2) ⊗ · · · ⊗ xr(2))(a1(2) ⊗ · · · ⊗ ap(2)) (25)

for ϕ ∈ Cp, q1, r
MB (A) and ψ ∈ Cp, q2, r

MB (A). This generalizes the ∪-product in C∗, r
MC(A)

discussed in Section 6.5.
Moreover, there is a canonical isomorphism,

(
Cp, ∗, r

MB (A), (−1)r+1dp, ∗, r
II

) ∼= (−1)r+1
(
Hoch∗c(H

⊗r ⊗A⊗p, A), δc
)

(26)

of cochain complexes given by the Hom−⊗ adjunction. The left and right A-coactions
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on H⊗r ⊗A⊗p are given by

x1,r ⊗ a1,p 7→ λ(x1(1) · · ·xr(1))(a1(1) · · · ap(1))

⊗ (
x1(2) ⊗ · · · ⊗ xr(2) ⊗ a1(2) ⊗ · · · ⊗ ap(2)

)
,

x1,r ⊗ a1,p 7→
(
x1(1) ⊗ · · · ⊗ xr(1) ⊗ a1(1) ⊗ · · · ⊗ ap(1)

)

⊗ λ(x1(2) · · ·xr(2))(a1(2) · · · ap(2)).

The module H⊗r ⊗A⊗p is a coassociative coalgebra via the coproduct

∆(x1,r ⊗ a1,p) =
∑(

x1(1) ⊗ · · · ⊗ xr(1) ⊗ a1(1) ⊗ · · · ⊗ ap(1)

)

⊗ (
x1(2) ⊗ · · · ⊗ xr(2) ⊗ a1(2) ⊗ · · · ⊗ ap(2)

)

such that the three conditions in (13) are satisfied. The resulting Hochschild coalgebra
∪-product corresponds, via the isomorphism (26), to the ∪-product defined in (25).

In the direction of dIII , fix p > 1 and q > 1. Note that the module Hom(A⊗p, A⊗q)
is an associative algebra via the product

f · g def= f ◦∆p−1
A ◦ µq

A ◦ g,
where

∆0
A = IdA = µ1

A.

In the particular case p = q = 1, this product is simply the composition product in
Hom(A,A). Regarding Hom(A⊗p, A⊗q) as an H-bimodule, the three conditions in (3)
hold. It follows that the Hochschild cochain complex

Cp, q, ∗
MB (A) = (−1)p+1Hoch∗(H,Hom(A⊗p, A⊗q))

admits a Hochschild ∪-product (4) that makes it into a DGA.

9.7. Total complex
The total complex C∗MB(A), called the deformation complex of A, of the deforma-

tion tricomplex C∗∗∗MB(A) is defined as usual but with a shift of degree:

Cn
MB(A) def=

⊕
p+q+r = n+1

Cp, q, r
MB (A).

In particular, we have that

C1
MB(A) = Bider(A),

C2
MB(A) = Hom(H,Hom(A,A))⊕Hom(A⊗2, A)⊕Hom(A,A⊗2).

The degree shift is introduced to ensure that the deformation results below have the
same degree conventions as in the previous sections and as in [7, 8].

The nth cohomology module of the deformation complex C∗MB(A) is denoted by
Hn

MB(A).

9.8. Module bialgebra deformation
A deformation of A as an H-module bialgebra is a power series Θ =

∑
n>0 θnt

n

with θ0 = (λ, µA,∆A) ∈ C2
MB(A) and each θn = (λn, πn,∆n) ∈ C2

MB(A), satisfying
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the five conditions for module algebra deformations (10) and module coalgebra defor-
mations (15). Using the notations from earlier sections, such a deformation is also
denoted by

Θ = (Λ,Π, D).

The infinitesimal of a deformation Θ is the linear coefficient θ1.
A formal automorphism of A is a power series

∑
n>0 φnt

n with φ0 = IdA and each
φn ∈ End(A) such that the first non-zero φn (n > 1) is a biderivation on A.

Two deformations Θ = (Λ,Π, D) and Θ = (Λ,Π, D) are said to be equivalent if
and only if there exists a formal automorphism Φ such that the three conditions in
(11) and (16) are satisfied.

The trivial deformation is the deformation Θ = θ0 = (λ, µA,∆A). The H-module
bialgebra A is said to be rigid if every deformation of A is equivalent to the trivial
deformation.

The following result is the module bialgebra analogue of Theorem 5.1.

Theorem 9.2. Let A be an H-module bialgebra. Then the following statements hold.

1. The infinitesimal θ1 of any deformation Θ of A is a 2-cocycle in the deformation
complex C2

MB(A) whose cohomology class is determined by the equivalence class
of Θ.

