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Herein, with the aid of substantial symbolic computation, we
solve previously open problems in the theory of n-dimensional
box integrals Bn(s) := 〈|�r|s〉, �r ∈ [0, 1]n. In particular, we
resolve an elusive integral called K5 that previously acted as a
“blockade” against closed-form evaluation in n = 5 dimensions.
In consequence, we now know that Bn(integer) can be given a
closed form for n = 1, 2, 3, 4, 5. We also find the general residue
at the pole at s = −n, this leading to new relations and definite
integrals; for example, we are able to give the first nontrivial
closed forms for six-dimensional box integrals and to show hy-
perclosure of B6(even). The Clausen function and its general-
izations play a central role in these higher-dimensional evalua-
tions. Our results provide stringent test scenarios for symbolic-
algebra simplification methods.

1. BACKGROUND AND NOMENCLATURE

Recent papers by Bailey, Borwein, and Crandall [Bailey

et al. 07, Bailey et al. 09]—stemming from the historical

work of [Anderson et al. 76]—have exhibited new results

on the computation and analysis of box integrals, these

being expectations of radius and separation, respectively,

within an n-cube. We write formally Bn(s) := 〈|�r|s〉,
Δn(s) := 〈|�r − �q|s〉, with specific definitions

Bn(s) :=

∫
�r∈[0,1]n

|�r|sD�r (1–1)

=

∫ 1

0

· · ·
∫ 1

0

(
r21 + · · ·+ r2n

)s/2
dr1 · · · drn,

Δn(s) :=

∫
�r,�q∈[0,1]n

|�r − �q|sD�rD�q (1–2)

=

∫ 1

0

· · ·
∫ 1

0

(
(r1 − q1)

2 + · · ·+ (rn − qn)
2
)s/2

dr1 · · · drn dq1 · · · dqn.

Introduced in [Bailey et al. 09] is a useful function, a kind

of generalized box integral:

Cm,0(s, a) :=

∫
�r∈[0,1]m

(a+ r2)s/2D�r. (1–3)
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Let us list some relevant known facts and interrelations

among these functions. It is important to observe that

Bn(s), Δn(s) have well-defined analytic continuations

over the entire complex s-plane, with Bn(s) having a soli-

tary pole at s = −n and Δn(s) having exactly n + 1

poles, at s = −2n,−2n + 1, . . . ,−n. In particular,

though something like B4(−5) does not converge as a

literal box integral, its value exists unambiguously, and

is known in closed form, namely as the negative value

−√8 arctan(1/√8). References [Bailey et al. 07, Bailey

et al. 09] establish the analytic properties together with

the following results:

1. B,C relations:

Bn(s) =
n

n+ s
Cn−1,0(s, 1), (1–4)

Bn(−n− 1) = −nCn−2,0(1 − n, 2),

Resn = nCn−1(−n, 1), (1–5)

where Resn := limε→0 εBn(−n + ε) is the residue of Bn

at the solitary pole (s = −n).
2. Absolutely convergent analytic series for B, with pole

at s = −n:

Bn(s) =
n1+s/2

s+ n

∑
k≥0

γn−1,k

(
2

n

)k

, (1–6)

where the γm,k are certain fixed coefficients defined by

the recurrence [Crandall 10]

(1 + 2k/m)γm,k = (k − 1− s/2)γm,k−1 + γm−1,k (1–7)

form, k ≥ 1, this recurrence being ignited by γ0,k := δ0,k,

γm,0 := 1.

3. Recurrence relations:

C0,0(s, a) := as/2,

Cn,0(s, 0) = Bn(s),

asCm,0(s− 2, a) = (s+m)Cm,0(s, a) (1–8)

−mCm−1,0(s, a+ 1),

(n+ s)(n+ s− 1)Bn(s) = s(n+ s− 2)Bn(s− 2) (1–9)

+ n(n− 1)Cn−2,0(s, 2).

2. STATE OF THE BOX-INTEGRAL ART

We have enumerated some important relations; presently,

we summarize known results in regard to specific dimen-

sions.

To begin our summary, we note a recent definition of

a class of closed forms. Following the treatment [Bailey

et al. 09], we define a complex number to be hyperclosed

if it belongs to the ring of hyperclosure. This ring is

built as follows (see [Bailey et al. 09] and [Borwein and

Crandall 10] for more details). Consider generalized hy-

pergeometric evaluations

x =
∑
n≥0

cnz
n, (2–1)

where z is algebraic, c0 is rational, and cn = p(n)
q(n) cn−1,

where p and q are polynomials with integer coefficients.

Then the ring of hyperclosure is generated by all such

evaluations x under (+, ·). We say that any element of

the ring is hyperclosed. So for example, π, π+log(2+
√
7),

Li2(1/
√
5) + (log 2)(log 3), are all hyperclosed. Inciden-

tally, lest one think the ring of hyperclosure is just too

broad, note that said ring is countable [Bailey et al. 09].

Known results on box integrals include the following:

1. Resolution of the Δn: It was shown in the treatment

[Bailey et al. 09, Theorem 7] that if all Bm(s) and all

residues Resm are known for m ∈ [1, n], then Δn(s)

is known. In that previous treatment, a form for

the box residues is conjectured and some low-lying

residues are given exactly. Happily, in the present

work we shall establish a closed form for all Resm
withm ∈ N. Thus, the problem of evaluating the Δn

evaporates entirely, being replaced by the problem of

evaluating the Bn.

2. Hyperclosure in dimensions 1, 2, 3, 4: It is known

that for any integer k, all B1(k), B2(k), B3(k), B4(k)

are hyperclosed (exemplary closed forms appear in

[Bailey et al. 09]). The same knowledge exists for

Δn(k), n = 1, 2, 3, 4, by the arguments of the previ-

ous item.

3. Dimension 5: It has been shown in previous work

that for integer k �= −2,−4, the box integral B5(k)

is hyperclosed. The two exceptional k arguments

have amounted to a “blockade”—with the obsta-

cle amounting to a single, tough integral called K5,

which integral we resolve below. This resolution of

K5 establishes hyperclosure of all B5(integer), and

perforce all Δ5(integer).

4. Dimension 6: Previous to our present treatment, not

a single nontrivial B6(integer) had been evaluated in

closed form. (We say “nontrivial” here because, of

course, Bn(2h) for a positive integer h is trivially

rational.) But we are able to exhibit later in this

paper the closed form for B6(−4), thus breaking the
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dimension-6 impasse. Moreover, using B6(−4) as a

recursive pivot, we now know that B6(even) are all

hyperclosed. Virtually nothing is known, however,

about B6(odd).

5. Very high dimension: An algorithm has been dis-

covered [Crandall 10] that uses a series of the form

(1–6) to resolve D digits of a box integral Bn(s) in

O(n2D) operations, where the implied big-O con-

stant depends only on s. D. H. Bailey has employed

said algorithm to achieve a dimension-one-million

box value to one hundred good decimals, the value

starting out

B1000000(1) = 577.3502114545720399775340875203

6227457448125926146101942964 . . . .

