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For a given integer A and various families of elliptic curves over
finite fields, we compare the number of occurrences of A with
the number of occurrences of −A as the trace of Frobenius in
the family.

1. INTRODUCTION

The Legendre family of elliptic curves over the λ-line,

Eλ : y2 = x(x − 1)(x− λ),

is one of the most familiar, and most studied, families of
elliptic curves, often used for testing conjectures and for
illustrating theorems. When we became interested in the
Lang–Trotter conjecture [Lang and Trotter 76, p. 33] in
the function-field case (cf. [Katz 09]), we turned to this
family to do some computer experiments. This paper
reports on an empirical discovery made in the course of
those experiments, and on the theory that explains it.
The explanation owes a great deal to Deligne, as will
become clear below.

In the experiments, we took an odd prime p, and tab-
ulated, for each λ0 ∈ �p \{0, 1}, the “trace of Frobenius”
A(λ0,�p) ∈ � for the elliptic curve Eλ0 over �p. Con-
cretely, we have

#Eλ0(�p) = p+ 1 −A(λ0,�p).

We calculated the numbers A(λ0,�p) brutally, as the
character sums

A(λ0,�p) = −
∑
x∈�p

χ2(x(x − 1)(x− λ0)).

Here χ2 : �p → {0,±1} is the quadratic character of �×
p ,

extended to all of �p by χ2(0) := 0.
The original intention of the experiment was to see, for

large primes p, which integers A occurred, and how often
they occurred, as A(λ0,�p) for some λ0 ∈ �p \ {0, 1}.
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ord2(p − 1)

ord2(p + 1 − A) 2 3 4 5 6 7 8 9

3 2 2 2 2 2 2 2 2

4 3 ? ? ? ? ? ? ?

5 5 7/2 7/2 7/2 7/2 7/2 7/2 7/2

6 5 4 ? ? ? ? ? ?

7 5 5 17/4 17/4 17/4 17/4 17/4 17/4

8 5 5 9/2 ? ? ? ? ?

9 5 5 5 37/8 37/8 37/8 37/8 37/8

10 5 5 5 19/4 ? ? ? ?

11 5 5 5 5 77/16 77/16 77/16 77/16

12 5 5 5 5 39/8 ? ? ?

13 5 5 5 5 5 157/32 157/32 157/32

14 5 5 5 5 5 79/16 ? ?

TABLE 1. Ratios as a function of ord2(p − 1) and ord2(p + 1 − A).

There are two obvious constraints on which values of A
can occur at all. The first is the Hasse bound

|A(λ0,�p)| ≤ 2
√
p.

The second is a congruence condition modulo 4. Re-
call that Eλ0(�p) has the structure of a (finite) abelian
group, with the point at ∞ as the origin and with the
three points (0, 0), (1, 0), (λ0, 0) as the nontrivial points
of order 2. Thus the points of Eλ0(�p) of order divid-
ing 2 form a subgroup of order 4, and hence #Eλ0(�p) ≡
0 mod 4; in terms of A(λ0,�p) this gives the congruence

A(λ0,�p) ≡ p+ 1 mod 4.

So for primes p ≡ −1 mod 4, the only possible A’s are
those integers congruent to 0 modulo 4 that are at most
2
√
p in absolute value, while for p ≡ 1 mod 4, the only

possible A’s are those integers congruent to 2 modulo 4
that are at most 2

√
p in absolute value. Let us say that

such A’s are unobstructed for p. What will be essential
in a moment is the observation that if A is unobstructed
for p, then so is −A.

The experiments showed (empirically) that for a given
odd p, any unobstructed A does in fact occur. This was
not surprising, and had a simple explanation. The exper-
iments also showed that when p ≡ −1 mod 4, A and −A
occur equally often. This, too, had a simple explanation.

But for p ≡ 1 mod 4, we found something quite un-
expected. It was no longer the case that A and −A
occurred equally often: there was always a winner and
a loser (in terms of which occurred more often). The
winner was apparently determined by the following rule.
Because A ≡ 2 mod 4, exactly one of A and −A has

p + 1 − A ≡ 0 mod 8, call it A, and for this choice, we
have p + 1 + A ≡ 4 mod 8. Then A was the winner,
and −A the loser. In other words, among the curves in
the Legendre family with a given value of |A|, the curves
whose rational 2-power torsion consisted only of the four
given points were less plentiful than those whose rational
2-power torsion subgroup had at least eight points.

We then examined the ratios of winners to losers in
each unobstructed pair (A,−A). We were astounded that
for p ≡ 5 mod 8, this ratio was (empirically) always an
integer, in fact, always one of the integers 2, 3, 5. For
example, here is the list, for p = 277, of all the pairs
of the form (an unobstructed A, the number of times it
occurs):

(−30, 4), (30, 8), (−26, 24), (26, 8),

(−22, 8), (22, 40), (−18, 18), (18, 9),

(−14, 8), (14, 16), (−10, 50), (10, 10),

(−6, 6), (6, 18), (−2, 32), (2, 16).

Moreover, there was apparently a simple rule to de-
termine the ratio, depending only on the power of 2 that
divides p+ 1 −A:

ord2(p+ 1 −A) = 3 =⇒ ratio = 2,

ord2(p+ 1 −A) = 4 =⇒ ratio = 3,

ord2(p+ 1 −A) ≥ 5 =⇒ ratio = 5.

For p ≡ 1 mod 8, the situation was more complicated.
All the ratios were at least 2, some were 2, 3, or 5, but
others were fractions with powers of 2 in their denomi-
nators, and occasionally 4 appeared. The data suggested
the ratios listed in Table 1 as a function of ord2(p − 1),
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listed horizontally, and ord2(p+ 1 −A), listed vertically.
For example, the first column of the table exhibits the
2, 3, 5 ratio phenomenon for primes p ≡ 5 mod 8.

