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Chen and Gackstatter [1982] constructed two complete mini-
mal surfaces of finite total curvature, each having one Enneper-
type end and all the symmetries of Enneper’s surface. Karcher
[1989] generalized the genus-one surface by increasing the
winding order of the end. We prove that a similar general-
ization of the Chen-Gackstatter genus-two surface also exists.
We describe a collection of immersed minimal surfaces that
generalize both Chen—-Gackstatter’s and Karcher’s surfaces by
increasing the genus and the winding order of the end. The
period problem associated with each of these surfaces is ex-
plained geometrically, and we present numerical evidence of
its solvability for surfaces of genus as high as 35. We also make
conjectures concerning these surfaces, and explain their moti-
vation. Our numerical results led us to the Weierstrass data for
several infinite-genus, one-ended, periodic minimal surfaces.

1. THE CHEN-GACKSTATTER SURFACES AND THEIR
GENERALIZATIONS

C. C. Chen and F. Gackstatter [1982] constructed
immersed minimal surfaces of genus one and two,
each having one topological end of Enneper type
and the same ambient symmetry group as the clas-
sical Enneper surface.
trated in Figure 1.

We recall that the Enneper surface is given by
the Weierstrass data (see Section 2 for definitions)

M = C

These surfaces are illus-

g=2z, cp3=dh=2dz.

Its symmetry group is generated by two planar
reflectional symmetries (2 — Z and z — —Z for
the Weierstrass data just given) and two rotational
symmetries (2 — ¢z and z — —iZ). Each rotational
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FIGURE 1.

symmetry fixes a distinct straight line on the sur-
face (z = re™/*), and these lines meet at a single
point (z = 0) and diverge to the end (z = 00). The
composition of the two reflectional symmetries is
an orientation-preserving normal rotational sym-
metry of order two, fixing a line in R? that is per-
pendicular to the surface and passes through the
point z = 0.

An end of a minimal surface is said to be of En-
neper type if, when the limit normal at the end is
vertical, the height differential has a pole of order
at least three. Such an end has winding order at
least three (see definition in Section 1.1).

Karcher [1989] generalized Chen and Gackstat-
ter’s genus-one surface by increasing the order of
the normal rotational symmetry from two to arbi-
trary k€N greater than two. This increases the
genus from 1 to k — 1 and the winding order of the
end from 3 to 2k — 1. This technique of increasing
the order of the normal rotational symmetry has
led to several new minimal surfaces: see [Hoffman
and Meeks 1985; 1988; 1989; 1990; Karcher 1988;
1989], to mention only a few.

As in the case of the Hoffman-Meeks general-
ization of Costa’s three-ended, genus-one surface,

Chen and Gackstatter’s surfaces of genus one (left) and genus two (right).

the new surfaces have higher genus, but the period
problem does not increase in complexity. This is
because the rotational symmetry acts as a cyclic
group on the generators of the fundamental group
of the new surfaces, thus reducing the period prob-
lem for the new surfaces to, essentially, the origi-
nal period problem. In the same way, Karcher’s
generalized Chen—Gackstatter surfaces, although
of genus k — 1, have the same number of period
constraints as the original surface. Applying this
generalization to the genus-two Chen-Gackstatter
surface suggests surfaces of genus 2(k — 1) with one
end of Enneper type. We show in Section 4 that
such surfaces exist.

Chen and Gackstatter describe the Weierstrass
data for a genus-three anologue of their surfaces.
Combining an extension of their idea to any genus
with Karcher’s generalization to allow for higher
winding orders on the end, we produce the Wei-
erstrass data for a countable collection of surfaces
M, ., where p > 0 and k > 2 are integers. M, ;. has
genus p(k—1), one Enneper-type end of winding or-
der 2k —1, the symmetries of Karcher’s generalized
Enneper surface with the same winding order, and
2p + 1 finite fixed points of the normal rotational
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symmetry. In this notation:

e M, , is Enneper’s surface;

e M, for k > 2 are Karcher’s generalizations of
Enneper’s surface with winding order 2k — 1;

e M,; and M, are the Chen*Gackstatter sur-
faces of genus one and two;

e M, with k > 2 are Karcher’s generalizations
of M, , with winding order 2k — 1;

e M,, with k > 2 are generalizations of M;; with
winding order 2k — 1.

