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In a well-known paper, Cohen and Lenstra gave conjectures on

class groups of number fields. We give here similar conjectures

for Tate–Shafarevitch groups of elliptic curves defined over Q.

For such groups (if they are finite), there exists a nondegenerate,

alternating, bilinear pairing. We give some properties of such

groups and then formulate heuristics which allow us to give pre-

cise conjectures.

1. INTRODUCTIONWe make a study of Tate{Shafarevitch groups of el-liptic curves de�ned over Q similar to the one madein [Cohen and Lenstra 1984] of class groups of num-ber �elds. Part of our motivation is the deep analogythat exists between these groups.In this paper, we will assume the truth of the con-jecture asserting that the Tate{Shafarevitch groupX of an elliptic curve over Q is �nite. Under thisconjecture, there exists a nondegenerate, alternat-ing, bilinear pairing� :X�X! Q =Z ;see [Silverman 1986], for example. We will say thata pair (G; �) is a group of type S if G is a �niteabelian group and � is a nondegenerate alternatingbilinear pairing � : G�G! Q =Z . We will also haveto consider isomorphism classes of groups of type S,where two groups (G1; �1) and (G2; �2) of type S aresaid to be isomorphic if there exists an isomorphism� : G1 ! G2 such that �2(�(x); �(y)) = �1(x; y) forall x; y 2 G1.In [Cohen and Lenstra 1984], the groups consid-ered are simply �nite abelian groups, and the mainidea is to give each group G a weight proportional to1=jAutGj. Here we must replace AutG by its ana-log AutsG, the group of automorphisms of (G; �)that preserve �.
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We will use the following notation: PGs(n2) isas an abbreviation for a sum over all isomorphismclasses of groups (G; �) of type S of order n2. Wedenote by P the set of prime numbers and, for p 2 P ,we denote by rp(G) the p-rank of G. If (G; �) is agroup of type S, we de�news(G) = 1jAutsGj ;wsa(G) = 1jAutsGj YpjjGj (1=p2)a(1=p2)a�rp(G)=2 ;where (q)a = Q1�i�a(1 � qi) for a 2 N [ f1g. Fi-nally, we set ws(n2) =PGs(n2)ws(G) and wsa(n2) =PGs(n2)wsa(G), and note that wsa(G) tends to ws(G)when a tends to in�nity.We give some properties of groups of type S. Westart with an example. LetG = (Z =pa1Z � Z =pa1Z )� (Z =pa2Z � Z =pa2Z )� � � � � (Z =pajZ � Z =pajZ ) ;with a1 � a2 � � � � � aj. Denote by e1; e2; : : : ; e2j a\canonical basis" (for example the i-th componentof ei is taken to be invertible mod p, and the othersare taken equal to zero). De�ne � on this basis by:�(e2i�1; e2i) = ��(e2i; e2i�1) = 1=pai 2 Q =Z ;�(ei; ej) = 0 elsewhere.Then (G; �) is a group of type S. Hence, if a �nitegroup G is isomorphic to H�H for a suitable groupH , we can de�ne, as above, a nondegenerate, alter-nating, bilinear pairing (the p-components of (G; �)are orthogonal). We now show the converse.
Lemma 1. Let (G; �) be a p-group of type S , andlet x 2 G be an element of maximal order , say pk.Then:� There exists y 2 G of order pk with �(x; y) =1=pk 2 Q =Z .� There exists a subgroup H of G with (H;�jH�H)of type S , such that G = (hxi� hyi)�?H , where�? denotes an orthogonal direct sum.
Proof. The element y exists because � is nondegen-erate. We can then setH = fz 2 G : �(x; z) = �(y; z) = 0g: �By induction on the order of the group, this lemmaallows us to prove the following proposition.