It is evident that the art of calculation of the Bn is

vastly ahead of the corresponding symbolic art.

3. COMPLETE RESOLUTION OF BOX RESIDUES

The general box-residue evaluation can be effected as fol-

lows. For n dimensions, the residue will be

Resn := lim
δ→0+

δBn(−n+ δ) = lim
δ→0+

δ

∫
[0,1]n

r−n+δ D�r.

But the volume element is

D�r = rn−1 drD�Ω,

where D�Ω is a suitable definition of solid angle for n-

space. Thus the r integral inside is

∫ R(�Ω)

0

1

r1−δ
dr,

where R(�Ω) is the extent of radius from the origin to the

surface of the n-cube along the direction �Ω. The integral

is
1

δ
R(�Ω)δ,

which when multiplied by the outside factor δ can be

taken to be 1. Thus, the residue comes down to being

a piece (an n-orthant) of the surface area of the unit n-

sphere, namely

Resn =
1

2n−1

πn/2

Γ(n/2)
. (3–1)

This knowledge of all box residues leads, as we shall see,

to new closed forms.

Another application of the general residue value is as

follows. The second author of this paper has conjectured

that the pretty integral

In :=

∫
[0,π/4]n

dθ1 · · · dθn
(1 + sec2 θ1 + · · ·+ sec2 θn)1/2

is a rational multiple of πn. This conjecture arose via

numerical computation, then observation that the result

matches sequence A002457 in Sloane’s Online Encyclope-

dia [Sloane 09]. Here we prove the conjecture, giving as

well the precise rational multiplier. First, it is a straight-

forward combinatorial result, via polar coordinates on

each pair of integration variables in (1–3), that

C2n,0(−2n− 1, 1) =
2n

(2n− 1)!!

n∑
k=0

(−1)k
(
n

k

)
Ik

πn−k

4n−k
.

But by relation (1–5), the left-hand side is just

Res2n+1/(2n+1), which is given by (3–1). We now have

n∑
k=0

(−1)k
(
n

k

)
Ik

(π/4)k
=

1

2n+ 1
.

The global solution to this recurrence system can be re-

solved by consequence of the binomial transform being

an involution. We write{
n∑

k=0

(−1)k
(
n

k

)
Ik

(π/4)
k
=

1

2n+ 1
, ∀n ∈ N

}

⇔
{(π

4

)n n∑
k=0

(−1)k
(
n

k

)
1

2k + 1
= In, ∀n ∈ N

}
.

Summing the finite series on the right and simplifying,

we obtain∫
[0,π/4]k

dθ1 · · · dθk
(1 + sec2 θ1 + · · ·+ sec2 θk)1/2

=
k!2

(2k + 1)!
πk.

(3–2)

4. SOME KEY INTEGRALS

To overcome the aforementioned box-integral blockade

at five dimensions and to move beyond into dimension-6

cases, we now establish closed forms for some key definite

integrals. It is evident from the B,C relations in Section

1 that box integrals Bn depend intimately on Cm,0 inte-

grals. We are thus interested in parameterized integrals

Cm,0(s, A), where the parameter A is a positive integer.1

The most important instance for our present purposes

1We choose to keep the second subscript 0 on Cm,0 just for
consistency with previous treatments such as [Bailey et al. 09].
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can be developed via straightforward polar integration

as

C4,0(−4, A) = −J(A+ 2) +
1

16
π2 logA− π

2
G (4–1)

+
π

4
Im

(
Li2

(
i
(
A− 2

√
A+ 1 + 2

)
A

)

+Li2

(
i
(
A+ 2

√
A+ 1 + 2

)
A

))
;

see also (11–7). Here J is in turn a highly difficult integral

that we define by

J(t) :=

∫
[0,1]2

log(t+ x2 + y2)

(1 + x2)(1 + y2)
dx dy.

We are interested in whether J(t) is hyperclosed for

algebraic t; accordingly, we begin with a new, fundamen-

tal, result.

Lemma 4.1. For any complex parameter t with Re(t) ≥ 0,

we have

J(t) = − log 2

2
Re

(
Li2

(
2√

t− 1 + 1

)
(4–2)

+Li2

(
− 2√

t− 1− 1

))
+R(t),

where

R(t) :=

∫ 1

0

log

(
1 + x

1− x

)

×
(
x log t− x log(t+ x2 + 1)

t− 1− x2

+ (t− 1)
x log(t+ x2 + 1)− x log t− x log(x2 + 1)

1− (t− 1)x2

+
x log(t+ x2 + 1)

x2 + 1
− x log(x2 + 1)

x2

)
dx,

with J interpreted at either of the special points t = 1, 2

via the limit of expression (4–2) for t := q+ 1
1−iε , q = 0, 1,

and ε→ 0+.

Proof. We evaluate the integral J(t) via a series of

changes of variables. We begin by making a change

into polar coordinates (r, θ) and then applying partial

fractions, and finally making the change of variables

x2 = sec2 θ − 1 and y = r2 to obtain

J(t) = 2

∫ π/4

0

dθ

∫ sec θ

0

r dr
log(t+ r2)

(1 + r2 cos2 θ)(1 + r2 sin2 θ)

= lim
δ→1

∫ δ

0

dx

1− x2

×
∫ x2+1

0

log(t+ y) dy

(
1

x2 + 1 + y
− 1

x−2 + 1 + y

)
.

The rest of the analysis (we omit many details here to

conserve space) employs the relations

d

dx
Li2(−x) = − log(1 + x)

x

and
d

dx
Li2(a/x) =

log(1− a/x)

x
,

and the dilogarithm inversion relation

Li2(−x) + Li2(−1/x) = −π2

6
− log2 x

2
, (4–3)

along with rather intricate integration-by-parts and

partial-fraction manipulations, all of this to obtain, fi-

nally, (4–2).

5. OVERCOMING THE BLOCKADE AT FIVE
DIMENSIONS

The integral known as K5, which appears in the relation

B5(−4) = −5K5 − 5

2
πG+

5

4
π2 log

(
1 +
√
2
)

+
5

2
πTi2

(
3− 2

√
2
)
,

was not resolved in [Bailey et al. 09]. Here Ti2 is the

generalized arctangent of order two [Lewin 81]. The lit-

erature definition can be cast as

K5 :=

∫ π/4

0

∫ π/4

0

log(1 + sec2 a+ sec2 b) da db

=

∫
[0,1]2

log(3 + x2 + y2)

(1 + x2)(1 + y2)
dx dy = J(3).

Thus if J(3) is hyperclosed, then so is B5(−4). One can

see clearly now why we have focused on the J integral.