We will refer to these surfaces collectively as CGK
surfaces. In Section 3, we describe the Weierstrass
data and period problem for My x, and in Section 5
we present numerical results suggesting that the
period problems are solvable for p < 34, k£ < 9.
We prove in Section 4 that the period problem in
the case p = 2 is solvable.

See Figures 2 and 3, as well as the figure on
page 19, which represents M; 2.

1.1. Conjectures Related to M,

Let M C R® be a complete, orientable minimal
surface with r ends, genus p, and finite total cur-
vature. Osserman [1986] proved that M is confor-
mally equivalent to a compact Riemann surface M
minus r points, each of which corresponds to an
end of M.

Let Yr denote the intersection of M with the
sphere of radius R > 0, centered at the origin.
Gackstatter [1976] proved that Xz := R™'Yg con-
verges smoothly, as R goes to infinity, to a collec-
tion of great circles on S?. Each of these great
circles corresponds to an end of M; the number of
times the circle is covered is referred to as the wind-
ing order, and is denoted d; for the j-th end of M.
Gackstatter also improved an inequality contained
in [Osserman 1986] by proving that

/ KdA =21r(x(M)—r—Zd,~), (1.1)
M =1

which was also independently derived in [Jorge and
Meeks 1983].

Osserman [1986] showed that if the surface has
genusp =0and r = 2, withd; =d; =1, then M is
the catenoid; and that ifp = 0 and r = 1, with d, =
3, then M is Enneper’s surface M, ;. Moreover, it
follows from the Strong Halfspace Theorem [Meeks
and Rosenberg 1990}, without the assumption that
the genus is zero, that if r =1 and dy =1 then M
is the flat plane (see [Kusner 1987) for an alternate
proof).

Hoffman [1982] observed that if one maximizes
the genus while keeping the total curvature fixed,
equation (1.1) implies

r+Zd = 4,

since maximizing genus is equivalent to minimizing
r+>_d;, which is an even integer greater than two.
Hence there are only two possibilities for surfaces
that maximize genus subject to the constraint of
fixed total curvature:

(i =1, with d, = 3,
(ll) T= 2, Wlth dl = d2 =1.

Schoen {1983] showed that in case (ii) the genus
must be zero, corresponding to the catenoid.

Chen and Gackstatter’s surfaces M, , and M;,
demonstrate that there are surfaces that fall into
case (i) and have genus greater than zero. Lopez
(1992], and independently Blof (1989], proved that
M, ; is the unique, complete, oriented minimal sur-
face of genus one with total curvature —8n. In
particular, maximizing genus with fixed total cur-
vature —8m gives a.unique example M, ;.

Hoffman and Meeks proposed the following con-
jecture:

Conjecture 1.1. Each complete orientable minimal
surface with marimal genus p and total curvature
—4m(p+1) is a Chen-Gackstatter surface My 2, and
there are only finitely many surfaces of this type
(each corresponding to a distinct period solution).

For p < 35, only one solution has ever been found
numerically for each surface. The initial work to
establish this claim has been to prove the existence
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FIGURE 2.
which are called M; > and M; 5 in our notation.

of at least one surface M, ,, for each p. We explore
this in Section 5.

Evidence gathered from the numerical experi-
ments described in Section 5 suggests the following
conjectures:

Conjecture 1.2. (i) M, . exists for all p > 3, k > 2.

(ii) Fiz the order k > 2 of the normal rotational
symmetry. Let qi,qs,...,q, be the strictly pos-
itive heights above the origin in R® of the hori-
zontal points of M, ;. Rescale each M, so that
¢ = 1. Then the parameters (qi,...,q,) that
solve the period problems on M, converge to
the integers as p — oo, that is, lim,_,. q; = j.

The observations that led to these conjectures also
led to what we call the global Weierstrass repre-
sentation of some complete periodic minimal sur-
faces. If ¥ C R? is a doubly or singly periodic min-
imal surface, let A be the maximal infinite abelian
subgroup generated by its orientation-preserving
symmetries. By global data for ¥, we mean the
Weierstrass data for 3 proper—in other words, the

Surfaces M 4 (left) and M, 4 (right). Compare the original Chen-Gackstatter surfaces in Figure 1,

image of the Weierstrass integral using global Wei-
erstrass data will be the complete surface ¥ C R?
of infinite total curvature. The classical embed-
ded, periodic surfaces of Scherk viewed globally in
R* have one topological end and infinite genus. In
general, Callahan, Hoffman, and Meeks [Callahan
et al. 1990] proved that any embedded, doubly pe-
riodic, complete minimal surface in R® has infinite
genus and one topological end. Hence, in order
to determine the global data for these examples,
one must first understand these rather complicated
covering spaces.