The entries with a question mark indicate that more
than one ratio can occur for the given ord2 values. For
example, p = 233 has ord2(p − 1) = 3, and each of A =
−6, 26 has ord2(p+ 1 − A) = 4. Yet their ratios are 7/4
and 17/4. Similarly, p = 1993 has ord2(p − 1) = 3, and
each of A = −70,−38,−6, 26, 58 has ord2(p+1−A) = 4,
but their ratios are respectively 19/4, 7/2, 5, 7/2, 17/4.

Deligne’s contribution to the explanation of these phe-
nomena was twofold. He pointed out that the Legen-
dre family is isogenous to the universal family of elliptic
curves endowed with a point of order four. He also gave
a proof of the 2, 3, 5 phenomenon for p ≡ 5 mod 8 by an
argument working on the tree of GL(2,�2): in his ar-
gument, the fundamental invariant determining the ratio
was not ord2(p+1−A) but rather the 2-adic behavior of
the discriminant A2 − 4p. Both of these ideas—working
on the moduli problem Γ1(4) and paying attention to
the 2-adic behavior of the discriminant—are crucial to
the explanation we give below.

In the penultimate section, we discuss ± trace ratio
phenomena for some other families. In the final section,
we discuss some other sorts of ratio questions.

2. STATEMENT OF RESULTS

Although our computer experiments were done entirely
over prime fields �p for odd primes p, the same phenom-
ena persist over all their finite extension fields �q/�p:
for λ0 ∈ �q \ {0, 1}, we have the elliptic curve Eλ0 over
�q and the integer A(λ0,�q) ∈ � given by

#Eλ0 (�q) = q + 1 −A(λ0,�q).

There is, however, one difference between working only
over �p and working over general �q/�p, and that is the
issue of supersingular elliptic curves. Recall that Eλ0

over �q is called supersingular if p | A(λ0,�q), and that
in that case, A(λ0,�q) is in fact divisible by

√
q as an

algebraic integer. In other words, if q = p2k, then pk |
A(λ0,�q), while if q = p2k+1, then pk+1 | A(λ0,�q).

Before we can analyze completely exactly which su-
persingular values of A(λ0,�q) can occur, we must intro-
duce another family of elliptic curves closely related to
the Legendre family, the family over the t-line, t 
= 0, 1/4,
namely

y2 = (x+ t)(x2 + x+ t).

The point P4 := (0, t) has order 4, and 2P4 is the point
P2 := (−t, 0). One knows that this family with its P4

is the universal curve given with a point of order 4, over
any �[1/2]-scheme. In other words, the modular curve
MΓ1(4)/�[1/2] is

Spec(�[1/2][t][1/(t(1 − 4t)]),

with y2 = (x+ t)(x2 + x+ t), P4 the universal curve. We
will call this the Γ1(4) family.

Its relation to the Legendre family is that under the
2-isogeny “divide by the �/2Z generated by P2,” it be-
comes the Legendre family, with λ = 1 − 4t. Because
isogenous elliptic curves over �q have the same number
of rational points, questions about the A’s in the Legen-
dre family are exactly the same as questions about the
A’s in the Γ1(4) family.

Lemma 2.1. Let p be an odd prime.

(1) If q = p2k+1 and if Eλ0 over �q is supersingular,
then A(λ0,�q) = 0.

(2) If q = p2k and if Eλ0 over �q is supersingular, then
A(λ0,�q) = ε2pk, where ε = ±1 is the choice of sign
for which εpk ≡ 1 mod 4.

Proof. (1) Here pk+1 | A(λ0,�q). So if A(λ0,�q) were
nonzero, its absolute value would be at least pk+1. This
exceeds the Weil bound 2

√
q = 2

√
ppk for all p ≥ 5. If

p = 3, the two values ±pk+1 for A(λ0,�q) are allowed by
the Weil bound, but they fail the congruence

q + 1 ≡ A(λ0,�q) mod 4.

For (2), pk | A(λ0,�q), so the nonzero values allowed
by the Weil bound are 0, ±pk, and ±2pk. The congruence
modulo 4 rules out both 0 and either choice of ±pk. Thus
A = ε2pk for some choice of ε = ±1. Then Frobq, the
characteristic polynomial of Frobenius, is X2−AX+q =
(X − εpk)2, and hence Frobq = εpk. But on a curve in
the Γ1(4)-family, we have a rational point of order 4, so
fixed by Frobq = εpk, and hence εpk ≡ 1 mod 4.

Remark 2.2. Thus when q = p2k, the supersingular A’s
in the Legendre family are all the same choice of ±2pk;
the other choice never occurs in the Legendre family. So
if we are to speak of ratios of A to −A, we must restrict
to the ordinary members of the family, i.e., those whose
A is prime to p. This was not an issue in working over
�p, where the only possible supersingular A is 0.

We next explain the easy parts of what our experi-
ments showed.
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Lemma 2.3. Suppose q ≡ −1 mod 4. Then A and −A
occur equally often in the Legendre family over �q.

Proof. Denote by χ2 the quadratic character of �q. Then
χ2(−1) = −1. On the other hand,

A(λ0,�q) = −
∑
x∈�q

χ2(x(x − 1)(x− λ0)).

Elementary manipulation of this sum shows that

A(1 − λ0,�q) = χ2(−1)A(λ0,�q).

Since χ2(−1) = −1, the involution λ �→ 1 − λ matches
A’s to −A’s, and shows that A(1/2,�q) = 0.

In fact, as Deligne pointed out to me, this is a special
case of the following general fact, of which the preceding
lemma is the N = 4 case.

