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In a well-known paper, Cohen and Lenstra gave conjectures on
class groups of number fields. We give here similar conjectures
for Tate—Shafarevitch groups of elliptic curves defined over Q.
For such groups (if they are finite), there exists a nondegenerate,
alternating, bilinear pairing. We give some properties of such
groups and then formulate heuristics which allow us to give pre-
cise conjectures.

1. INTRODUCTION

We make a study of Tate—Shafarevitch groups of el-
liptic curves defined over Q similar to the one made
in [Cohen and Lenstra 1984] of class groups of num-
ber fields. Part of our motivation is the deep analogy
that exists between these groups.

In this paper, we will assume the truth of the con-
jecture asserting that the Tate—Shafarevitch group
I of an elliptic curve over Q is finite. Under this
conjecture, there exists a nondegenerate, alternat-
ing, bilinear pairing

g1 x T — Q/Z;

see [Silverman 1986|, for example. We will say that
a pair (G, ) is a group of type S if G is a finite
abelian group and ( is a nondegenerate alternating
bilinear pairing # : Gx G — Q/Z. We will also have
to consider isomorphism classes of groups of type S,
where two groups (G, 51) and (Ga, 3;) of type S are
said to be isomorphic if there exists an isomorphism
0 : Gy — Gy such that By(o(z),0(y)) = Pi(z,y) for
all z,y € G;.

In [Cohen and Lenstra 1984], the groups consid-
ered are simply finite abelian groups, and the main
idea is to give each group G a weight proportional to
1/|Aut G|. Here we must replace Aut G by its ana-
log Aut® G, the group of automorphisms of (G, 3)
that preserve (.
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We will use the following notation: ., is
as an abbreviation for a sum over all isomorphism
classes of groups (G, ) of type S of order n?>. We
denote by P the set of prime numbers and, for p € PP,
we denote by 7,(G) the p-rank of G. If (G,[) is a
group of type S, we define

1
S G —
1 (1/p*)a
wi(G) = 57— ;
pral ) Sy m—

where (¢)q = [[,c;c,(1 — ¢") for a € NU {co}. Fi-
nally, we set w®(n?) = > Ge(n2) W¥(G) and wi(n?) =
> Ge(n2y Wa(G), and note that w;(G) tends to w*(G)
when a tends to infinity.

We give some properties of groups of type S. We
start with an example. Let

G =(Z/p"Z & L/p"L) ® (Z/p™Z & L[p™1Z)
@@ (Z/pYLOL[pYL),

with a; < ay <--- < a;. Denote by ey, es,...,€; a
“canonical basis” (for example the i-th component
of e; is taken to be invertible mod p, and the others
are taken equal to zero). Define [ on this basis by:

Blezi-1,€2:) = —B(€2,€21) = 1/p" € Q/Z,
B(ei,e;) =0 elsewhere.

Then (G, 3) is a group of type S. Hence, if a finite
group G is isomorphic to H x H for a suitable group
H, we can define, as above, a nondegenerate, alter-
nating, bilinear pairing (the p-components of (G, 3)
are orthogonal). We now show the converse.

Lemma 1. Let (G,3) be a p-group of type S, and
let z € G be an element of mazimal order, say p*.
Then:

o There exists y € G of order p* with B(x,y) =
1/p* € Q/Z.

o There exists a subgroup H of G with (H, B|uxw)
of type S, such that G = ({(z) & (y)) &+ H, where
®1 denotes an orthogonal direct sum.

Proof. The element y exists because (3 is nondegen-
erate. We can then set

H={z€G:pB(z,z) = P(y,z) =0}. O

By induction on the order of the group, this lemma
allows us to prove the following proposition.

Proposition 2. If (G, 3) is a p-group of type S, then
(G, ) is isomorphic to the group of the example
given above, for appropriate (a;). In particular, G ~
H x H and the structure of Aut® G is independent

of (.

Recall that abelian groups of order p” are in one-
to-one correspondence with partitions of n. If (v)
is a partition of n, we denote by A; the number of
occurrences of 7 in (v). Clearly

n:)\1+2)\2+—|—])\J,

where j is the largest integer with A\; # 0.

Further, we denote by 11, tt2, ..., u; the parts of
the associated partition of n defined by up = Ax +
Meg1 + -+ A, Clearly n = py + po + -+ + 5.