Our investigations with M, , for large p yielded
insights into the algebraic structure of some one-
ended surfaces of infinite genus. Specifically, we
observed that with fixed k, and with the vertical
height of the handle on M, nearest the straight
lines held constant for increasing values of p, in
a neighborhood of the origin, M, converge to
Karcher’s singly periodic, symmetric saddle tower
with normal rotational symmetry of order k. The
saddle towers with normal rotational symmetry of
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FIGURE 3. Surfaces Ms o, My 4, My 4, and My o (clockwise from top left).
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order k generalize Scherk’s singly periodic surface
and might be thought of as a desingularization of
k planes in R®. This suggested that these periodic
surfaces could be understood globally, but their al-
gebraic equations would involve infinite products.
Assuming Conjecture 1.2(ii), we simplified these
infinite products to expressions involving the tan-
gent function.

Once the global data for the symmetric saddle
towers was understood in terms of the tangent func-
tion, we were able to generalize these results to give
the global data of the deformed saddle towers, as
well as the doubly periodic surfaces of Scherk. We
describe these examples and their new representa-
tions in Section 6.

Until the present work, the Weierstrass data for
all known periodic surfaces apart from the helicoid
had been constructed for the minimal surface in
the flat three-manifold resulting from the quotient
of R3 by A. For any known doubly or singly peri-
odic surface L, the quotient £/A has finite topo-
logical type. In [Meeks and Rosenberg 1993] it was
shown that finite topological type is equivalent to
finite total curvature. Moreover, either the stereo-
graphic projection of the Gauss map g extends to
a meromorphic function, or ‘the logarithmic differ-
ential of g extends to a meromorphic differential
on the compactification. But by working in R3/A,
one implicitly assumes that the lift of the surface
to R3 is periodic or has a screw-motion symmetry.

It had long been an open question whether there
are nonperiodic embedded minimal surfaces of in-
finite total curvature. The question was answered
in the affirmative in [Hoffman et al. 1993]. The
authors constructed a genus-one helicoid, that is,
a minimal torus with one topological end of infi-
nite total curvature asymptqtic to a helicoid. Cru-
cial to their discovery was the characterization of
the Gauss map’s essential singularity at the end
of the helicoid, that is, the global representation
of the helicoid. Their success with the helicoid
has produced great interest in characterizing other
ends of infinite total curvature. We hope that, by
understanding the global data for other periodic

surfaces, we will ultimately be able to construct
new nonperiodic examples asymptotic to the orig-
inal periodic surfaces. The ends we describe are
topologically more complicated than one of heli-
coidal type; a helicoidal end is conformally a punc-
tured disc, while any representative of a Scherk-
type end in R3 has infinite genus. '

In all cases, the surfaces on which we define the
global Weierstrass data will have infinite genus and
one topological end. These examples were studied
in the 1950’s in research on the classification prob-
lem for open Riemann surfaces. Using the results
from that period due to M.  Heins [1952), we re-
cover in Section 6.1 Osserman’s result: Scherk’s
doubly periodic surface has one topological end and
infinite genus.

2. THE WEIERSTRASS REPRESENTATION

One of the principal tools used to construct mini-
mal surfaces in R® is the Weierstrass Representa-
tion Theorem:

Given a discrete subset {p;} of a Riemann sur-
face M, a meromorphic function g : M\ {p;} — C,
and a holomorphic one-form @3 on M \ {p;}, the
following mapping X : M — R® is a conformal
minimal immersion:

X(z) = Re / o, @.1)
o .
where

® = (1,92, 03) = (3(g7'—9)ps, 3i(g7 +9)ps, ¥s)

and p is a point fixed on M. The map X is regular
away from poles of g and is regular at a pole of g of
order m provided 3 has a zero there of order m.
In order for X to be well-defined on M, we must
require that

Ref‘l’:ﬂ (2.2)
¥

for any closed curve v C M. The Riemann sur-
face M, meromorphic function g, and one-form 3
are referred to as the Weierstrass data. Here, g
is the stereographic projection from (0,0, 1) of the
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Gauss map of X (M). Since 3 is the integrand in
the third component, it is referred to as the height
differential.