Lemma 2.4. Let �q be a finite field, N ≥ 4 an inte-
ger invertible in �q, and consider the Γ1(N) family, i.e.,
the universal curve over the modular curve MΓ1(N)/�q.
Suppose q ≡ −1 mod N . Then A and −A occur equally
often as traces of Frobenius in the Γ1(N) family over �q.

Proof. The Atkin–Lehner involution

(E,�/N� ↪→ E) �→ (E/(�/N�), dual μN ↪→ E)

is an A-preserving bijection from the Γ1(N) moduli prob-
lem of giving an inclusion of �/N� to the Γ1(N)arith

moduli problem of giving an inclusion of μN . Since
q ≡ −1 mod N , the quadratic twist of μN over �q is
�/N�, so forming the quadratic twist gives a bijection
from the �q points of the Γ1(N)arith moduli problem back
to the �q points of the Γ1(N) moduli problem that re-
verses the sign of A.

The composition, attaching to an �q point of the
Γ1(N) family the quadratic twist of its Atkin–Lehner in-
volute, is a sign-reversing involution.

Lemma 2.5. Let �q be a finite field of odd characteristic,
A ∈ � an integer prime to p with |A| ≤ 2

√
q. If A ≡ q +

1 mod 4, there exists λ0 ∈ �q\{0, 1} with A(λ0,�q) = A.

Proof. Translated into the same statement about the
Γ1(4) family, this is a special case of [Katz 09, Lemma
4.3 (3)].

Remark 2.6. Indeed, for any N ≥ 4 invertible in �q,
any integer A prime to p with |A| ≤ 2

√
q and A ≡ q +

1 mod N occurs as the trace at some �q-point of the
Γ1(N) family; cf. [Katz 09, Lemma 4.3 (3)].

We now turn to the 2, 3, 5 phenomenon when q ≡
5 mod 8, and more generally to the ratios that occur
when q ≡ 1 mod 4.

Suppose, for the rest of this section, that q ≡ 1 mod 4,
and fix an integer A prime to p with |A| < 2

√
q and

A ≡ 2 mod 4. Replacing if necessary A by −A, we have

q + 1 −A ≡ 0 mod 8, q + 1 +A ≡ 4 mod 8.

We are concerned with the ratio of occurrences of A to
occurrences of −A in the �q points of the Legendre fam-
ily, or equivalently in the �q points of the Γ1(4) family.
Write

Δ := A2 − 4q.

Deligne’s explanation of the 2, 3, 5 phenomenon is the
following theorem.

Theorem 2.7. (Deligne.) Suppose q ≡ 5 mod 8. Then
ord2(Δ) = 4, and we have

Δ/16 ≡ 3 or 7 mod 8 =⇒ ratio = 2,

Δ/16 ≡ 5 mod 8, =⇒ ratio = 3,

Δ/16 ≡ 1 mod 8, =⇒ ratio = 5.

It is elementary that this is equivalent to the following
theorem; see the explication just below.

Theorem 2.8. Suppose q ≡ 5 mod 8. Then

ord2(q + 1 −A) = 3 =⇒ ratio = 2,

ord2(q + 1 −A) = 4 =⇒ ratio = 3,

ord2(q + 1 −A) ≥ 5 =⇒ ratio = 5.

Remark 2.9. In general, if we are told that ord2(q +
1 − A) = n ≥ 3, write A = q + 1 + (odd)2n. Then
A2 = (q + 1)2 + (odd)2n+2, and Δ := A2 − 4q = (q −
1)2 +(odd)2n+2. So if ord2(q− 1) = m ≥ 2, then q− 1 =
(odd)2m, and so (q− 1)2 = 22m(odd2). For q ≡ 5 mod 8,
we have Δ = 16(odd2) + (odd)2n+2. Since n ≥ 3, we
have Δ/16 = odd2 + 2n−2(odd). Now odd2 ≡ 1 mod 8,
so we have Δ/16 ≡ 1 + 2n−2(odd) mod 8. Thus n = 3
yields that Δ/16 is 1 + 2(odd) modulo 8, so 3 or 7; for
n = 4, Δ/16 is 1 + 4(odd) modulo 8, so 5; and for n ≥ 5,
Δ/16 is 1 modulo 8.

In fact, when ord2(q+1−A) = 3, we have the following
more general result.
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Theorem 2.10. Suppose q ≡ 1 mod 4. Then

ord2(q + 1 −A) = 3 =⇒ ratio = 2.

The remaining cases are covered by the following the-
orem.

Theorem 2.11. Suppose that q ≡ 1 mod 8, and that
ord2(q+1−A) ≥ 4. Then ord2(Δ) ≥ 6, and we have the
following results:

(1) Suppose ord2(Δ) = 2k + 1, k ≥ 3. Then ratio =
5 − 3/2k−2.

(2) Suppose ord2(Δ) = 2k, k ≥ 3. Then

(a) if Δ/22k ≡ 1 mod 8, then ratio = 5,

(b) if Δ/22k ≡ 3 or 7 mod 8, then ratio = 5−3/2k−2,

(c) if Δ/22k ≡ 5 mod 8, then ratio = 5 − 1/2k−3.

We can combine the statements of Theorems 2.7
and 2.11 (and the proof of Theorem 2.10) into one sum-
marizing theorem. Observe that the k = 2 cases of as-
sertions (2)(b) and (2)(c) produce the ratios 2 and 3,
and that the k = 3 case of statement (2)(c) produces the
ratio 4.

Theorem 2.12. Suppose that q ≡ 1 mod 4. Then
ord2(Δ) ≥ 4, and we have the following results:

(1) Suppose ord2(Δ) = 2k + 1, k ≥ 2. Then ratio =
5 − 3/2k−2.