Proposition 2. If (G; �) is a p-group of type S , then(G; �) is isomorphic to the group of the examplegiven above, for appropriate (ai). In particular , G 'H � H and the structure of AutsG is independentof �.Recall that abelian groups of order pn are in one-to-one correspondence with partitions of n. If (�)is a partition of n, we denote by �i the number ofoccurrences of i in (�). Clearlyn = �1 + 2�2 + � � �+ j�j ;where j is the largest integer with �j 6= 0.Further, we denote by �1; �2; : : : ; �j the parts ofthe associated partition of n de�ned by �k = �k +�k+1 + � � �+ �j . Clearly n = �1 + �2 + � � �+ �j .
Theorem 3. Let (G; �) be a group of type S of orderp2n with G ' H �H andH = (Z =p)�1 � �Z =p2��2 � � � � � �Z =pj��j :Then, with the preceding notation,jAutsGj = p2(�21+���+�2j )+n Y1�i�j� 1p2��i :
Proof. We reason by induction on n. Let e1; e2; : : :be a \canonical basis" with e1, e2 of order pj . Takee1 and e2 to be the elements of G with 1 on thelast and penultimate components, respectively, andzero elsewhere. Let � be the pairing of the example.An automorphism g is given by the image of a basis.Let x be the image of e1. There exist p2n(1�1=p2�j )possibilities for x, this being the number of elementsof order pj in G. If z is the image of e2, we musthave �(x; z) = 1=pj . WritingG = (hxi � hyi)�? H;we deduce that there are p2n�j possibilities for z =g(e2).Finally, note that e3; e4; : : : form a \canonical ba-sis" of a group of type S which is isomorphic to(H;�jH�H) and that g(e3); g(e4); : : : must belong toH . So there are jAutsH j possibilities; we then useour induction hypothesis since jH j < jGj. �
Remark. Taking �1 = n, we obtain the order of thesymplectic group Sp(2n; p).
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2. DIRICHLET SERIES AND AVERAGES

Study of ws
a(n

2) and ws(n2)

Theorem 4.
XGs(p2n)wsa(G) = 1p3n (1=p2)n+a�1(1=p2)a�1(1=p2)n :

Proof. In [Cohen and Lenstra 1984] we �nd the for-mulaXG(pn) 1jAutGj (1=p)a(1=p)a�rp(G) = 1pn (1=p)n+a�1(1=p)a�1(1=p)n ;where the sum is over all abelian groups of order pnup to isomorphism. Furthermore, it is well-known(and can be proved as Theorem 3) that for a p-groupG corresponding to (�) we havejAutGj = p�21+���+�2j Y1�i�j�1p��i ;see [Hall 1938]. We deduce thatX(�)=n (1=p)n(1=p)a�r(�) (1=p)�21+���+�2j(1=p)�1 � � � (1=p)�j= 1pn (1=p)n+a�1(1=p)a�1(1=p)n ;where the sum is over all partitions (�) of n and r(�)is the number of parts in (�). The above formulais in fact a formal identity. It follows that we cansubstitute p2 for p and multiply by 1=pn, provingthe theorem. �
Corollary 5.

XGs(n2)wsa(G) = 1n3 Yp�kn (1=p2)�+a�1(1=p2)a�1(1=p2)� :Letting a tend to 1, we obtain:
Corollary 6.

XGs(n2) 1Auts(G) = 1n3 Yp�kn 1(1=p2)� :
Definition 7. We de�ne the functions �sa and �s bythe Dirichlet series�s(z) = 1Xn=1 ws(n)nz ; �sa(z) = 1Xn=1 wsa(n)nz ;
with ws(n) = wsa(n) = 0 if n is not a perfect square.The next lemma can be proved by induction on a:
Lemma 8. Let a be a nonnegative integer . Then1X�=0X� (X)�+a(X)�(X)aY � = a+1Yj=1 11�XjY :

Remark. Letting a tend to 1, we obtain a formulaof Euler: 1X�=0 X�(X)� Y � = 1Yj=1 11�XjY :
Theorem 9. We have:�sa(z) = 1Xn=1 wsa(n)nz = aYj=1 �(2z+2j+1);

�s(z) = 1Xn=1 ws(n)nz = 1Yj=1 �(2z+2j+1):
Proof. It is su�cient to prove the �rst formula, thesecond following by letting a ! 1. We �rst write�sa(z) = QpP1�=0 p�2�zwsa(p2�) and replace wsa(p2�)by the formula of Theorem 4. We obtain�sa(z) =Yp � 1X�=0 1p2� (1=p2)�+a�1(1=p2)a�1(1=p2)� 1p�(2z+1)�;and we use Lemma 8 to conclude. �
AveragesLet f be a complex-valued function de�ned on iso-morphism classes of groups of type S.
Definition 10. De�news(f; n2) = XGs(n2)ws(G)f(G);