Given the representation of the minimal surface
as above, the first and second fundamental forms
on the immersion are given by

= 1(I91™" + lg)?|eesl?
dg
Il = Rz(? ¢3).
This means, for example, that

1) = Re( 205 43(0)),

for ve T, X(M).
From the equation for the second fundamental
form, one establishes the following result:

Lemma 2.1 [Karcher 1989]. Let u(t) be a geodesic
on M.

(i) - X (u(t)) is a planar curve provided that
dg '
(-g— «)s) (W) ER
(ii) X (u(t)) is a straight line provided that

(%wgmu»en

3. THE GENERAL WEIERSTRASS DATA AND PERIOD
PROBLEM FOR Mj

We start by deriving the Weierstrass data for the
CGK surfaces M, where p > 0 and k > 2. We
recall that M, is an immersed -minimal surface
with one Enneper-type end of winding order 2k —1,
genus p(k — 1), and the same symmetry group as
Karcher’s generalized Enneper’s surface M ;. This
symmetry group is generated by reflection in k
planes and rotation.about k lines on the surface.
The lines meet at a.single point O on the surface
and pass through the end, which is represented by
a point E € M, . The reflectional symmetries gen-
erate a cyclic subgroup R; of order k, consisting of

rotations, which fixes 2p + 1 points and the end.
The Riemann-Hurwitz formula

X(Mpx) =2 - 2p(k — 1)
= kx(Mp.x/Ri) — (k — 1)(2p +2)

implies that x( ,,‘/Rk) = 2, 50 M,,/R, is a
sphere.

Position M, , in space so that O lies at the origin
and R; fixes the z3-axis. Then the 2p+1 finite fixed
points of R, on M, ; will lie on the zs-axis and will
have vertical normals. Label the p vertical points
of M, above the origin Q,,...,Q,, in order of
increasing height. Analogously, label the vertical
points below the origin Q_,,...,Q_,, in order of
increasing depth. Since R, also fixes the end, our
positioning of M, . in space implies that the end
has a vertical normal.

Taking z : M, — C U {oo} to be the lift of a
coordinate on the sphere M, ,/R;, normalized 8o
that 2(0) = 0, 2(Q,) = 1, and 2(E) = oo, we
define ¢; := 2(Q;) for —-p < j < p, j # 0; in
particular, ¢, = 1. The symmetries of M, imply
that ¢; €R and q_; = —q; for j = 1,...,p. Also,
since 2 : Mpx — C U {00} is conformal, we have
l=q1<q@<--<gp

Specifying a rotational position of M, in R3,
we have the normalized Weierstrass 'data

zHy(2,q1,...,9p), if p = 2m,
vt = ;%?gH,(z,ql,...,q,) ifp=2m+1,
g=Buw*', 3.1)
s = dz,

where B > 0 is a real number, the g; are real num-
bers satisfying 1 = ¢, < ¢, < --- < gp, and

ﬁ 2 — gy
Hy(z,q1,92,...,q) = || 5—=—-

s e) =1l Z=a"

To summarize what is known about the M, ;:

(i) The My are genus-zero generalizations of En-
neper’s surface with winding order 2k — 1.
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(i) My 2 and M, are the original surfaces discov-
ered by Chen and Gackstatter, of genus one and
two. .

(iii) Karcher [1989] extended Chen and Gackstat-
ter’s original existence proof of M, . to prove
M, i exists for k > 2.

(iv) In Section 4, we show that Chen and Gackstat-
ter’s existence proof for M, ; can be modified to
give the existence of M, for k > 2.

(v) Espirito Santo [1993] proved that Mj; exists by
estimating the path integrals involved in the pe-
riod problem using Riemann sums.

(vi) In general, .M,, has genus p(k — 1), and by
the Jorge-Meeks—Gackstatter equality, its total
curvature is

—4r(genus — k + 1) = —4x(p — 1)(k — 1).