(2) Suppose ord2(Δ) = 2k, k ≥ 2. Then

(a) if Δ/22k ≡ 1 mod 8, then ratio = 5,

(b) if Δ/22k ≡ 3 or 7 mod 8, then ratio = 5−3/2k−2,

(c) if Δ/22k ≡ 5 mod 8, then ratio = 5 − 1/2k−3.

In the same way that Theorem 2.7 implies Theo-
rem 2.8, this Δ result implies the correctness of the table
of ratios we were able to surmise when the ratio seemed
to depend only on ord2(q + 1 −A) and on ord2(q − 1).

Theorem 2.13. Suppose that q ≡ 1 mod 4. Then we have
the following results:

(1) If ord2(q+ 1−A) = 2k+ 1 and 2 ≤ ord2(q− 1) ≤ k,
then ratio = 5.

(2) If ord2(q + 1−A) = 2k+ 1 and ord2(q− 1) ≥ k+ 1,
then ratio = 5 − 3/2k−1.

(3) If ord2(q + 1 − A) = 2k and 2 ≤ ord2(q − 1) < k,
then ratio = 5.

(4) If ord2(q + 1 − A) = 2k and ord2(q − 1) = k, then
ratio = 5 − 1/2k−3.

3. BACKGROUND FOR THE PROOF

To prove the ratio theorems, we use Deuring-style class
number formulas, which, for a given integer A that is
prime to p, count the number of �q points with given
trace A on MΓ1(4). Our key (and only) insight is that
while these formulas are each quite complicated, the ratio
of the formula for A to that for −A is quite simple.

Let us briefly recall how this works; cf. [Katz 09, Sec-
tion 4]. Fix an integer A prime to p with |A| < 2

√
q.

Then by Honda–Tate there exist elliptic curves E/�q
whose trace is A. Denote by �[F ] the ring

�[F ] := �[X ]/(X2 −AX + q),

an order in the quadratic imaginary field K := �[X ]/
(X2 −AX+ q), whose ring of integers we denote by OK .
For each intermediate order

�[F ] ⊂ R ⊂ OK ,

we have its finite class group Pic(Spec(R)) of order de-
noted by h(R), its finite unit group R×, and its “normal-
ized” class number

h�(R) := h(R)/#R×.

Now fix a complex embedding of the Witt vectors
W (�q) ⊂ �. By a fundamental result of Deligne, taking
the first integer homology group of (the � points of) the
canonical lifting Ecan/W (�q) of E/�q, we have that

E/�q �→ H(E) := H1(Ecan(�),�)

is an equivalence of categories between elliptic curves
E/�q whose trace is A and �[F ] modules that are �-free
of rank 2. In this equivalence, the �[F ]-linear endomor-
phisms of H(E) are an order �[F ] ⊂ R ⊂ OK , and H(E)
is an invertible module over this order R. (And by the
equivalence, R = End�q(E).)

Moreover, for any integer N prime to p, the group
E(�q)[N ] as a Gal(�q/�q) module, with generator of
Gal(�q/�q) taken to be the arithmetic Frobenius F , is
�[F ]-isomorphic to R/NR. Thus a Γ1(N) structure on
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E/�q is an F -fixed point of R/NR that has order N , a
Γ0(N) structure is an F -stable subgroup of R/NR that
is cyclic of order N , and an unoriented Γ(N)-structure is
an F -fixed basis of R/NR as a �/N� module.

So for any level-structure moduli problem M, if E/�q
is an ordinary elliptic curve with trace A and endomor-
phism ring R, the number of M-structures on E/�q de-
pends only on the data (A, q,R). We denote it by

#M(A, q,R).

For example, if M = MΓ1(4), this number is the number
of F -fixed points of order 4 in R/4R.

Putting this all together, we obtain a class number
formula for #M(A, q), the number of points on M(�q)
with trace A:

#M(A, q) =
∑

orders�[F ]⊂R⊂OK

h�(R)#M(A, q,R).

In order to use this formula, we need to understand
how both h�(R) and #M(A, q,R) vary as R runs over
all the intermediate orders �[F ] ⊂ R ⊂ OK .

Recall that orders in OK are of the form �+ fOK for
an integer f = fR ≥ 1, called the conductor of R; thus fR
is the order of the quotient additive group OK/R. Given
two orders R and R1 in OK , we have

R ⊂ R1 ⇐⇒ fR1 | fR.

For an order R ⊂ OK , the normalized class numbers are
related by an Euler-like φK function

φK : �≥1 → �≥1,

defined as follows:

φK(1) = 1,

φK(nm) = φK(n)φK(m) if gcd(m,n) = 1,

φK(�n) = �n−1φK(�) for primes �,

and

φK(�) = �− 1, �, or �+ 1,

according to whether � splits in K, ramifies in K, or is
inert in K. In terms of φK we have the relation

h�(�+ fOK) = φK(f)h�(OK).

What about the numbers #M(A, q,R)? Let us take
the case of MΓ1(�n), for some prime � 
= p with �n ≥ 4.
Then we have the following elementary lemma, whose
proof is left to the reader.

Lemma 3.1. Let �[F ] ⊂ R ⊂ OK be an intermediate
order, � 
= p a prime, and n ≥ d ≥ 0 integers. The
following conditions are equivalent:

(1) The group of F -fixed points in R/�nR is abstractly
isomorphic to �/�n�× �/�d�;

(2) q + 1 −A ≡ 0 mod �n+d, and d is the largest integer
D ∈ [0, n] for which (F − 1)/�D ∈ R.

Lemma 3.2. Let N be an integer prime to p. Then (F −
1)/N ∈ OK if and only if the following two conditions
are satisfied:

(1) q + 1 −A ≡ 0 mod N2;

(2) A ≡ 2 mod N .