Theorem 3. Let (G, 3) be a group of type S of order
p* with G ~ H x H and

H=Z/p)" o @Z/p) " oo @/p).

Then, with the preceding notation,

Aut® G| = p2d s T L

5 .
A
1<i<y p

Proof. We reason by induction on n. Let e, e,,...
be a “canonical basis” with e;, e, of order p’/. Take
e; and e, to be the elements of G with 1 on the
last and penultimate components, respectively, and
zero elsewhere. Let § be the pairing of the example.
An automorphism g is given by the image of a basis.
Let = be the image of e;. There exist p?*(1—1/p?*)
possibilities for x, this being the number of elements
of order p’ in G. If z is the image of e,, we must
have 3(z,2) = 1/p’. Writing

G=((z)® (y) & H,

we deduce that there are p?>" 7 possibilities for z =
g(ez).

Finally, note that es, e4,... form a “canonical ba-
sis” of a group of type S which is isomorphic to
(H, Biuxu) and that g(es), g(es), ... must belong to
H. So there are |Aut® H| possibilities; we then use
our induction hypothesis since |H| < |G|. O

Remark. Taking A; = n, we obtain the order of the
symplectic group S,(2n,p).
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2. DIRICHLET SERIES AND AVERAGES

Study of w:(n?) and w*(n?)

1 (1/p2)n+a71
Theorem 4. w .
Gs%;n) p3n(1/p2)a—1(1/p2)n

Proof. In [Cohen and Lenstra 1984] we find the for-
mula

(1/P)n+a—1
(1/P)a-1(1/pP)n’

where the sum is over all abelian groups of order p”
up to isomorphism. Furthermore, it is well-known
(and can be proved as Theorem 3) that for a p-group
G corresponding to (v) we have

prittn H <1> :

)\.
15igg PN

see [Hall 1938]. We deduce that

(1/p) (1/p)uf+--.+u§
Z (1/p)afr(u) (1/p)a, - (1/p)>\j

(v)=n
1 (/P
p* (1/p)a_1(1/p)s’

where the sum is over all partitions () of n and r(v)
is the number of parts in (v). The above formula
is in fact a formal identity. It follows that we can
substitute p? for p and multiply by 1/p™, proving
the theorem. O

1 (1/P*)ata—1
Corollary 5. Z w,(G) = n3 H (1/p?)a=1(1/p?)a

G#(n?) p*|[n

Z (1/p)a 1
|AUtG| (1/p)a—r,@) D"

[Aut G| =

Letting a tend to oo, we obtain:

1 1 1
Corollary 6. Z e t(G):FHm'

G#(n?) p*(|n
Definition 7. We define the functions {; and (* by
the Dirichlet series

> wj(n
=

n=1 n=1

with w®(n) = wi(n) = 0 if n is not a perfect square.
The next lemma can be proved by induction on a:
Lemma 8. Let a be a nonnegative integer. Then

>

a+1 1
B+a B _
Y —_— .
H 1—-X7iY

Remark. Letting a tend to oo, we obtain a formula
of Euler:

=0
Theorem 9. We

(
hav
HOE wg(”) =[] ¢c2e+2j+1),

=1 n j=1
SOEDY w;(zn) = [Jcz+2j+1).

Proof. It is sufficient to prove the first formula, the
second following by letting a — oco. We first write

Ca(z) = II, >0 p~#*w; (p*) and replace w;(p*)
by the formula of Theorem 4. We obtain

(S s
C“(z)‘H<Zp2v<1/p2> /5%, 7 >)

P v=0

and we use Lemma 8 to conclude. O

Averages

Let f be a complex-valued function defined on iso-
morphism classes of groups of type S.

Definition 10. Define

w'(f,n?) = > w(G)f(G),

G*(n?)

G*(n2)

_ N walfin)
-y wthn)

n

Ga(f;2)

with w*(f,n) = wi(f,n) = 0 if n is not a perfect
square. When u > 0, define ¢, ,(f,n) by

- Co(fy ztu)(i(2)
2 CGlztu)

Definition 11. The (a, u)-average of f is defined by
ncau(fin
M) = tim Seze"Certh )

If a = oo, we will speak of the u-average of f, and
we will write M;(f) instead of MZ, ,(f).
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Remarks. This definition is analogous to that of the
(a,u)-average in [Cohen and Lenstra 1984, Defini-
tion 5.1 and Proposition 5.4]. In particular, the
(a,u)-average of f, if it exists, is an average (that
is, the (a, u)-average of a constant function is equal
to that constant).