With Lemma 4.1 we have reduced the problem of eval-

uating J(t), and perforceK5 = J(3), to that of evaluating

R(t). It will turn out that a necessary ingredient in our

quest to pass the five-dimensional blockade will be the

invocation of trilogarithms, which entities had not yet

appeared in any previous closed forms for box integrals.
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To this end, we invoke parameterized definite integrals,

namely the pair

F±(c) :=
∫ 1

0

log(1± x)

x+ c
dx (5–1)

and the pair

G±(b, c) :=
∫ 1

0

log(1± x) log(x+ b)

x+ c
dx. (5–2)

The closed forms for these four integrals are rather stupe-

fying; we have relegated the closed-form displays to our

Appendix I (Section 10), the salient point being that we

shall find that the remaining integral R(t) can be cast as

a superposition of F and G forms.

Theorem 5.1. J(t) is hyperclosed for algebraic t with

Re(t) ≥ 0. (An explicit closed form is indicated in

the proof following, although as before, the special points

t = 0, 1 need be handled as limiting values; see Appendix

II (Section 11).)

Proof. We write R(t) as four definite integrals

R(t) = Y1 + Y2 + Y3 + Y4,

with the Yn ordered as in the display of Lemma 4.1. To

clarify, we have, for example,

Y3 :=

∫ 1

0

log

(
1 + x

1− x

)
x log(t+ x2 + 1)

x2 + 1
dx.

Taking this exemplary case, we have—upon log-

expansion and partial fractions—the following:

Y3 =

∫ 1

0

(
log(1 + x) − log(1− x)

)
× (log (x+ i

√
t+ 1

)
+ log

(
x− i

√
t+ 1

))
× 1

2

(
1

x+ i
+

1

x− i

)
dx.

But this means that Y3 is a superposition of G+, G− eval-

uations, as is the case for each of the Yn below if we also

include F functions as needed (which to avoid many line

breaks are displayed in Figure 1), with each sum for an

F -function performed over sign choices ±, and for a G-

function over all four possible sign choices ±±. (One

might object that Y2 in particular involves integration

over a branch singularity when t > 2, but in fact the in-

tegrand for Y2 can be seen to be finite and differentiable;

that is, any branch-cut effects are canceled in the given

superposition for Y2.)

We therefore have a closed form based on the above

closed forms for the Yn, namely

J(t) = − log 2

2
Re

(
Li2

(
2√

t− 1 + 1

)

+Li2

(
− 2√

t− 1− 1

))
+
(
R(t) = Y1 + Y2 + Y3 + Y4

)
.

For algebraic t this is a hyperclosed representation of

J(t), since our appendix forms for F±, G± are hyper-

closed for such t.

Because K5 = J(3) has been the sole obstacle to

5-dimensional hyperclosure, we now have the following

corollary.

Corollary 5.2. The integral K5 is hyperclosed, and

therefore all box integrals B5(integer), and perforce

Δ5(integer), are hyperclosed.

The J that are integral at integer arguments other

than t = 3 are interesting in their own right. Our Ap-

pendix II discusses closed-form developments for these

cases.

5.1 A Generalization of J

We conclude this portion of the paper by placing J(A)

in a more general context. Recall that

B2n+1(−s)
:=

∫
[0,1]2n+1

(x2
1 + · · ·+ x2

2n+1)
−s/2 dx1 · · · dx2n+1

=
2n+ 1

2n+ 1 + s
C2n,0(−s, 1)

=
2n+ 1

2n+ 1 + s

×
∫
[0,1]2n

(1 + x2
1 + · · ·+ x2

2n)
−s/2 dx1 · · · dx2n.

For general C2n,0, we may change pairs of variables into

polar coordinates to obtain

C2n,0(−s, A)
:=

∫
[0,1]2n

(A+ x2
1 + x2

2 + · · ·+ x2
2n)

−s/2 dx1 · · · dx2n

=
2n

(2− s)(4− s) · · · (2n− s)

n∑
k=0

(−1)n−k

(
n

k

)

× In,k(s, A)
πn−k

4n−k
,
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Y1 =
1

2

(∑
G+

(±i
√
t+ 1,±√

t− 1
)−∑G− (±i

√
t+ 1,±√

t − 1
))

− log t

2

(∑
F+

(±√
t− 1

)−∑F− (±√
t− 1

))
,

Y2 = −1

2

(∑
G+

(±i
√
t+ 1,±1/

√
t − 1

) −∑G− (±i
√
t+ 1,±1/

√
t − 1

))
+

1

2

(∑
G+

(±i,±1/
√
t − 1

)−∑G− (±i,±1/
√
t− 1

))
+

log t

2

(∑
F+

(±1/
√
t− 1

)−∑F− (±1/
√
t− 1

))
,

Y3 =
1

2

(∑
G+

(±i
√
t+ 1,±i

)−∑G− (±i
√
t + 1,±i

))
,

Y4 = −Gπ +
7

4
ζ(3),

FIGURE 1. Resolution of key integrals in terms of F±, G± forms (see Appendix).

where

In,k(s, A) :=

∫
[0,π/4]k

dθ1 · · · dθk
(A+ sec2 θ1 + · · ·+ sec2 θk)s/2−n

,

provided that s �= 2, 4, . . . , 2n. The further change of

variable x2
i = sec2 θi − 1 brings us back to the unit k-

cube, so that

In,k(s, A)

=

∫
[0,1]k

dx1

x2
1 + 1

· · · dxk

x2
k + 1

1

(A+ k + x2
1 + · · ·+ x2

k)
s/2−n

.

In the case s = 2n, we find that

B2n+1(−2n) = (−1)n−1

(2n− 1)(n− 1)!
(5–3)

×
n∑

k=0

(−1)n−k

(
n

k

)
πn−k

4n−k
Jk(k + 1),

where J0(A) := 1 and for k ≥ 1 we have

Jk(A) :=

∫
[0,1]k

dx1

x2
1 + 1

· · · dxk

x2
k + 1

log(A+ x2
1 + · · ·+ x2

k)

=

∫
[0,π/4]k

log
(
A+ tan2 θ1 + · · · (5–4)

+ tan2 θk
)
dθ1 · · · dθk.

Moreover, Jk+1(A) =
∫ π/4

0
Jk
(
A+ tan2 u

)
du.

To illustrate,

J2(A) = J(A) =

∫ 1

0

∫ 1

0

log(A+ x2 + y2)

(1 + x2)(1 + y2)
dx dy,

and J2(3) = J(3) = K5, while a less-difficult version of

Lemma 4.1 shows that

J1(A) =

∫ π/4

0

log
(
A+ tan2 t

)
dt

=
π

4
log(A− 1) +

(
θ − π

4

)
log

(√
A− 1√
A+ 1

)

+
1

2
Cl2 (θ)− 1

2
Cl2 (θ − π)−G,

where θ := arctan
(

A−1
2
√
A

)
= 2 arctan

(√
A−1√
A+1

)
.