If these conditions hold, then q ≡ 1 mod N .

Proof. The element (F − 1)/N lies in the fraction field
K, so it lies in OK if and only its norm and trace lie
in �. But its norm is (q + 1 − A)/N2, and its trace is
(A − 2)/N . The last assertion comes from comparing
these two congruences for A modulo N .

Lemma 3.3. Let N be an integer prime to p such that (F−
1)/N ∈ OK . Denote by f the conductor of �[F ]. Then
an intermediate order �[F ] ⊂ R ⊂ OK , of conductor fR,
contains (F − 1)/N if and only fR | (f/N).

Proof. The order R contains (F − 1)/N if and only if R
contains the order Z[(F − 1)/N ], which is the order of
conductor f/N , so if and only if fR | (f/N).

Lemma 3.4. The conductor f of �[F ] is related to the
discriminant Δ := A2 − 4q of �[F ] by the rule that f
is the largest integer M such that M2 | Δ and Δ/M2 ≡
0 or 1 mod 4.

Proof. Indeed, Δ/f2 is the discriminant δK of OK . But
δK is 0 or 1 modulo 4, and if 4 | δK , then δK/4 is 2 or 3
modulo 4.

With this background information, we will prove the
ratio theorems, by computing the ratio

#MΓ1(4)(A, q)/#MΓ1(4)(−A, q).

We will, in fact, perform a more precise calculation. De-
note by f the conductor of �[F ]. Factor

f = 2af0
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with f0 odd. For each divisor f1 of f0, we consider the
corresponding f1-packet, by which we mean the terms in
the sum for #MΓ1(4)(A, q) involving only those orders R
whose conductor is 2bf1 for some b:

#MΓ1(4)(A, q, f1)

:=
∑

orders�[F ]⊂R⊂OK

of conductor 2bf1 for some b

h�(R)#MΓ1(4)(A, q,R).

We will compute the ratio

#MΓ1(4)(A, q, f1)/#MΓ1(4)(−A, q, f1)

for each f1-packet separately.
For ease of notation, we define

R(2bf1) := the order of conductor 2bf1.

Thus

#MΓ1(4)(A, q, f1)

=
a∑
b=0

h�(R(2bf1))#MΓ1(4)(A, q,R(2bf1)),

and the same with A replaced by −A.
Our strategy is quite simple. We need to compute the

numbers #MΓ1(4)(±A, q,R(2bf1)) and φK(2). Since f1
is odd, we have the following lemma.

Lemma 3.5. With notation as above, we have

h�(R(2bf1)) = φK(2b)h�(R(f1)) = 2b−1φK(2)h�(R(f1)).

Lemma 3.6. For b < a, we have #MΓ1(4)(−A, q,
R(2bf1)) = 0, and for b = a, we have #MΓ1(4)(−A,
q,R(2af1)) = 2.

Proof. By Lemma 3.2, (−F − 1)/2 = −F + (F − 1)/2 ∈
OK . Suppose first that b < a. Then (−F − 1)/2 ∈
R(2bf1) by Lemma 3.3. But if E/�q is a point of
MΓ1(4)(−A, q, f1), it has only four rational points of 2-
power torsion. Since it has a point of order 4, the group
E(�q)[4] is cyclic of order 4. Therefore End�q(E) cannot
contain (−F−1)/2. Thus any point of MΓ1(4)(−A, q, f1)
has End�q(E) = R(2af1), and has precisely two rational
points of order 4.

Corollary 3.7. We have

#MΓ1(4)(−A, q, f1) = 2h�(R(2af1)).

We now compute a, how 2 splits in K, and φK(2), as
functions of Δ.

Lemma 3.8. We have the following results:

(1) Suppose ord2(Δ) = 2k+ 1 is odd. Then a = k− 1, 2
ramifies in K, and φK(2) = 2.

(2) Suppose ord2(Δ) = 2k is even. Then

(a) If Δ/4k ≡ 3 or 7 mod 8, then a = k − 1, 2 rami-
fies in K, and φK(2) = 2.

(b) If Δ/4k ≡ 1 mod 8, then a = k, 2 splits in K,
and φK(2) = 1.

(c) If Δ/4k ≡ 5 mod 8, then a = k, 2 is inert in K,
and φK(2) = 3.

Proof. The computation of a, the power of 2 divid-
ing the conductor, is immediate from Lemma 3.4. If
ord2(Δ) = 2k + 1 is odd, then K = �(

√
Δ) is obviously

ramified at 2, and hence φK(2) = 2. If ord2(Δ) = 2k is
even, then K = �(

√
Δ/4k) is obtained by adjoining the

square root of a 2-adic unit, namely u = Δ/4k. But one
knows that for the 2-adic field �2 and a unit u ∈ �×

2 ,
the extension �2(

√
u)/�2 depends only on u modulo 8:

it is trivial when u is 1 modulo 8, it is the unramified
extension �2(ζ3) = �2(

√−3) when u is 5 modulo 8, and
otherwise it is ramified.

4. PROOF OF THEOREM 2.10

We now turn to Theorem 2.10. Thus q is 1 modulo 4,
ord2(q + 1 −A) = 3, and R := End�q(E) has conductor
2bf1 for some 0 ≤ b ≤ a. The group E(�q)[4] is either
cyclic or is �/4�× �/2�, and the second case occurs if
and only if (F − 1)/2 ∈ R. Since (F − 1)/2 ∈ OK , it
follows that (F − 1)/2 ∈ R if and only 2bf1 | f/2, i.e., if
and only if 0 ≤ b ≤ a− 1. Thus we have

#MΓ1(4)(A, q,R(2af1)) = 2,

#MΓ1(4)(A, q,R(2bf1)) = 8 − 4 = 4 if 0 ≤ b < a.