�s(f; z) =Xn ws(f; n)nz ;
wsa(f; n2) = XGs(n2)wsa(G)f(G);
�sa(f; z) =Xn wsa(f; n)nz ;

with ws(f; n) = wsa(f; n) = 0 if n is not a perfectsquare. When u � 0, de�ne ca;u(f; n) by1Xn=1 ca;u(f; n)nz = �sa(f; z+u)�sa(z)�sa(z+u) :
Definition 11. The (a; u)-average of f is de�ned byM sa;u(f) = limx!1Pn�x nca;u(f; n)Pn�x nwsa(n) :If a = 1, we will speak of the u-average of f , andwe will write M su(f) instead of M s1;u(f).
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Remarks. This de�nition is analogous to that of the(a; u)-average in [Cohen and Lenstra 1984, De�ni-tion 5.1 and Proposition 5.4]. In particular, the(a; u)-average of f , if it exists, is an average (thatis, the (a; u)-average of a constant function is equalto that constant).If f is the characteristic function of a property P ,we will speak of the (a; u)-probability of P or simplyof the u-probability of P .Important: we have included the factor n in thede�nition so that the denominator diverges as x !1. Moreover, we can see that the average of f isunchanged (for a reasonable class of functions) if wereplace n by nl for l � 1. This is not true if wereplace n by nl for l < 1, in particular if we replacen by the constant 1.We also need the following Tauberian theorem:
Proposition 12 [Tenenbaum 1995]. Let (c(n))n be non-negative real numbers . If D(z) = Pn c(n)=nz con-verges for Re z > 0 and if D(z) � C=z can be ana-lytically continued to Re z � 0, thenXn�x c(n) � C log x:
Applying this to �sa(z�1) (i.e., to c(n) = nwsa(n)),we obtainXn�xnwsa(n) � Q2�k�a �(2k�1)2 log x:
The Tauberian theorem immediately implies:

Proposition 13. Let f be a nonnegative function de-�ned on isomorphism classes of groups of type S . If�sa(f; z�1) converges for Re z > 0 and �sa(f; z�1) �C=z can be analytically continued to Re z � 0, then:
1. For u = 0,M sa;0(f) = 2CQ2�k�a �(2k�1) = limz!0 �sa(f; z�1)�sa(z�1) :
2. For u 6= 0, M sa;u(f) = �sa(f; u�1)�sa(u�1) :For our applications, we need to be able to restrictour attention to P-parts of groups of type S, whereP is a set of prime numbers. For this, we denoteby f � P the function G 7! f(GP), where GP is theP-part of G. We also write N P = fn 2 N : pjn =)p 2 Pg.

Proposition 14. Let P � P be a set of prime numbers .Then wsa(f � P; n) = wsa(f; n1)wsa(n2);where n = n1n2 and n1 is the P-part of n. In par-ticular , �sa(f � P; z) equals� Xn2NP wsa(f; n)nz �Yp 62P aYk=1 11� (1=p)2z+2k+1 :
Proof. Immediate consequence of the de�nitions. �We now give some examples of averages, with fol-low from Propositions 13 and 14. For simplicity weassume a =1.
Example A. Let � 2 R and u > �. The u-average ofjGj� is equal toQ1j=1 �(2u� 2�+ 2j � 1)Q1j=1 �(2u+ 2j � 1) :In particular, if u � 2, the u-average of jGj equals�(2u�1).
Example B. Let L be a group of type S with L a P-group. The u-probability that the P-part of a groupof type S is isomorphic to L is equal tojLj1�ujAuts LjYp2P 1Yk=1�1� 1p2u+2k�1� :
Example C. Assume that all prime divisors p of n arein P. The u-probability that the P-part of a groupof type S has cardinality equal to n is equal ton1�uws(n)Yp2P 1Yk=1�1� 1p2u+2k�1� :
Example D. The u-probability that Gp 6= f0g is equalto 1� 1Yk=1 �1� (1=p)2u+2k�1� :
Example E. The u-probability that the P-part of agroup of type S is isomorphic to the square of acyclic group isYp2P 1� 1=p2 + 1=p2u+3(1� 1=p2) 1Yk=2 �1� (1=p)2u+2k�1� :
In particular, when P = P this probability equalsYp2P(1�1=p2+1=p2u+3) �(2)�(2u+3)�(2u+5)�(2u+7) : : : :
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Averages Involving p-RanksWe can also obtain results on the p-rank of a groupof type S. For simplicity, we assume a =1 but theresults can also be given for �nite values of a.
Proposition 15. Let � and r be two nonnegative inte-gers with r � �. We have:XGs(p2�)rp(G)=2rws(G) = ws(p2�)

� (1=p2)��1(1=p2)�(1=p2)r�1(1=p2)r(1=p2)��r p�2r2+2r:
Proof. We use exactly the same methods as in theproof of Theorem 4, using the formula of [Cohenand Lenstra 1984, Theorem 6.1]. �
Corollary 16. Let n 2 Z with p�kn. Then:XGs(n2)rp(G)=2rws(G) = ws(n2)