Hence (5–3) and (5–4) show that B7(−6) is hyper-

closed iff J3(4) is, which suggests that the evaluation

of B2n+1(−2n) can be achieved in terms of Clk for

2 ≤ k ≤ n+ 1.

6. THE CONCEPT OF EXPRESSION ENTROPY

Though box integrals B5(integer) are now known to be

hyperclosed, it is surprising that the closed form for some-

thing like B5(−6) occupies one line of typical typesetting,
yet our initial closed form for J(3) (essentially B5(−4))
from Theorem 5.1 had on the order of 105 characters.

Furthermore, different symbolic languages would use dif-

fering character counts to express J(3).2

We are motivated thus to introduce the notion of ex-

pression entropy. This will be the number of binary bits

inherent in an expression. And we found a very sim-

ple practical means of measuring such entropy: run an

expression as a text file through an established entropy

compressor.

For example, our initial J(3) expression, when

entropy-compressed, reduced down to about 5 · 104 bits.

2In our case, Maple and Mathematica were used extensively
throughout our efforts at expression reduction.
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Note that an initial 105 text characters is on the or-

der of 106 bits, so this is significant reduction. One

way to think of how expression entropy works is to con-

sider that a good entropy compressor will essentially

not care whether dilogarithms are written Li 2(. . . ) or

PolyLog[2, . . . ], since the compressor is typically looking

for common strings.

The reason why the expression-entropy concept is use-

ful can be inferred from our appendix commentary—note

that J(1), J(2), J(3), and J(4) each start out as many

pages of text, and even at current reductions, J(4) still

barely fits on a single page. Yet J(2) has reduced to a

single line. The current work makes it abundantly clear

that much work remains to be done regarding effective

closed forms. Both Maple and Mathematica were able to

rapidly confirm symbolic closed forms numerically but

were unable in every case to produce symbolically hu-

manly convenient expressions.

7. SIX-DIMENSIONAL BOX INTEGRALS

7.1 B6(even)

For general dimension n, the recurrence (1–9) with s =

−n+ 2 yields

2Bn(−n+2) = (−n+2)Resn +n(n− 1)Cn−2,0(2−n, 2).

Importantly, this reduces this box-integral Bn to an in-

tegral of dimension (n− 2). For example, the previously

unresolved B6(−4) can now be written using the known

residue Res6 as

B6(−4) = −π3

32
+ 15C4,0(−4, 2). (7–1)

From knowledge of (4–1) and Theorem 5.1, it follows that

B6(−4) is hyperclosed.
But we can carry this 6-dimensional effort yet further.

The recurrence relations such as (1–8), (1–9) give us the

two key recurrences

2sC4,0(s− 2, 2) = (s+ 4)C4,0(s, 2)− 4C3,0(s, 3) (7–2)

and

(s+ 6)(s+ 5)B6(s) = s(s+ 4)B6(s− 2) + 30C4,0(s, 2).
(7–3)

These recurrences contain enough magic to resolve all

of the box integrals B6(even). Indeed, pivoting on our

knowledge of B6(−4) as given above, (7–2) leads us to

B6(−2) = −2

3
B6(−4)− π3

96
+ 5C3,0(−2, 3).

Happily, it turns out that the techniques used in our

main Lemma 4.1 result in a closed form for C3,0(−2, A)
as displayed—and refined—in our Section 11.2. So now

we know that B6(−2,−4) are both hyperclosed.

For the other direction away from B6(−4), we observe
from (1–9) with s→ −6 that

B6(−8) = − π3

768
− 5

2
C4,0(−6, 2).

It turns out that we do not need to labor over the devel-

opment of the C evaluation here, because it is elementary

from the very definition (1–3) that

Cm,0(s, A) =
2

s+ 2

∂

∂A
Cm,0(s+ 2, A), (7–4)

so that

B6(−8) = − π3

768
+

5

4

∂

∂A
C4,0(−4, A)

∣∣∣
A=2

;

thus B6(−8) is hyperclosed. Indeed, C4,0(−4, A) is hy-

perclosed by (4–1), while the derivative of a hyperclosed

expression with respect to one algebraic parameter is it-

self hyperclosed, via the definitions of generalized hyper-

geometric functions and of the ring of hyperclosure.

Further, B6(−10,−12,−14, . . .) can now be resolved

recursively using (7–3) in tandem with (7–4) with m = 4.

This all leads to the following result.

Theorem 7.1. Every B6(even) is hyperclosed.

7.2 B6(odd)

In striking contrast to Theorem 7.1, we do not know a

single B6(odd) in closed form. The best we can do at the

current juncture is to obtain forms with yet new kinds of

dangling integrals, e.g.,

B6(−7) = − π2

√
8
+
√
8π arctan

(
1√
2

)

− 8

∫ π/4

0

∫ π/4

0

dt du√
2 + sec2 t+ sec2 u

.

For a general parameter A one has

∫ π/4

0

∫ π/4

0

dt du√
A+ sec2 t+ sec2 u

=

∫ 1

0

arctan
(√

A+ 1 + y2/
√
A+ 3 + y2

)
(1 + y2)

√
A+ 1 + y2

dy.

Interestingly, we do know that this dangling integral for

A = 1 is equal to π2/30, on the basis of (3–2); yet we
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do not yet know the A = 2 evaluation that would yield

B6(−7). It would surprise us somewhat if resolutions

of such elusive box integrals involve more than trilog-

arithmic terms, based on heuristics we shall explore in

Section 8.

Somewhat more can be said about B6(odd). By com-

bining recurrences (1–8), (1–9), one can deduce

360C2,0(s, 4)

= −6s2(s− 2)(s− 4)B6(s− 6)

+ (s− 2)s(s+ 2)(11s+ 18)B6(s− 4)

− (3 + s)(4 + s) (7–5)

× {2s(3s+ 8)B6(s− 2)− (s+ 5)(s+ 6)B6(s)} .

We next observe that C2,0(s, A) is hyperclosed for odd

integers s. We write

C2,0(s, A) =
2

s+ 2
M(s+ 2, A)− π

2

As/2+1

s+ 2
,

where M(s, A) :=
∫ π/4

0

(
A+ 1 + tan2 θ

)s/2
dθ. We have

the recurrence

M(s+ 2, A)−AM(s, A)

= (A+ 1)
s/2

2F1

(
1

2
,−s

2
;
3

2
;− 1

A+ 1

)
,

so that the hyperclosure of all C2,0(odd, 4) is ignited by

a single evaluation, say

C2,0(−1, 4) = 4 arctan
(√

2/3
)−π+log 5−2 log

(√
6−1

)
.