It remains to compute a in this case. We have A =
q + 1 + 8(odd), so A2 = (q + 1)2 + 32(odd), and hence
Δ = (q−1)2+32(odd). We must distinguish two cases. If
q is 5 modulo 8, then Δ = 16(odd)2 + 32(odd) and Δ/16
is 3 or 7 modulo 8. So a = 1, 2 ramifies, and φK(2) = 2.
On the other hand, if q is 1 modulo 8, then Δ = 32(odd),
so again a = 1, 2 ramifies, and φK(2) = 2. So in either
case the numerator has two terms,

#MΓ1(4)(A, q, f1) = 2h�(R(2f1)) + 4h�(R(f1)),
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and the denominator only one,

#MΓ1(4)(−A, q, f1) = 2h�(R(2f1)).

Since φK(2) = 2, we have h�(R(2f1)) = 2h�(R(f1)), and
so the ratio is 2 in Theorem 2.10.

5. PROOF OF THEOREM 2.8

We now turn to Theorem 2.8. Thus q is 5 modulo 8.
Theorem 2.10 treats the case ord2(q + 1 − A) = 3. So it
remains to treat the case ord2(q + 1 − A) ≥ 4. In this
case, (F − 1)/4 ∈ OK , so we have

#MΓ1(4)(A, q,R(2af1)) = 2,

#MΓ1(4)(A, q,R(2a−1f1)) = 8 − 4 = 4,

#MΓ1(4)(A, q,R(2bf1)) = 16 − 4 = 12

if 0 ≤ b ≤ a− 2.

Exactly as in the discussion following the statement of
Theorem 2.8, Δ/16 is 5 modulo 8 if ord2(q+ 1−A) = 4,
and it is 1 modulo 8 if ord2(q + 1 − A) ≥ 5. So we have
a = 2 in both cases. In the first case, 2 is inert and
φK(2) = 3, while in the second, 2 splits and φK(2) = 1.

The denominator is

2h�(R(22f1)) = 4φK(2)h�(R(f1)).

The numerator is

2h�(R(22f1)) + 4h�(R(2f1)) + 12h�(R(f1))

= (4φK(2) + 4φK(2) + 12)h�(R(f1)).

When ord2(q + 1 − A) = 4, we have φK(2) = 3, and so
the ratio is 3. If ord2(q + 1 − A) ≥ 5, then φK(2) = 1,
and the ratio is 5.

6. PROOF OF THEOREM 2.11

We now turn to the proof of Theorem 2.11. Thus q is 1
modulo 8, and ord2(q + 1 − A) ≥ 4. Again in this case
(F − 1)/4 ∈ OK , so we have

#MΓ1(4)(A, q,R(2af1)) = 2,

#MΓ1(4)(A, q,R(2a−1f1)) = 8 − 4 = 4,

#MΓ1(4)(A, q,R(2bf1)) = 16 − 4 = 12

if 0 ≤ b ≤ a− 2.

So the denominator is

2h�(R(2af1)) = 2aφK(2)h�(R(f1)).

The numerator is

2h�(R(2af1)) + 4h�(R(2a−1f1)) +
a−2∑
b=0

12h�(R(2bf1))

=
(
2aφK(2) + 2aφK(2) +

a−2∑
b=1

12 × 2b−1φK(2) + 12
)

× h�(R(f1)).

The result now follows in completely straightforward
fashion, using Lemma 3.8 to calculate both a and φK(2)
as functions of Δ.

7. OTHER ±TRACE SITUATIONS

There are some other families in which, for q satisfying
certain congruence conditions, if a trace A occurs, then
−A occurs as well. We will discuss these and the ratio
phenomena to which they give rise. We fix two odd in-
tegers N ≥ 1 and M ≥ 1, with gcd(N,M) = 1. We also
fix a power 2r ≥ 4 of 2. We take for M/�[1/2NM ] the
representable moduli problem

M := MΓ1(2rN)∩Γ0(M).

For an elliptic curve E/S/�[1/2NM ], a Γ1(2rN) ∩
Γ0(M)-structure on E/S is a point P2rN ∈ E(S)[2rN ]
that is, fiber by fiber, of order 2rN , together with a cyclic
subgroup GM of order M in E/S.

Let �q be a finite field, of characteristic p prime to
2NM . The trace A at any point of M(�q) satisfies the
congruence

A ≡ q + 1 mod 2rN,

and, if M > 1, the congruence condition that there exist
some α ∈ (�/M�)× that is a root modulo M of the
polynomial X2−AX+q. This second condition is stable
under A �→ −A; just replace α by its negative. But the
first condition is stable under A �→ −A if and only if

2(q + 1) ≡ 0 mod 2rN.

There are two ways this can happen. The first is that

q + 1 ≡ 0 mod 2rN,

in other words, q ≡ −1 mod 2rN. In this case, the Atkin–
Lehner involution “divide by the �/2rN� generated by
P2rN ,” followed by quadratic twist, gives an involution
of the finite set M(�q) that interchanges A and −A. So
in this case we always have ratio 1: if A occurs, then −A
occurs equally often. And in this case, the only supersin-
gular A is A = 0 (because q is −1 mod 4; cf. the proof of
Lemma 2.1).
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The other, and more interesting, case is

q ≡ 2r−1N − 1 mod 2rN.

Here there is a big difference between the case 2r = 4
and the case 2r ≥ 8. Let us begin with the case 2r = 4.

So we are working with Γ1(4N) ∩ Γ0(M), and q is 1
modulo 4 and −1 modulo N . What can we say about
supersingular A in this case?