3.1. The General Period Problem

Given the Weierstrass data (3.1), the minimal sur-
face X : M, — R® given by

q
X(q) = Re/ ® (3.2)
' Q0
(where go € M, is fixed) and
@1 37— 9)ps
&= ¢ | =|i3(g7" +9)¥s
¥s ¥s

is well-defined, provided that fq ® iR for v any
closed curve on M, ,. Since 3 = dz i8 an exact
form, § 3 = 0 for any closed curve -, so we need
only be concerned with the first and second com-
ponents of the mapping X. Determining the values
of B, qa, gs, ..., gp in such a way that this condi-
tion is-satisfied is referred to as solving the period
problem.

The symmetries of M,, x simplify the period prob-
lem significantly, reducing the expected number of
homotopy classes to be considered from 2p(k — 1)
to p. Choosing representatives v;, for —p < j < p,
j # 0, a8 in Figure 4, we will see that we need only
check the periods of the first or second components
of X along the curves v, vz, ..., Yp.

92 ¢

FIGURE 4. Values of z with homotopy class rep-
resentatives indicated. The change from dotted
lines to solid lines indicates that the curve changes
sheets on M, ;.

Recall that generically we have positioned M, x
in such a way that O lies at the origin and the
points Q; are horizontal. Additionally, our choice
of B in (3.1) positions M, so that the planar
curve corresponding to z € [0,1] and w €R lies in
the z; = 0 plane.

While one may write out each of the curves «;
and examine their periods, we prefer to present a
more geometric description of these periods. We
start by considering the image of one sheet of w
under the mapping X defined in (3.2), where w
is restricted to vary over one sheet, say the sheet
where the phase of w lies between —7/k and = /k.
This portion of M, , is bounded by planar curves
and contains two horizontal rays starting at the ori-
gin and passing to the end. If the period problem
were solved, the planar curves would lie in either of
two planes, both of which contain the zs-axis and
make an angle of #/k with the plane z; = 0. See
Figure 5 (bottom right). Since M, , is symmetric
about the straight rays eminating from O, once the
planar curves above the origin lie in the appropri-
ate planes through the origin, the curves below the
origin will also. Hence we need only consider the
periods around y;,...,7p.

Each +; is homotopic to a piecewise smooth curve
made up of two smooth planar curves joined at
horizontal points on the surface, with the angle
between the planes in which these curves lie being
equal to n/k. The two constituent smooth planar
curves, moreover, are congruent by a reflectional
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FIGURE 5. Three views of M, once the periods
have been solved. - Top: z-plane with homotopy
classes on M; ;. Bottom left: sketch of the bound-
ary curves of Mz in R® corresponding to z such
that Im(z) > 0.and w lies on one sheet. Bottom
right: the same boundary curves after reflection
through the zz3 = 0 plane.

symmetry. We modify our notation so that «;
refers to this piecewise smooth curve. Hence

2=qy.
R.ef (¢1,502)=2Re/ (9[’1,‘?2),
7] £=q5-1

forj =1,2,...,p, where w is restricted so that the
phase of w lies between —n /k and = /k.

Our normalization of the Weierstrass data en-
sures that the planar curve joining O and Q, lies
in the z3 = 0 plane, so that

z=xl
Refm=2Re/ w2 =0.
m =0

Hence we need only consider Re §_ .

A careful examination of the other periods re-
veals a similar simplification is possible for them
too. In particular, v, starts at the point Q,, climbs
to Q2, and lies in a vertical plane parallel to a plane
rotated 7 /k from the z; = 0 plane. The real
parts of the periods about <, are zero when Q,
lies on the z3-axis, which is true when the second
component of Q is8 zero. Therefore, provided that

z=1

Re (<Pn ‘Pz) = 0’

2=0
it is sufficient to know that
2=qQ2
Re Y2 = 0
=1

to ensure that the real parts of the periods about
Y2 are zero.

In a similar fashion, we may now argue that the
conditions

sz(‘px,%)=0 and sz(cpx,cpz)=0
T3 Ye

are satisfied, provided that
=493 3=q4
Re w1 =0 and Re
z=Q3 2=qs
In general, the period problem reduces to showing
that

w2 =0.

r=qs
Re p1 =0 for j odd,
2=@Q5-1
(3.3)
2=qy
Re w2 =0 for j even.
=95

Although this period problem involves finding
the zero of a function 2 : R? — RP, which is gener-
ically difficult, more can be said. In fact, an obser-
vation in [Chen and Gackstatter 1982] generalizes
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to this case and allows us to determine the value
of-B, given the values of ¢;,¢s,.7 ., gp such that the
first of these period conditions is satisfied. That is,

Re/ Sol_RB/ —B—F—B‘wkl)dl—o
provided that

_ Re fol dz/w*?