One might guess that because the C2,0(s, 4) on the left of

recurrence (7–5) is thus hyperclosed, the B6(odd) should

be determined by B6 at any three consecutive argu-

ments. But this is not so: sometimes the coefficients

in (7–5) vanish. By looking closely at cases such as

s = −1,−3,−5, . . . , one can establish the following:

Theorem 7.2. If B6(−7) is hyperclosed, then so are all

of B6(−9,−11,−13, . . . ). If in addition B6(−3,−5) are

hyperclosed, then so are all B6(odd).

Therefore, resolution of all B6(integer) would follow

from hyperclosure of the three entities B6(−3,−5,−7);
we remind ourselves that we do not know a closed form

for any one of these three.

8. THEORY OF HYPERDEGREE

Based on previous box-integral research, together with

the present treatment, an interesting pattern emerges in

n H(Bn(even)) ≤ H(Bn(odd)) ≤
2 1 1
3 2 1
4 2 2
5 3 2
6 3 3 ?
7 4 ? 3 ?

n > 1 �n/2� ? �n/2	 ?

TABLE 1. Known bounds on hyperdegrees for box
integrals. All hyperdegree entries without “?” are
rigorous upper bounds (since we know the relevant
closed forms). The immediate conjectures are that
H(B6(odd)) ≤ 3, that the hyperdegrees for B7 are
4, 3, and that for general dimension n > 1 we have the
indicated floor and ceiling bounds.

regard to the “polylogarithmic degree” of various evalua-

tions. We hereby define hyperdegree as a certain measure

on the ring of hyperclosure, and mean this to be more

general than polylogarithmic degree. We shall speak

heuristically in what follows, because it is very hard to

produce rigorous results in this area. One might say that

in looking for hyperdegree patterns we are observing “ev-

ident hyperdegree” without proof.3

To define the hyperdegree H(X) of a ring element X ,

we start with ring-generator evaluations (2–1) and define

H(x) as the minimal degree of the denominator polyno-

mial q(n), over all hypergeometric expansions of x. For

example (here z denotes an algebraic number),

H(z) = 0, H(log z) ≤ 1, H (Lin(z)) ≤ n.

Note that we use ≤ sometimes because there can be ex-

ceptions, e.g., log 1 = 0, and also because, again, we

cannot always prove exact hyperdegrees. Some isolated

cases can be proven, such as

H(π) = 1,

whose proof is an instructive exercise. Generally speak-

ing, when we obtain a closed form, we have an upper

bound on the hyperdegree H .

Next we define the hyperdegree of a ring element X

using the symbolism

X =
∑
j

(∏
k

xj,k

)
,

where the xj,k are an array—not necessarily

rectangular—of generator evaluations, and both sum

3For example, is the hyperdegree of ζ(5) equal to 5? Not if ζ(5)
is rational!
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G−(b, c) = Li3

(
b

b− c

)
− Li3

(
b+ 1

b − c

)
− Li3

(
b(c+ 1)

b− c

)
− Li2(−b) log

(
b(c+ 1)

b− c

)

− Li2

(
b

b− c

)
log

(
b(c+ 1)

b− c

)
+ Li2

(
b+ 1

b− c

)
log

(
(b+ 1)(c+ 1)

b− c

)
− log b Li2

(
1

c+ 1

)

+ Li2

(
1

c+ 1

)
log

(
b(c+ 1)

b− c

)
+ Li2

(
b(c+ 1)

b− c

)
log

(
b(c+ 1)

b− c

)

− 1

6
log3

(
− (b + 1)(c + 1)

b− c

)
− 1

2
log2(b+ 1) log

(
(b+ 1)(c+ 1)

b− c

)

− 1

2
log(b+ 1) log2

(
b(c+ 1)

b− c

)
+

1

2
log(b + 1) log2

(
(b+ 1)(c+ 1)

b− c

)

− 1

2
log c log2

(
b(c+ 1)

b− c

)
+

1

2
log

(
− (b+ 1)c

b− c

)
log2

(
b(c+ 1)

b− c

)

+
1

2
log(c+ 1) log2

(
b(c+ 1)

b− c

)
− 1

2
log

(
− (b + 1)(c + 1)

b− c

)
log2

(
(b+ 1)(c+ 1)

b− c

)

− 1

2
log c log2

(
b

b− c

)
+

1

2
log2

(
b

b− c

)
log

(
− c

b− c

)
+

1

2
log(c+ 1) log2

(
b

b− c

)

+
1

2
log2

(
− (b + 1)(c + 1)

b− c

)
log

(
(b + 1)(c + 1)

b− c

)
− 1

2
log2

(
b+ 1

b− c

)
log

(
c+ 1

c− b

)

− 1

6
π2 log

(
− c+ 1

b− c

)
− log

(
b

b− c

)
log

(
− c

b− c

)
log

(
b(c+ 1)

b− c

)

+ log

(
c

c+ 1

)
log

(
b

b− c

)
log

(
b(c+ 1)

b− c

)

+ log

(
b+ 1

b− c

)
log

(
(b+ 1)(c+ 1)

b− c

)
log

(
c+ 1

c− b

)
+ Li3(−b) +

1

6
log3(b+ 1)

+ Li3

(
1

c+ 1

)
.

FIGURE 2. Explicit closed form for G−.

and product here are finite. We define

H(X) := min
()

(
max

j

(∑
k

H(xj,k)

))
,

where min() means to take the minimum of all ring repre-

sentations xj,k forX . (Such is necessary to guard against

resonances such as H(π2 − π2) = 0, yet each component

π2 has hyperdegree 2.) The point of the rather recondite

notation can be intuitively expressed thus: The hyperde-

gree of a ring element is the largest hyperdegree of an iso-

lated product string, which is in turn (at most) the sum

of the hyperdegrees of the xj,k members of said string.

With such notions—admittedly not entirely rigorous—of

hyperdegree, we have examples such as

H
(
1 + log 7− log 2 log2 3− π3 + Li3

(√
5− 2

))
≤ 3,

and this H probably is in fact 3. A specific and relevant

box-integral example is

H (B3(−2))

= H

(
−3G+

3

2
π log(1 +

√
2) + 3Ti2(3− 2

√
2)

)
≤ 2.

The implications of hyperdegree theory for box inte-

grals can be gleaned from Table 1, which uses results

from [Bailey et al. 09] together with our new results on

B5, B6. Note that the development of Section 5.1 also

adds substance to this conjecture.

9. CONCLUSION

Salient open issues include the following:

• Proof that some or all B6(odd) are hyperclosed.

• Evaluation of some Bn(s) for n ≥ 7, ideally of an

infinite family such as Bn(−n− 1) or Bn+1(−n) for
n ≥ 6.

• A better understanding of the structure of such eval-

uations.

Each of these is relevant also to other physically moti-

vated classes of integrals [Bailey et al. 06].