Lemma 7.1. With M = MΓ1(4N)∩Γ0(M), suppose q is
1 modulo 4 and is −1 modulo N . If either q is an odd
power of p or N > 1, there are no supersingular points
in M(�q). If q = p2k and N = 1, then the supersingular
points have A = 2εpk for the unique choice of sign ε = ±1
for which εpk is 1 modulo 4.

Proof. Exactly as in the proof of Lemma 2.1, if q is an
odd power of p, then 0 is the only possible supersingular
value ofA, but it is ruled out by the congruence modulo 4.

If q = p2k, the only possible supersingular A is 2εpk

for the unique choice of sign ε = ±1 for which εpk is 1
modulo 4. But if N > 1, the congruence A ≡ 0 mod N
rules this out. If N = 1 and q = p2k, the assertion is part
(2) of Lemma 2.1.

From [Katz 09, Lemma 4.3], we know exactly which
ordinary A occur.

Lemma 7.2. With M = MΓ1(4N)∩Γ0(M), suppose q is
1 modulo 4 and is −1 modulo N . The ordinary A that
occur as traces on M(�q) are those integers prime to p
with |A| < 2

√
q satisfying the congruence

A ≡ q + 1 mod 2rN,

and if M > 1, satisfying the congruence condition that
there exist some α ∈ (�/M�)× that is a root modulo M
of the polynomial X2 −AX + q.

Exactly as in the Γ1(4) discussion, we are concerned
with the ratio of occurrences of A to occurrences of −A.
Replacing if necessary A by −A, we have

q + 1 −A ≡ 0 mod 8, q + 1 +A ≡ 4 mod 8.

The answer is exactly the same as it was in the Γ1(4)
case.

Theorem 7.3. With M = MΓ1(4N)∩Γ0(M), suppose q is 1
modulo 4 and is −1 modulo N . Then the ratio is deter-
mined by the rules of Theorems 2.8, 2.10, and 2.11. In

particular, when we have in addition that q is 5 modulo
8, the 2, 3, 5 phenomenon persists.

Proof. We prove this by writing the conductor f of �[F ]
as 2af0 with f0 odd. For each divisor f1 of f0, we will
consider the corresponding f1 packet.

There are two key observations. The first is that be-
cause q is −1 modulo N and N is odd, any E/�q with
trace A has E(�q)[N ] a cyclic group of order N . So
whatever the f1 packet, every member has exactly φ(N)
Γ1(N)-structures.

The second is that the inclusions

R(2bf1) ⊂ R(f1)

induce isomorphisms

R(2bf1)/MR(2bf1) ∼= R(f1)/MR(f1),

simply because M is odd. Therefore in the entire f1
packet, the number of Γ0(M) structures carried by any of
the R(2bf1)’s is independent of b, and is trivially invariant
under changing F to −F . For some f1 packets, there
may be none, but we know [Katz 09, Lemma 4.3] that
there are some for �[F ] itself, i.e., for the f0 packet. So
precisely the same f1 packets enter in numerator and
denominator.

For such an f1 packet, denote by c(f1) the number of
Γ0(M) structures carried by any of the R(2bf1)’s. For
each term in a given f1 packet that admits Γ0(M) struc-
tures, we have

#MΓ1(4N)∩Γ0(M)(A, q,R(2bf1))

= φ(N)c(f1)#MΓ1(4)(A, q,R(2bf1)),

and the same with A replaced by −A. So the theorem is
reduced to the f1 packet version of the ratio theorem for
MΓ1(4) itself.

We now turn to the case of Γ1(2rN)∩Γ0(M) with 2r ≥
8, with q that is 2r−1 − 1 modulo 2r and −1 modulo N .

Lemma 7.4. In this case there are no supersingular points
in M(�q).

Proof. If q is an odd power of p, then exactly as in
Lemma 2.1, only A = 0 is possible, but it is ruled out
by the modulo 2r congruence A ≡ q + 1 ≡ 2r−1 mod
2r. Since q is −1 modulo 4, it cannot be an even
power of p.

From [Katz 09, Lemma 4.3], we know exactly which A
occur.
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Lemma 7.5. With M = MΓ1(2rN)∩Γ0(M), suppose q is
2r−1 − 1 modulo 2r and −1 modulo N . The ordinary A
that occur as traces on M(�q) are those integers prime
to p with |A| < 2

√
q satisfying the congruence

A ≡ q + 1 mod 2rN,

and, if M > 1, satisfying the congruence condition that
there exist some α ∈ (�/M�)× that is a root modulo M
of the polynomial X2 −AX + q.

We are concerned with the ratio of occurrences of A
to occurrences of −A. Replacing if necessary A by −A,
we have

q + 1 −A ≡ 0 mod 2r+1, q + 1 +A ≡ 2r mod 2r+1.

Here every ratio is 3.

Theorem 7.6. With M = MΓ1(2rN)∩Γ0(M), r ≥ 3, sup-
pose q is 2r−1 − 1 modulo 2r and −1 modulo N . Then
the ratio is always 3.

Proof. Exactly as in the proof of Theorem 7.3, we work
with f1 packets. Exactly as in that proof, we reduce to
showing that for each f1 packet, we have ratio 3 for the
Γ1(2r) problem itself, for any q that is 2r−1 − 1 modulo
2r. Here q is −1 modulo 4, so while (F − 1)/2 ∈ OK ,
(F − 1)/4 is not in OK .

So on the −A side, E(�q)[2r] is cyclic, with 2r−1

choices of generator. On the A side this group either
is cyclic, with 2r−1 choices of generator (the case b = a),
or is �/2r� × �/2�, with 2r choices of generator (the
case 0 ≤ b ≤ a− 1). So the denominator is

#MΓ1(2r)(−A, q, f1) = 2r−1h�(R(2af1)),

and the numerator is

#MΓ1(2r)(A, q, f1)

= 2r−1h�(R(2af1)) +
a−1∑
b=1

2rh�(R(2bf1))

+ 2rh�(R(f1)).