If f is the characteristic function of a property P,
we will speak of the (a, u)-probability of P or simply
of the u-probability of P.

Important: we have included the factor n in the
definition so that the denominator diverges as x —
00. Moreover, we can see that the average of f is
unchanged (for a reasonable class of functions) if we
replace n by n! for [ > 1. This is not true if we
replace n by n! for | < 1, in particular if we replace
n by the constant 1.

We also need the following Tauberian theorem:

Proposition 12 [Tenenbaum 1995]. Let (¢(n)),, be non-
negative real numbers. If D(z) = Y c(n)/n* con-
verges for Rez > 0 and if D(z) — C/z can be ana-
lytically continued to Rez > 0, then

et ~

n<zx
Applying this to (¢(z—1) (i.e., to ¢(n) = nwi(n)),
we obtain

Clogz.

log x.

Z s Hzgkga C(2k_1)
nwg(n) ~
2
n<x
The Tauberian theorem immediately implies:

Proposition 13. Let f be a nonnegative function de-
fined on isomorphism classes of groups of type S. If
C(f,2—1) converges for Rez > 0 and (3(f,2—1) —
C/z can be analytically continued to Re z > 0, then:

1. For u =0,

20 . g:(faz_]-)
M? = = lim 2%~~~
) = oo D) -2 G D
C;(fv u_l)

2. Foru# 0, M, ,(f) Clul)
For our applications, we need to be able to restrict
our attention to P-parts of groups of type S, where
P is a set of prime numbers. For this, we denote
by f o P the function G — f(Gy), where G5 is the
P-part of G. We also write Ny = {n € N : p|n =
p € P}

Proposition 14. Let P C P be a set of prime numbers.
Then

wa(f o P,n) = w(f, m)wy(n2),

where n = niny and n, is the P-part of n. In par-
ticular, (3(f o P, z) equals

(3 DT e

neNgp pe€?P k=1

Proof. Immediate consequence of the definitions. [

We now give some examples of averages, with fol-
low from Propositions 13 and 14. For simplicity we
assume a = 00.

Example A. Let o € R and u > a. The u-average of
|G|* is equal to
[[2 ¢(2u — 2+ 25 — 1)
12, ¢(2u+2j - 1)
In particular, if v > 2, the u-average of |G| equals
¢(2u—1).

Example B. Let L be a group of type S with L a P-
group. The u-probability that the P-part of a group
of type S is isomorphic to L is equal to

|L|17u

e I (- s )

peP k=1

Example C. Assume that all prime divisors p of n are
in P. The u-probability that the P-part of a group
of type S has cardinality equal to n is equal to

w TTTT (1~ potss )

pEP k=1

Example D. The u-probability that G, # {0} is equal
to

ﬁ 1_ 1/p 2u+2k 1)

Example E. The u-probability that the P-part of a
group of type S is isomorphic to the square of a
cyclic group is

H 1—-1/p* +1/p** H (1= (1/p)2+2-1) .

peP (1-1/p%) k=2

In particular, when P = P this probability equals

2 2u+3 4(2)
per(l P )C(2u+3)§(2u+5)§(2u+7) o
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Averages Involving p-Ranks

We can also obtain results on the p-rank of a group
of type S. For simplicity, we assume a = co but the
results can also be given for finite values of a.

Proposition 15. Let o and r be two nonnegative inte-
gers with r < a. We have:

3 wi(@) = w(p*)
re(Ch—ar (1/p%)a 1(1/P%)a
(1/p2)r71(1/p2)7'(1/p2)a77‘

Proof. We use exactly the same methods as in the
proof of Theorem 4, using the formula of [Cohen
and Lenstra 1984, Theorem 6.1]. O

72r2+2r

Corollary 16. Let n € Z with p*||n. Then:

> w'(G) = w'(n?)
(&)=t A/p)ar0/p")e
(1/p?)r—1(1/p?),(1/p?)a=r

Proof. Write n = p®ny and use the multiplicativity
of w*. O

5,2
% 2r°42r

Proposition 17. Let r be a nonnegative integer. Then

U}S(G) pfr(2r+2z+1) r 1
Z : |G|z (1/p2)r e 1— 1/p22+2j+17

G=(p,2r

where the sum is over all p-groups (G, f) of type S
with r,(G) = 2r.