Finally, one of the largest challenges for such

computer-assisted analysis is to automate the process de-

scribed in Appendices I and II so that results like (11–8)

can be obtained by the computer with at most limited
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G+(b, c) =
1

2
log

(
− c

b − c

)
log2

(
b

b − c

)
− 1

2
log

(
c

c − 1

)
log2

(
b

b − c

)
− log

(
− b(c − 1)

b − c

)
log

(
− c

b − c

)
log

(
b

b − c

)

+ log

(
− b(c − 1)

b − c

)
log

(
c

c − 1

)
log

(
b

b − c

)
− 1

2
log(1 − b) log2

(
− b(c − 1)

b − c

)

+
1

2
log2 2 log(1 − b) +

1

2
log(1 − b) log

(
− (b + 1)(c − 1)

b − c

)
log

(
− (b + 1)(c − 1)

4(b − c)

)

+
1

2
log

2

(
− b(c − 1)

b − c

)
log

(
(b − 1)c

b − c

)
− 1

2
log

2

(
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b − c

)
log

(
c
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)
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2
log
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b − c

)
log

(
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4(b − c)

)
log

(
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)
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2
log2 2 log

(
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b − c

)
+

1

2
log2

(
b + 1

b − c

)
log

(
c + 1

c − 1

)

+
1

2
log2

(
− (b + 1)(c − 1)

b − c

)
log

(
c + 1

c− 1

)
+ log 2 log

(
1 +

1

b

)
log

(
c + 1

c − 1

)

+ log 2 log b log

(
c + 1

c − 1

)
− log

(
b + 1

b − c

)
log

(
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)
log

(
c + 1
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− log 2 log
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1
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log2
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log

(
c + 1
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)
+ log

(
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log
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log

(
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)
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(
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(
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2
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(
1
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+ log
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(
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(
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(
b

b − c

)
− Li3

(
b + 1

b − c

)
− Li3

(
− 2

c − 1

)

+ Li3

(
− (b + 1)(c− 1)

2(b − c)

)
− Li3

(
b − bc

b − c

)
.

FIGURE 3. Explicit closed form for G+.

human agency. The appendices provide invaluable test

data for such projects—and one such project is currently

being undertaken.

10. APPENDIX I: THE FUNCTIONS F± AND G±

The F± integrals resolve as

F+(c) = −Li2

(
1

1− c

)
+ Li2

(
− 2

c− 1

)

+ log 2 log

(
c+ 1

c− 1

)
,

F−(c) = −Li2

(
1

c+ 1

)
.

It is already of interest that these two ± forms seem to

differ in complexity. In fact, trying an integrand factor

log(1+sx) and expecting to take s = ±1 in a general inte-

gral involves a nontrivial limit for the s = −1 case. All of

this difficulty can be traced to the well-known branch-cut

peculiarity of the dilogarithm Li2(z) on z ∈ (+1,+∞).

TheG± integrals are far more intricate; and again, it is

best to handle the ± cases separately. The exact analytic

forms displayed in Figures 2 and 3 can be gleaned from

fundamental trilogarithmic formulas such as [Lewin 81,

equation 8.111]. (It is again interesting that G− is evi-

dently less complex than G+, although it is unclear what

further symbolic reductions might be possible for either

of G±.)

11. APPENDIX II: EXPLICIT FORMS FOR J(n),
0 ≤ n ≤ 4, AND C3,0(−2, A)

The easiest value of J to obtain is J(0), which we may

get directly from the original integral form. We write

J(0) = 2

∫ π/4

0

∫ a

0

log
(
a2 + b2

)
(1 + a2)(1 + b2)

db da (11–1)

= −
∫ 1

0

log2
(

c2+1
2

)
dc

1− c2
+

π2

16
log (2) +

7

4
ζ (3)− πG.
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Moreover,

∫ 1

0

log2
(

c2+1
2

)
dc

1− c2
=

∞∑
k=1

2k
∑k−1

j=1 1/j(
2k
k

)
k2

= −πG+
21

8
ζ(3),

so that

J(0) =
π2

16
log 2− 7

8
ζ(3). (11–2)

We can evaluate J(1) by much the same techniques as

given above for J(3). We obtain—in the limit—a ten-

thousand-character expression that with care reduces to

the quantity displayed in Figure 4.

We refine this evaluation below. As we shall see, the

expression of the integral K5 = J(3) is similar but sig-

nificantly more complex, the original expression being

roughly four times as long.

11.1 Generalized Clausen Functions and Relatives

To further resolve J(1), J(2), J(3), and J(4) one

has to consider complex polylogarithms and generalized

Clausen functions.

Let us define Cl2(r, θ) := ImLi2
(
reiθ

)
as a counter-

part to

Li2(r, θ) := ReLi2
(
reiθ

)
= −1

2

∫ r

0

log(1− 2r cos(θ) + r2)

r
dθ,

so that Cl2(1, θ) = Cl2(θ) =
∑

n≥1
sin(nθ)

n2 . (We recall

that Cl2 is a nonelementary Fourier series as opposed to

Li2(1, θ).) Then, see [Lewin 81, A2.5.(1)], one obtains

Cl2(r, θ) =
1

2
Cl2(2ω) +

1

2
Cl2(2θ)− 1

2
Cl2(2ω + 2θ)

+ w log(r), (11–3)

where tan(ω) = r sin(θ)/(1 − r cos(θ)).

Also for r > 0 and integer n, Li2(r, θ) = Li2(r, 2nπ ±
θ) and Cl2(r, θ) = −Cl2(r,−θ). Very usefully, for

0 ≤ θ < 2π,

Li2 (r, θ) + Li2 (1/r, θ) =
1

2
(π − θ)2 − 1

2
log2 (r) − π2

6
.

(11–4)

We record the following useful Fourier series reductions:

Li2

(
tan

θ

2
, θ

)

=
θ2

4
+

1

2
Li2

(
tan2

(
θ

2

))
− 1

4
Li2

(
tan2

(
θ

2

))
,

as well as

Li2 (2 cos θ, θ) =
(π
2
− θ
)2

,

Li2 (cos θ, θ) =
1

4
Li2
(
cos2 θ

)
+

1

2

(π
2
− θ
)2

,

Li2 (sec θ, θ) =
5

24
π2 − 1

4
Li2
(
cos2 θ

)− 1

2
log2 (cos θ)

− π

2
θ,

Li2

(
sec θ

2
, θ

)
=

π2

12
− 1

2
log2 (2 cos θ)− θ2

2
.

In particular, using the final formula we obtain

Li2

(√
6

4
, arctan

1√
2

)
=

π2

12
− 1

8
log2

8

3
− 1

2
arctan2

1√
2

and

Li2

(√
3

2
,
π

2
− arctan

1√
2

)

=
π2

12
− 1

8
log2

4

3
− 1

2

(
π

2
− arctan

1√
2

)2

.