B? .
j: wk-1dz

(3.4)

One must confirm that the right hand side is pos-
itive, since we need BER, B # 0; this is imme-
diate since w is a strlctly decreasing negative real-
valued function for z € (0, 1), as seen from equation
(3.1). Hence the first period condition imposes a
constraint on B, given the values ¢, ..., gp.

One typically looks to degree-theory arguments
when searching for zeros of functions Q : RP~! —
RP~! and this approach has been successful for pe-
riod problems arising from other minimal surfaces
(Wohlgemuth 1993; Traizet]. Known zeros, repre-
senting lower-genus examples, severely complicate
these methods in the present case. Specifically, the
boundary of the domain 1 < ¢, < ... < gp, Over
which one searches, contains known zeros for the
period functions. For example, if, while searching
for the solution to the period problem for Mj 2, we
encounter g; = q; for j # [, the solution found cor-
responds to a solution of the period problem for
M, 2. Should several parameters coalesce, the sur-
face may actually degenerate to Enneper’s surface
Mo,a.

4. THE EXAMPLES M,

In this section we solve the period problem for the
new surfaces M, ,, where k > 3. The proof pre-
sented is an extension of the original proof given
by Chen and-Gackstatter for M, 2, with the sub-
stitution of the more general Weierstrass data and
some additional observations.

Recall from (3.1) that the Weierstrass data for
Mg'k is

k_ z(2? - qg)

(22-1)"°
g = Buw* !, 4.1)
n =dz,

where B > 0 and g; > 1 are reals. The general pe-
riod problem (3.3) for M, i reduces to the following
two-dimensional problem:

Period Problem. Show there exist B > 0 and g; > 1
such that:

! 1 0, k—1
REA E(W—Bw )dZ—O
and
Re/" i(; +Bw"") dz = 0.
. 2\ Bwk-1

Denoting the real k-th root of a positive real num-
ber r by {/r, we see that, for z € (0,1),

ot = § (=R

and for z €(1, ¢3),

Wkl = T (k-1)/k {/(z(qg - 32))"“.
z22-1

For convenience we define the following quantities:
A= [ SR e
G = /\/zé::; e
fe [YEEY e
G, = /“\/z(j:;)'k'ldz.
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FIGURE 6. Genus-two surface of Chen and Gackstatter (left), and generalizations M> : in the middle, £k = 3
(winding order 5), and on the right, £ = 4 (winding order 7).

With them, the equations in the two-dimensional Applying several changes of variables, we have
period problem become

1 B / \/ Q2—1+Z Q2+1 z)) {/(“z)k—ldz
G e =) i
2B 2
and / 1+2z )’»‘*1 k/(l—z)k—ldz
B 0 (q2+2)(g2—2) z
v Sl —im(k—1)/k = . _im(k—1)/k an
Relee st 2 Relde V8BS0, I /'” 1\/ (1+2)( z+1+Q2))" 1\/(Q2—1 z)’» ldz
b= il
2+
which we can rewrite as z :

ZB
q2—1 c— c—
@2—2+1  \k1g[rgp—1—2\k-1
o= [ Y () () e

or, equivalently, By using the bounds on the values of z over which

each term is integrated, we get
G, = B*F., (4.2)

G\ Fy = F\Gs. (4.3) e /01 k (Qz(Q22— 1))"*1 {v/(l — z)’“l e

As we observed in the discussion of the general

period problem, F; and G; are nonzero and have G < /1 Q/ 2) )k—l & (1 — z)k—l e

the same sign, so (4.2) determines B, for any g». n3 ¢2(q2 — 1 z

Hence we need only find a value of g, for which e — e

(4.3) is valid. < / Q/ (2q2) {»/ (q2 Pl
We will show that G1F, < F1G, for g, suffi- 0 z

ciently large, and that G, F, > F1Gs for g, very 1o g =

near 1. Then, by the intermediate value theorem, Gy > / {”‘/ (——) {”/ (QQ__—) dz

a value of g, > 1 exists such that (4.3) holds. 0 2¢> %



30 Experimental Mathematics, Vol. 4 (1995), No. 1

Hence

1 — 1)Vl 41— z V-1
Fcz/{/m— [— dz
G2 | (=)