2. If H2
MB(A) = 0, then A is rigid.

10. Deformation tricomplex of comodule bialgebras

The purposes of this section are to construct the deformation tricomplex

C∗∗∗CB (A) = Hom(A⊗∗,H⊗∗ ⊗A⊗∗)

of an H-comodule bialgebra A and to list the corresponding deformation results.
Both the H-comodule structure and the bialgebra structure on A are deformed. This
deformation tricomplex contains the deformation bicomplexes C∗∗CA(A) and C∗∗CC(A)
for comodule (co)algebras and the Gerstenhaber-Schack bicomplex C∗∗GS(A) [7, 8] for
a bialgebra.

10.1. Comodule bialgebra
An H-comodule bialgebra structure on a bialgebra A is an H-comodule structure

ρ ∈ Hom(A,H ⊗A) that makes A into an H-comodule algebra and an H-comodule
coalgebra simultaneously.

For example, let H be a commutative Hopf algebra with antipode S. Then the
map ρ ∈ Hom(H,H ⊗H) defined by

ρ(x) =
∑(

x(1)Sx(3)

)⊗ x(2)

for x ∈ H gives H an H-comodule bialgebra structure [1, Example 3.8].
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10.2. A-bimodule structure on H⊗r ⊗A⊗q

For r > 0 and q > 1, there is an A-bimodule structure on the module H⊗r ⊗A⊗q

whose left and right A-action maps are defined as
(
µr

l,H ⊗ µq
l,A

)
◦ (

IdH ⊗τ(A,H⊗r) ⊗ IdA⊗q

) ◦ (ρ⊗ IdH⊗r⊗A⊗q ) : A⊗ (H⊗r ⊗A⊗q)

→ H⊗r ⊗A⊗q,(
µr

r,H ⊗ µq
r,A

)
◦ (

IdH⊗r ⊗τ(A⊗q,H) ⊗ IdA

) ◦ (IdH⊗r⊗A⊗q ⊗ρ) : (H⊗r ⊗A⊗q)⊗A

→ H⊗r ⊗A⊗q

when r > 1. When r = 0, the left and right A-action maps on A⊗q are simply µq
l,A

and µq
r,A. In particular, we can consider the Hochschild cochain complex

Hoch∗(A,H⊗r ⊗A⊗q).

10.3. Comodule bialgebra deformation tricomplex
The deformation tricomplex of the H-comodule bialgebra A is the first octant,

cohomological tricomplex

C∗∗∗CB (A) =
{
Cp, q, r

CB (A), (−1)q+1dp, q, r
I , (−1)r+1dp, q, r

II , (−1)p+1dp, q, r
III

}

with

Cp, q, r
CB (A) =





0 if p = 0 or q = 0,
Bider(A) if (p, q, r) = (1, 1, 0),
Hom(A⊗p,H⊗r ⊗A⊗q) otherwise.

The differential

(−1)q+1dp, q, r
I : Cp, q, r

CB (A) → Cp+1, q, r
CB (A)

is defined using the Hochschild coboundary

dp, q, r
I

def= δp
h : Hochp(A,H⊗r ⊗A⊗q) → Hochp+1(A,H⊗r ⊗A⊗q).

The differential

(−1)r+1dp, q, r
II : Cp, q, r

CB (A) → Cp, q+1, r
CB (A)

is defined using the alternating sum

dp, q, r
II =

q+1∑

i=0

(−1)idp, q, r
II [i],

where

dp, q, r
II [i](ϕ) =





(
µr

l,H ⊗ µp
A ⊗ IdA⊗q

)

◦ (
IdH ⊗τ(A⊗p,H⊗r) ⊗ IdA⊗q

) ◦ (ρp ⊗ ϕ) ◦∆A⊗p if i = 0,(
IdH⊗r⊗A⊗(i−1) ⊗∆A ⊗ IdA⊗(q−i)

) ◦ ϕ if 1 6 i 6 q,(
µr

r,H ⊗ IdA⊗q ⊗µp
A

)

◦ (
IdH⊗r ⊗τ(A⊗q,H) ⊗ IdA⊗p

) ◦ (ϕ⊗ ρp) ◦∆A⊗p if i = q + 1.
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Here

ρp : A⊗p → H ⊗A⊗p

and

µp
A : A⊗p → A

are as defined in Section 7.1 and (17), respectively. The map

∆A⊗p : A⊗p → A⊗p ⊗A⊗p

is defined as

∆A⊗p(a1,p) =
∑(

a1(1) ⊗ · · · ⊗ ap(1)

)⊗ (
a1(2) ⊗ · · · ⊗ ap(2)

)

for a1, . . . , ap ∈ A.
Finally, the differential

(−1)p+1dp, q, r
III : Cp, q, r

CB (A) → Cp, q, r+1
CB (A)

is defined using the alternating sum

dp, q, r
III =

r+1∑

i=0

(−1)idp, q, r
III [i],

where

dp, q, r
III [i](ϕ) =





(IdH⊗r ⊗ρq) ◦ ϕ if i = 0,(
IdH⊗(r−i) ⊗∆H ⊗ IdH⊗(i−1)⊗A⊗q

) ◦ ϕ if 1 6 i 6 r,

(IdH ⊗ϕ) ◦ ρp if i = r + 1.