Likewise, see [Lewin 81, A2.6], we notate Li3(r, θ) :=

ReLi3
(
reiθ

)
, so that in keeping with [Lewin 81],

Cl3(θ) := Li3(1, θ). In particular, [Lewin 81, A2.5]

gives various functional equations for Li2(r, θ), and

[Lewin 81, A2.6] gives various functional equations for

Li3(r, θ). If we use the generalized tangent T3(ρ) =∑
n≥0(−1)n ρ2n+1

(2n+1)3 , then

ImLi3
(
reiθ

)
= T3(ρ)− T3(ρ, tan θ),

where ρ = r sin θ/(1 − r cos θ) defines T3(ρ, tan θ). Also

for r > 0 we have Li3(r, θ) = −Li3(r,−θ). Again, for

0 ≤ θ < 2π, we have

Li3 (r, θ)− Li3 (1/r, θ)

= −1

6
log3 r +

3 (π − θ)2 − π2

6
log r.

For example,

Li3

(√
2,

π

4

)
= Li3

(
1√
2
,
π

4

)
+

11π2

192
log 2− 1

48
log3 2

=
35

64
ζ (3) +

π2

32
log 2.

We shall also exploit a consequence of the func-

tional equation for the trilogarithm due to Landen
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J(1) =
9

8
π2 log 2− 3

2
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log2 2 log 3 + log3 2− 7
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π2 log 3
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√
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√
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√
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√
2
)}

+Re
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√
2 + 3 log 2− log 3

)
Li2

(
1

2
− 1

4
i
√
2

)

+
(
2iπ − 4i arctan

√
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FIGURE 4. One of our various resolutions of J integrals.

2C3,0(−2, A) =
3

2
log2 2 + log 2 log(A− 1)− π

√
A arctan

1√
A

+ Li2

(
−A− 1

2

)
+ Li2

(
− 2

A− 1

)
− Li2

(
−A− 1

4

)
− Li2

(
− 4

A− 1

)
(a)

+ 6 Im

[
Li2

(
1 + i

1 +
√
A+ 2

)
+ Li2

( −1 + i

−1 +
√
A+ 2
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(b)

+ 2
√
ARe
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Li2
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√
A)(
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√
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FIGURE 5. An important integral C, with free parameter A.

C3,0(−2, A) =
1

2
log2 2− π2

8

√
A− π

2
κ
√
A+ 6G− 3Cl2

(π
2
+ κ

)
− 3Cl2

(π
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− κ
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+ 3κ log
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A+ 2+ 1√
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, π − η
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− Li2

(√
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, η
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+ Li2

(√
A+ 1√
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, π − ν

)
− Li2
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, ν

)}
.

FIGURE 6. Recasting of the C integral.

[Lewin 81, A2.6 (7)]:

Li3 (x) + Li3 (1− x) + Li3

( −x
1− x

)

= ζ(3) + ζ(2) log (1− x) +
1

2
log2 (1− x) log x

+
1

6
log3 (1− x) .

This implies that for 0 ≤ ω ≤ 2π one has

ReLi3

(
1

2
+ iω

)

=
1

2
ζ (3)− 1

2
Cl3 (σ) +− 1

48
log3

(
1 + 4ω2

4

)
(11–5)

+
1

4

(
π2

6
− arctan2 (2ω)

)
log

(
1 + 4ω2

4

)
.
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J(1) = 2θπ log
4

3
+

π2

16
log 3− 7π2

8
log 2− 1

2
log2 2 log 3 + log3 2− 3

2
Gπ + log2(1 +

√
2) log

2

3

+ 2Li3
(√

2,
π

4

)
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8

3
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(√
6

4
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(√
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2
,
π

2
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)
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)
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√
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FIGURE 7. Recasting of J(1).
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log
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π
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λ+ πθ log
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32
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log3 2 +
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4
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9π2
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4
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3

2
, θ

)
+ Li3
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2
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2
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2

)
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FIGURE 8. Even more reduction of J(1) is feasible.

Here σ := arctan
(

4ω
4ω2−1

)
is the principal value in

(−π, π].
The corresponding formula for the dilogarithm is

ReLi2

(
1

2
+ iω

)
=

π2

12
− 1

8
log2

(
1 + 4ω2

4

)

− 1

2
arctan2 (2ω) .

11.2 A Closed Form for C3,0(−2, A)

We now have the requisite tools to produce an explicit

closed form for C3,0(−2, A) as required to establish hy-

perclosure of all B6(even). We recall that

C3,0(−2, A) =
∫
[0,1]3

dx dy dz

A+ x2 + y2 + z2
.

The formula that comes out of our intricate integration,

using the techniques behind Lemma 4.1, is displayed in

Figure 5.

We next rewrite the dilogarithmic terms of Li2(r, θ)

and Cl2(r, θ) values. For (a) in the formula we appeal

twice to (11–4) with θ = π. We discover that

Li2

(
−A− 1

2

)
+ Li2

(
− 2

A− 1

)
− Li2

(
−A− 1

4

)

− Li2

(
− 4

A− 1

)
=

3

2
log2 2− log 2 log (A− 1) .

We write (b) as

6 ImLi2

(
1 + i

1 +
√
A+ 2

)
+ 6 ImLi2

( −1 + i

−1 +√A+ 2

)

= 6Cl2

( √
2

1 +
√
A+ 2

,
π

4

)

− 6Cl2

( √
2

−1 +√A+ 2
,
3π

4

)

= 6G− 3Cl2

(π
2
+ κ
)
− 3Cl2

(π
2
− κ
)

+ 3κ log

(√
A+ 2 + 1√
A+ 2− 1

)
,

where κ := 2 arctan
(

1√
A+2

)
.

Similarly, (c) is actually three pairs of Li2(r, θ)

values with equal angles and twisted moduli. Let

ν := arctan
(√

A
)
, η =: arctan

(√
A(A+ 2)

)
, ω :=

arctan
(√

(A+ 2)/A
)
. Note that 2ω + η = π.

Then putting everything together for A ≥ 1, we have

the formula displayed in Figure 6.

This form is especially attractive when A = 1, so that

κ = ω = η = π/3 and ν = π/4. On noting that

4G = 3Cl2

(π
6

)
+ 3Cl2

(
5π

6

)
Li2

(√
2,

π

4

)
=

π2

16
,

(11–6)
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J(2) =
1

108
Ψ′
(
1

3

)√
3π +

1

108
Ψ′
(
1

6

)
π
√
3− 2

81
π3

√
3 +

(
5

12
log(1 +

√
3) +

1

24
log 2

)
π2

− 53

48
ζ (3)−Gπ + ReLi3

(
1− i+

√
3 + i

√
3

2(
√
3 + 1)

)
+ReLi3

(
1 + i−√

3 + i
√
3

2(
√
3− 1)

)
− π

2
ImLi2

(
i+

√
3√

3− 1

)

+
5π

12
ImLi2

(
−1 + i+

√
3 + i

√
3

2(
√
3− 1)

)
− π

12
ImLi2

(
1 + i+

√
3− i

√
3

2(
√
3 + 1)

)
+

π

2
ImLi2

(
i+

√
3√

3 + 1

)
.