So it remains to compute a and φK(2) in this case.
Write A = q+ 1 + (2r+1). Then A2 = (q+ 1)2 + (22r+1),
because q + 1 is 2r−1(odd). Then

Δ = A2 − 4q = (q − 1)2 + (22r+1) = 4(odd2) + (22r+1),

and Δ/4 is odd2 + (22r−1), which is 1 modulo 8. Thus
a = 1, 2 splits in K, and φk(2) = 1. So the denominator
is

2r−1h�(R(2f1)) = 2r−1h�(R(f1)),

and the numerator is

2r−1h�(R(2f1)) + 2rh�(R(f1))

= 2r−1h�(R(f1)) + 2rh�(R(f1)).

8. RATIO COMPARISONS FOR CERTAIN PAIRS OF
FAMILIES

There are many pairs of moduli problems, say M1 and
M2, with the property that for every suitable finite field
�q, the integers A prime to p that occur as traces in
M1(�q) are exactly the same as those that occur in
M2(�q). In any such situation, a natural ratio to con-
sider is, for each such A,

# of occurrences of A in M1(�q)
# of occurrences of A in M2(�q)

.

The simplest examples are these. Take an integer
N ≥ 3, and work over the cyclotomic ground ring
�[ζN ][1/N ]. Take the moduli problems Γ1(N2) and (ori-
ented) Γ(N). Then for any finite field �q with q ≡
1 mod N , the integers A prime to p that occur are pre-
cisely those with |A| < 2

√
q and

A ≡ q + 1 mod N2.

Or take two integers N ≥ 2 and M ≥ 3 with N | M ,
and the following two moduli problems over the cyclo-
tomic ground ring �[ζN ][1/N ]. The first is Γ1(NM).
The second, which we will denote by Γ1(N ×M), is the
moduli problem that consists in giving a point PN of or-
der N and a point QM of order M such that the pair
(PN , (M/N)QM ) is an oriented Γ(N) structure. Then
for any finite field �q with q ≡ 1 mod N , the integers A
prime to p that occur are precisely those with |A| < 2

√
q

and
A ≡ q + 1 mod NM.

In any particular case, it is an exercise to work out the
ratios in question, using the techniques developed above.
Sometimes, however, the ratios are quite pleasingly sim-
ple, at least when q satisfies certain congruences.

This is the case when we compare the moduli problems
Γ1(8) and Γ1(2×4), which both live over �[1/2]. We state
the results below; their straightforward proofs are left to
the reader. For a given integer A prime to p that occurs
in both MΓ1(8)(�q) and in MΓ1(2×4)(�q), we will refer
to

# of occurrences of A in MΓ1(2×4)(�q)
# of occurrences of A in MΓ1(8)(�q)
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as “the ratio.” The simplest statement is that for q ≡
5 mod 8.

Theorem 8.1. Suppose q ≡ 5 mod 8. The ratio is al-
ways 1.

Theorem 8.2. Suppose q ≡ −1 mod 8. Then we have the
following results:

(1) In MΓ1(2×4)(�q), A and −A occur equally often.

(2) In MΓ1(8)(�q), A and −A occur equally often (cf.
Lemma 2.4).

(3) If ord2(q + 1 − A) = 3, then ratio = 2; otherwise,
ratio = 2/3.

Theorem 8.3. Suppose q ≡ 3 mod 8. Then we have the
following results:

(1) In MΓ1(2×4)(�q), A and −A occur equally often.

(2) In MΓ1(8)(�q), after possibly replacing A by −A, we
have ord2(q+ 1 +A) = 3 and ord2(q+ 1−A) ≥ 4; A
occurs three times as often as −A (cf. Theorem 7.6).

(3) If ord2(q + 1 − A) = 3, then ratio = 2; otherwise,
ratio = 2/3.

(4) The occurrences of

−A ∈ MΓ1(8)(�q),

−A ∈ MΓ1(2×4)(�q),

A ∈ MΓ1(8)(�q),

A ∈ MΓ1(2×4)(�q),

are in the proportion 1 : 2 : 2 : 3.

Remark 8.4. When q is 3 or 5 modulo 8, there
are no supersingular points on either MΓ1(8)(�q) or
MΓ1(2×4)(�q). When q is −1 modulo 8, the supersin-
gular points on both MΓ1(8)(�q) and MΓ1(2×4)(�q) all
have A = 0.

In fact, Theorem 8.2 remains valid for A = 0, but a
slightly different argument is required.

Indeed, suppose q = p2k+1 is a fixed odd power of
p with p ≡ −1 mod 8, and an elliptic curve E/�q has
A = 0. Then R := End�q(E) is a quadratic imag-
inary order: it is either the order (of conductor 2)
�[F/(−p)k] = �[X ]/(X2 + p) = �[

√−p] or the full ring
of integers OK = �[(1 +

√−p)/2]; cf. [Waterhouse 69,
Theorem 4.2 (3) and Theorem 4.5] and [Schoof 87, proof
of Theorem 4.5].

Moreover, for each integerN prime to p, the R-module
E(�q)[N ] is R-isomorphic to R/NR. And the set of iso-
morphism classes of E/�q with A = 0 and given R is
principal homogeneous under Pic(R). So for each of the
two moduli problems M under consideration we get the
class number formula

#M(0, q) =
∑

orders�[F/(−p)k]⊂R⊂OK

h�(R)#M(0, q, R),

and we can proceed exactly as in the ordinary case.

REFERENCES

[Cox 89] David Cox. Primes of the Form x2+ny2. New York:
Wiley, 1989.

[Deligne 69] Pierre Deligne. “Variétés abéliennes ordinaires
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