� (1=p2)��1(1=p2)�(1=p2)r�1(1=p2)r(1=p2)��r p�2r2+2r:
Proof. Write n = p�n2 and use the multiplicativityof ws. �
Proposition 17. Let r be a nonnegative integer . ThenXGs(p;2r) ws(G)jGjz = p�r(2r+2z+1)(1=p2)r rYj=1 11� 1=p2z+2j+1 ;where the sum is over all p-groups (G; f) of type Swith rp(G) = 2r.
Proof. We writeXGs(p;2r) ws(G)jGjz = 1X�=0 1p2�z XG(p2�)rp(G)=2r ws(G);
and we obtain the formula by using Proposition 15,Theorem 4 and Lemma 8. �We thus obtain:
Example F. The u-probability that the p-rank of agroup of type S is 2r equalsp�r(2u+2r�1)(1=p2)r 1Yk=r+1 �1� 1=p2u+2k�1� :
The next result is proved using [Cohen and Lenstra1984, Theorem 6.4]:

Proposition 18. If � � � are two nonnegative inte-gers , thenXGs(p2�)ws(G) Y0�i<� �prp(G) � p2i� = ws(p2��2�)p� :
Corollary 19. If n is a nonnegative integer with p�jn,thenXGs(n2)ws(G) Y0�i<� �prp(G) � p2i� = ws(n2=p2�)p� :
This corollary gives:
Example G. The 0-average of the function prp(G) is1 + p.
3. HEURISTICS ON TATE–SHAFAREVITCH GROUPSUsing the analogy between units of number �eldsand rational points on elliptic curves, we can nowgive a \Cohen{Lenstra"-type heuristic assumptionfor Tate{Shafarevitch groups of elliptic curves de-�ned over Q , and deduce from them and the aboveresults on groups of type S a number of conjectureson Tate{Shafarevitch groups. Let Eu be the set ofisomorphism classes of elliptic curves E of rank ude�ned over Q , which we assume to be ordered bythe conductor N(E). For a function f de�ned onisomorphism classes of groups of type S, we de�ne!u(f; x) = XE2EuN(E)�xf(X(E)); !u(x) = XE2EuN(E)�x1:We can de�ne an average of f by setting

Mu(f) = limx!1 !u(f; x)!u(x) :
The basic heuristic assumption is then the following:
Heuristic Assumption. Mu(f) =M su=2(f).We now give some consequences of this assumption.
The Rank-Zero CaseThe probability thatX is isomorphic to the squareof a cyclic group isYp2P(1� 1=p2 + 1=p3) �(2)�(3)�(5)�(7) : : : ;
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or approximately 0:977076. The probability that pdivides jXj is
f0(p) = 1� 1Yk=1 �1� (1=p)2k�1� :

In particular, f0(2) ' 0:580577, f0(3) ' 0:360995,and f0(5) ' 0:20666.We give here the probability that the p-part ofXis isomorphic to a group G:G/p (Z =pZ )2 (Z =pZ�Z =pZ )2 (Z =p2Z )22 0:387 0:0129 0:19353 0:1354 0:00056 0:045The probability that rp(X) = 2r isp�r(2r�1)(1=p2)r 1Yk=r+1 �1� 1=p2k�1� :
The Rank-One CaseThe probability thatX is isomorphic to the squareof a cyclic group is1�(12) 1Yk=4 1�(2k) � 0:99437
The probability that p divides jXj is

f1(p) = 1� 1Yk=1 �1� (1=p)2k� :
In particular, f1(2) ' 0:31146, f1(3) ' 0:12344, andf1(5) ' 0:0416.Let L be a group of type S. The probability thatX is isomorphic to L ispjLjjAuts Lj 1�(2)�(4)�(6) : : : :In particular, jXj = 1 with probability close to0:54914.A proof of the heuristic assumption (and of itsconsequences) is presently out of reach. It is alsodi�cult to check numerically our conjectures, since

nontrivial Tate{Shafarevitch groups seem to appearwhenever the conductor is very large and tables ofelliptic curves have been done \only" for N � 6000[Cremona 1992]. Nevertheless, we make some com-ments that point toward the truth of the heuristicassumption above.First, we note that the nature of the results aredi�erent according to the parity of the rank (in thesense that they involve values of the Riemann zetafunction at odd positive integers or at even posi-tive integers). This seems quite natural since el-liptic curves can be naturally split into two partsaccording to the sign of the functional equation, inother words according to the parity of the rank if weassume the Birch and Swinnerton-Dyer conjecture.The conjectures also predict that the p-rank of aTate{Shafarevitch group with a nontrivial p-part isoften equal to 2. Indeed, all the nontrivial p-parts ofTate{Shafarevitch groups in Cremona's table have ap-rank equal to 2 [Cremona and Mazur 2000].
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