x/h-lk “l\/fh—l‘z iz

0 2<I2

and
1 -1, — z \k-1
ans [ a1 e

For g; > 1 sufficiently large we have

(G =i

Hence G F; < F;G; for these values.
On the other hand, writing g2 = 1 + ¢,

F= /\/(e+z)(2+e z))" l\[(l—:—z)k_ldz
<[ Y)Y

G =/01 {/((1+e+i;:+e—z))k_l {/’(1—;2)71‘12
> [ ) ) e

ne [ YRR
> /o {/(5—;7)':' dz,

o [ (eraria=) ()«
< [YE e

Therefore

Flcg</ \/—(€+2)(e+z))k ‘,“/(1 ’)" "z
[T
and

1
&7 1 1 k—!{/ 1-2z\k-1
> - - -
GIFZ'/O \/(2+e 1+£—z) ( z ) dz
tkfre—z\k1
x/o \/(—z ) dz
For € > 0 sufficiently small,

x 1 1 k—1 {/’ €+ 2 k—1
. >
iz ) 2 (e w9)
Hence G, F, > F,G; for such values of £ = g3 — 1.
We have shown that there exist values for B > 0
and g; > 1 for which both (4.2) and (4.3) hold;
therefore the two-dimensional period problem as-

sociated to M;, can be solved for k > 3. In other
words, M, ; exists:

Theorem 4.1. For each integer k > 3, there ezists an
immersed minimal surface of genus 2(k — 1) with
one generalized Enneper-type end of winding order
2k — 1.

5. NUMERICAL RESULTS

Researchers in minimal surface theory often have
used the computer to search for numerical solu-
tions to the period problem. In this section we
describe work on the period problem for the gen-
eral CGK surfaces M, given by (3.3). More pre-
cisely, we want to find a zero for the function 2 =
(Q,...,9,) : R — R? with components

Qj(B)qqua"' ’QP) =

2=qs
Re 3(g”' —g)dz ifjis odd,
2=4q5-1

=9y
Rﬂ/ (g7 +g)dz if j is even,

2=3qy-1

(5.1
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where g = Bw*~!,

ZHP(z)qu--')q,l) lfp: 2ma
= r4 .
w 2—2H,,(z,q1,...,q,,) fp=2m+1,
2?2 —¢g?

m

Hp(z)q1)”~sqp) = H

2 _ g2
=1 2~ 9

2 2
Z2° —qy

Recall that we normalized the sphere M, /R, in
such a way that ¢, = 1. We will refer to the period
problem associated with the surface M, as S, ;.

Historically, the computer has been used to solve
one-dimensional period problems, and the elemen-
tary bisection method was adequate in these cases.
Providing the bisection method with an interval in
which a zero is thought to be found, the algorithm
evaluates the function at the endpoints, and based
on these values it bisects the interval until a zero is
approached. But since we intended to consider pe-
riod problems of arbitrary dimensioh and zeros can
not be bracketed in higher dimensions, we sought
an algorithm that would generalize to higher di-
mensions more easily.

In searching for such. an algorithm, we consid-
ered several numerical methods designed to find
the minimum of a function & : R? — R. Taking

) 4
3(3,92,43,- .. ’Qp) = an(B)qh gs,... )Qp)y

=1

we change the problem from one of finding a zero
to one of finding a minimum for this new non-
negative function, in the hope that the minimum
value is zero. Additionally, since each evaluation
of the functions Q; involves integral calculations,
we sought algorithms that did not require compu-
tation of the partial derivatives of 8.

The algorithm we chose was the downhill sim-
plex method in multidimensions [Nelder and Mead
1965 (see also [Press et al. 1986, pp. 289-293)).
It starts with an initial simplex in R?, near which
one expects to find a zero for §. By comparing
the value of 8§ on the vertices of this simplex, the
algorithm moves one or more vertices “downhill”

toward lower values of the function, thereby pro-
ducing a new simplex. Feeding this new simplex
back into the algorithm again, one hopes to con-
verge to a local minimum. Most simplex modifi-
cations are expected to be “reflections”, where the
vertex with the highest value is reflected across the
opposite face of the simplex. Once the algorithm
reaches a valley, it tries to contract itself into the
valley and then slide down the valley to lower val-
ues for 8. Clearly, sharp dimples in the valley floor
may cause the algorithm to contract in all direc-
tions until it settles at the bottom of the dimple.
Figure 7 depicts some possible simplex modifica-
tions resulting from one iteration of the method.
To simplify the input of the initial data for this
algorithm, we generate our simplices by construct-
ing p other vertices, ; = zo + €e;, from a single

point T, € R?, where (e, e,,...,¢€,) is the standard
basis for R®?. The initial simplex is then the one
whose vertices are zo,z,,...,Z,.