Proof. We write

wi(G) 1
2 |G| _ZP%‘Z
a=0

G=(p,2r)

> w0,

G(p**)
rp(G)=2r

and we obtain the formula by using Proposition 15,
Theorem 4 and Lemma 8. u

‘We thus obtain:

Example F. The u-probability that the p-rank of a
group of type S is 2r equals

—r(2u+2r—1)

H (1 _ 1/p2u+2k:—1) )

k=r+1

p

(1/p%),

The next result is proved using [Cohen and Lenstra
1984, Theorem 6.4]:

Proposition 18. If o < [ are two nonnegative inte-
gers, then

Z ’U)S(G) H (prp(G) 7p2i) —

G (p?9) 0<i<a

ws(pZ,Ban)
pa

Corollary 19. If n is a nonnegative integer with p*|n,

then
Z 'LUS(G) H (prp(G) - p21) — ws(n2/p2a) .
G*(n?) 0<i<a pa

This corollary gives:

Example G. The 0O-average of the function p'»(%) is
1+p.

3. HEURISTICS ON TATE-SHAFAREVITCH GROUPS

Using the analogy between units of number fields
and rational points on elliptic curves, we can now
give a “Cohen—Lenstra”’-type heuristic assumption
for Tate-Shafarevitch groups of elliptic curves de-
fined over Q, and deduce from them and the above
results on groups of type S a number of conjectures
on Tate—Shafarevitch groups. Let &, be the set of
isomorphism classes of elliptic curves E of rank u
defined over Q, which we assume to be ordered by
the conductor N(E). For a function f defined on
isomorphism classes of groups of type S, we define

wulfi) = 3 FOTE)), wue)= 31

Ecé&, Ecé&,
N(E)<z N(E)<z

We can define an average of f by setting

Mo(f) = lim 222

e5o0 wy(x)
The basic heuristic assumption is then the following;:

Heuristic Assumption. M., (f) = M ,(f).

u

We now give some consequences of this assumption.

The Rank-Zero Case

The probability that III is isomorphic to the square
of a cyclic group is

[Ia-1/p*+1/p%

peP
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or approximately 0.977076. The probability that p
divides |III] is

ﬁ 1— 1/p2k 1)

In particular, fo(2) ~ 0.580577, fo(3) ~ 0.360995,
and fo(5) ~ 0.20666.

We give here the probability that the p-part of I11
is isomorphic to a group G:

G/lp (Z/vZ)* (Z/pZXZ[pZ)* (Z/p*Z)?
2 0.387 0.0129 0.1935
3 0.1354 0.00056 0.045
The probability that r,(III) = 2r is
—r(2r—1)
b _
(1—1/p*71).

(1/p%) k=r+1

The Rank-One Case

The probability that IIT is isomorphic to the square
of a cyclic group is

qon e
divides |III] is
-l

31146, f1(3) ~ 0.12344, and

~ 0.99437

The probability that p
(1/p)*)

In particular, f;(2) ~ 0.
£1(5) ~ 0.0416.

Let L be a group of type S. The probability that
IIT is isomorphic to L is

VIL| 1
[Aut” L] C2)C)C(0)- -
In particular, |[III] = 1 with probability close to
0.54914.
A proof of the heuristic assumption (and of its
consequences) is presently out of reach. It is also
difficult to check numerically our conjectures, since

nontrivial Tate-Shafarevitch groups seem to appear
whenever the conductor is very large and tables of
elliptic curves have been done “only” for N < 6000
[Cremona 1992]. Nevertheless, we make some com-
ments that point toward the truth of the heuristic
assumption above.

First, we note that the nature of the results are
different according to the parity of the rank (in the
sense that they involve values of the Riemann zeta
function at odd positive integers or at even posi-
tive integers). This seems quite natural since el-
liptic curves can be naturally split into two parts
according to the sign of the functional equation, in
other words according to the parity of the rank if we
assume the Birch and Swinnerton-Dyer conjecture.
The conjectures also predict that the p-rank of a
Tate—Shafarevitch group with a nontrivial p-part is
often equal to 2. Indeed, all the nontrivial p-parts of
Tate—Shafarevitch groups in Cremona’s table have a
p-rank equal to 2 [Cremona and Mazur 2000].
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