The six statements in Theorem 9.1 still hold in the comodule bialgebra context,
so C∗∗∗CB (A) is indeed a tricomplex.

10.4. Boundary planes
As in the module bialgebra case, the boundary planes of the deformation tricom-

plex C∗∗∗CB (A) are either known or have been discussed in previous sections. In fact:

1. The p = 1 plane C1, ∗, ∗
CB (A) coincides with the deformation bicomplex C∗∗CC(A)

in which A is regarded as an H-comodule coalgebra (see Section 8).

2. The q = 1 plane C∗, 1, ∗
CB (A) coincides with the deformation bicomplex C∗∗CA(A)

in which A is regarded as an H-comodule algebra (see Section 7).

3. The r = 0 plane C∗, ∗, 0CB (A) coincides with the Gerstenhaber-Schack deformation
bicomplex C∗∗GS(A) (denoted by Ĉ•, •b (A,A) in [7, 8]) in which A is regarded as
only a bialgebra.

Again, the only exception to the above remarks is the entry C1, 1, 0
CB (A) = Bider(A).

10.5. Cup products
Each cochain complex in the deformation tricomplex C∗∗∗CB (A) is a DGA.
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In the direction of dI , fix q > 1 and r > 0. Note that the module H⊗r ⊗A⊗q is an
associative algebra whose multiplication map is

µH⊗r⊗A⊗q = (µH⊗r ⊗ µA⊗q ) ◦ (
IdH⊗r ⊗τ(A⊗q, H⊗r) ⊗ IdA⊗q

)
.

Regarding H⊗r ⊗A⊗q as an A-bimodule, the three conditions in (3) hold. It follows
that

C∗, q, r
CB (A) = (−1)q+1Hoch∗(A,H⊗r ⊗A⊗q)

admits a Hochschild ∪-product that makes it into a DGA. This generalizes the ∪-
product in C∗, r

CA (A) discussed in Section 7.5.
In the direction of dII , fix p > 1 and r > 0. Then the cochain complex Cp, ∗, r

CB (A)
is a DGA whose product is defined as

ϕ ∪ ψ def= (µH⊗r ⊗ IdA⊗(q1+q2)) ◦ (
IdH⊗r ⊗τ(A⊗q1 , H⊗r) ⊗ IdA⊗q2

) ◦ (ϕ⊗ ψ) ◦∆A⊗p

for ϕ ∈ Cp, q1, r
CB (A) and ψ ∈ Cp, q2, r

CB (A). This generalizes the ∪-product in C∗, r
CC (A)

discussed in Section 8.3.
In the direction of dIII , fix p > 1 and q > 1. Then the cochain complex Cp, q, ∗

CB (A)
is a DGA whose product is defined as

ϕ ∪ ψ def= (IdH⊗(r1+r2) ⊗µA⊗q ) ◦ (
IdH⊗r1 ⊗τ(A⊗q, H⊗r2 ) ⊗ IdA⊗q

) ◦ (ϕ⊗ ψ) ◦∆A⊗p

for ϕ ∈ Cp, q, r1
CB (A) and ψ ∈ Cp, q, r2

CB (A).

10.6. Total complex
The total complex C∗CB(A), called the deformation complex of A, of the deforma-

tion tricomplex C∗∗∗CB (A) is defined as usual but with a shift of degree:

Cn
CB(A) def=

⊕
p+q+r = n+1

Cp, q, r
CB (A).

In particular, we have that

C1
CB(A) = Bider(A),

C2
CB(A) = Hom(A,H ⊗A)⊕Hom(A⊗2, A)⊕Hom(A,A⊗2).

The nth cohomology module of the deformation complex C∗CB(A) is denoted by
Hn

CB(A).

10.7. Comodule bialgebra deformation
A deformation of A as an H-comodule bialgebra is a power series Θ =

∑
n>0 θnt

n

with θ0 = (ρ, µA,∆A) ∈ C2
CB(A) and each θn = (ρn, πn,∆n) ∈ C2

CB(A), satisfying the
five conditions for comodule algebra deformation (18) and comodule coalgebra defor-
mation (20). The infinitesimal of Θ is the linear coefficient θ1.

The notions of a formal automorphism of A and equivalence of deformations are
defined exactly as in the module bialgebra case, except that, in defining the latter,
the conditions (19) and (21) are used.

The trivial deformation is the deformation Θ = θ0 = (ρ, µA,∆A). The H-comodule
bialgebra A is said to be rigid if every deformation of A is equivalent to the trivial
deformation.
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The following result is the comodule bialgebra analogue of Theorem 5.1.

Theorem 10.1. Let A be an H-comodule bialgebra. Then the following statements
hold.

1. The infinitesimal θ1 of any deformation Θ of A is a 2-cocycle in the deformation
complex C2

CB(A) whose cohomology class is determined by the equivalence class
of Θ.

2. If H2
CB(A) = 0, then A is rigid.
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