FIGURE 9. Closed form for integral J(2).
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FIGURE 10. An alternative closed form for J(2).
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6
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√
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6
+

√
5

6
, π − θ − τ

)
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)
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6
, τ − π

4

))

+
1

2

(
Li2

(√
15

6
−

√
30

12
, θ + τ

)
+ Li2

(√
15

6
+

√
30

12
, τ − θ

))
log

(
24

5

)
− Li3

(√
10

6
−

√
5

6
, θ − 2τ

)

− Li3

(√
10

6
+

√
5

6
, θ + 2τ − π

)
− Li3

(√
15

6
−

√
30

12
, θ + τ

)
+ Li3

(√
15

6
+

√
30

12
, τ − θ

)

+ Li3

(
1√
3
− 1√

6
, τ − 3π

4

)
+ Li3

(
1√
3
+

1√
6
,
π

4
− τ

)
+ Li3

(√
10

6
,
π

4
− θ

)
+ Li3

(√
10

2
,
3π

4
− θ

)

− 2Li3

(√
5

2
, θ

)
+ Li3

(
−
√
2− 1

2

)
− Li3

(
2
√
2− 2

)
.

FIGURE 11. A component of the elusive K5 integral.
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FIGURE 12. Another component of K5.
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C5 = θ

(
1

2
Cl2 (π − 4θ) + 2Cl2 (2θ − π)− Cl2 (4τ + 2θ) + Cl2 (4τ − 2θ)−Cl2 (2τ − 2θ) + Cl2 (2τ + 2θ)

)

+
π

4

(
2Cl2 (2θ − π)− 2Cl2

(π
2
+ 2θ

)
+Cl2

(π
2
− 2θ

)
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(
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)
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FIGURE 13. Final component of K5.

and that

Li2

(
1,

π

4

)
=

11π2

192
,

Li2

(
1,

3π

4

)
=

13π2

192
,

it reduces to 2C3,0(−2, 1) = B4(−2) = π log(2 +
√
3) −

2G+ π2/8, as obtained in [Bailey et al. 09].

We can similarly rework (4–1) as follows:

C4,0(−4, A) = π2

16
logA− π

2
G+

π

4
Cl2

(√
A+ 1 + 1√
A− 1

,
π

2

)

+
π

4
Cl2

(√
A− 1√
A+ 1

,
π

2

)
− J(A+ 2).

(11–7)

This may again be further refined in terms of classical

Clausen values.

11.3 The Promised Closed Forms for J

J(1). With this notation in hand, on setting θ :=

arctan(1/
√
2), we may rewrite J(1) as displayed in Fig-

ure 7.

Moreover, (11–3) allows for all Cl2 values to be ex-

pressed in terms of the classical Clausen function. We

have placed the terms at the top for which we have thus

shown reduction to elementary constants and classical

polylogarithms or Clausen functions. Further simplifi-

cation is possible of terms such as log 8
3 Li2

(√
6
4 , θ

)
and

2 log 4
3 Li2

(√
3
2 , π

2 − θ
)
.

We now opt to set λ := log(1 +
√
2) and θ :=

arctan
√
2. We eventually arrive at the expression of Fig-

ure 8.

Each level of simplification reveals more structure. We

now note that each Li3 value is of the form Li3(
sec τ
2 , τ),

where τ := θ + kπ
4 , 0 ≤ k ≤ 3. Each of these may be

resolved by an application of (11–5). This leads to

J(1) =
π

2
Cl2

(
2θ − π

2

)
+

π

2
Cl2

(
2θ +

π

2

)
− θ

2
Cl2 (4θ − π) + (2θ − π)Cl2 (4θ)

− 3(2θ − π)Cl2 (2θ) + 2Cl3 (2θ − π)− Cl3 (2θ)

− 1

2
Cl3

(
2θ +

π

2

)
− 1

2
Cl3

(
2θ − π

2

)
−Gπ

− 35

32
ζ (3) .

J(2). Surprisingly, J(2) is significantly simpler, because

of the specific angles engaged, though one has to ap-

proach the removable singularity carefully. This again

leads to a very large symbolic expression, which reduces

to the formula of Figure 9

Again, the dilog terms can be nicely resolved as

Clausen values, and the trilogarithms can be manipu-

lated as above. This produces the expression in Fig-

ure 10, which, remarkably, reduces to a single line:

J(2) (11–8)

=
π2

8
log 2− 7

48
ζ(3) +

11

24
πCl2

(π
6

)
− 29

24
πCl2

(
5π

6

)
.

We can use (11–6) to replace Cl2
(
5π
6

)
by 4

3G− Cl2
(
π
6

)
.

We can also substitute

Cl2

(π
6

)
=

G

3
+

3
√
3

16
L−3(2),

where L−3(2) is the primitive L-series modulo 3. Thus,

alternatively we have

J(2) =
5π

16

√
3L−3(2)− π

2
G− 7

48
ζ (3) +

π2

8
ln 2. (11–9)

J(3). Using the decomposition in Theorem 5.1, an ex-

plicit polylogarithmic form of K5 = J(3) was obtained in
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Mathematica. Said expression was roughly 30,000 char-

acters long—or 62,000 when converted to a Maple ex-

pression. Either of these language forms comes down to

about 50 kilobits of “expression entropy,” as discussed

in Section 6. The challenge is to find a much smaller

expression. Write

J(3) = K5 = R5 + C5 + L5, (11–10)

where R5 comprises the real trilog and dilog terms,

C5 comprises the pure Clausen terms, and L5 collects

the rest. Then, after a very large amount of symbolic

work exploiting many formulas in [Lewin 81], on setting

λ := log
(
1 +
√
2
)
, θ := arctan 2, and τ := arctan

√
2, we

obtain for R5 the expression in Figure 11.

Likewise, the constant and pure logarithmic coeffi-

cients L5 reduce to Figure 12. We also have the expres-

sion for C5 shown in Figure 13.

Formula (11–10) was numerically checked to 200 dec-

imal places. Given the final form for J(1), J(2), it is

suspected that J(3) can be further simplified. Indeed,

most of the Li3 terms are susceptible to (11–5), with

consequent simplification of L5.

J(4). For J(4) the corresponding expression has been re-

duced from roughly 100 kilobits of expression entropy

down to expressions similar to but somewhat longer

than those for J(3). We now use angles arctan
√
5 and

arctan
√
15 and noninteger logarithms log

(
1 +
√
3
)
and

log
(
1 +
√
15
)
.

In each case the angles are coupled to those engaged

in the expression of Figure 6 for A− 1.
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