We tested the algorithm (and our code) by con-
sidering the original surfaces M, ; and M, ; proved
to exist by Chen and Gackstatter. The numeri-
cal solutions found for these surfaces turned out to
be correct, so we started searching for solutions to
the period problem Ss, associated to Mj,, which
was not known to exist at the time of the com-
putation. After finding the solution to this three-
dimensional period problem, we moved on to the
four-dimensional problem for Sy, and ultimately
continued this process by searching for solutions
to Sp41,2 once we had the solutions for S, ;. We
stopped doing computer searches once we reached
p = 34. Two of the solutions are illustrated in
Figure 8. .

It is important to keep in mind that each new
period problem S, required an initial simplex, or
at least an initial point, in RP, to get the search
algorithm started. As p became large, it became
more and more difficult to find such initial data;
from random initial data, the algorithm tended to
converge to degenerate solutions (those where two
or more g¢;'s coincided). If, on the other hand, the
initial guess was near enough to a nondegenerate
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high value low value

new vertices

/)

FIGURE?. Possible modifications of a two-dimensional simplex during one step of the downhill simplex method.
The initial simplex is drawn with solid lines while the modified simplex has dashed lines and can be either
reflected away from a high point (top left), reflected and expanded (top right), contracted in one dimension
away from a high point (bottom left), or contracted along all directions towards a low point (bottom right).

FIGURE 8. Images of Mso (left) and Mj;. (right) made from numerical approximations of the associated
six-dimensional and fifteen-dimensional period problems.
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solution, the algorithm easily converged to these
solutions. At that point we started looking for in-
formation that might allow us to predict where in
RP” a solution might be found for S; ;. Surprisingly,
we found some good predictors.

The most productive idea was to return to the
original Weierstrass data and choose another nor-
malization for the coordinate z on M;,/R,;. In-
stead of choosing z so that z(Q;/R:) = 1, we
choose z so that the branch point for the Gauss
map occurs at a specific point along the imaginary
axis, which has a net effect of setting B constant
at 1. Geometrically, this new normalization corre-
sponds to a homothety of the surface M,,; C RS.
Instead of viewing the component period functions
Q; as functions of B, ¢y, ...,qp, We now view them
as functions of ¢,,qz,...,g,. Using this normal-
ization, we generated the table of solutions to S, ,
found in Figure 9 (top), where each horizontal line
corresponds to a distinct value of p and the tick
marks denote the values of the g;’s solving S, ,.

The patterns found in tables of this form for
solutions of S,; for p < 9 allowed us to predict
where the next solution might be found. Although
we have no explaination at this point for the ob-
vious pairing of the values g; and g4, nor for the
general “curves” seen in this data, it is our opin-
ion that, without these observations, searches in
R? for solutions to S, with p > 10 would mostly
yield degenerate solutions.

Soon after making these calculations, we started
on the generic problem S; . To our surprise, the
solutions for S, ; were very near nondegenerate so-
lutions for S, for k near 2, and for larger k, the
nearest known solution generally served as an ex-
cellent initiator. Using this observation, we have
found solutions to S, for p < 35 and k < 10.

Returning to the original normalization for the
coordinate z on the sphere M, x/Ri, and trans-
forming the solutions of S, to reflect this other
normalization, we produced the data in Figure 9
(bottom). Here the first patterns are less obvious,
but another one emerges. Now, it becomes believ-
able that under the normalization @ = 1, the g;'s

nearest zero appear to become evenly distributed,
while the larger values demonstrate a stretch/pull
phenomenon that is still not understood. In the
limit, the end of M, , appears to be pushed to in-
finity, and the handles become evenly distributed
along the z3-axis. This suggests the following con-
jecture.

Conjecture 5.1. If M, , ezists for allp > 0 and k >
2, then, for fized k and p — oo, with a homothety
normalization, the surfaces M, converge to the
Karcher saddle tower [Karcher 1988 with normal
rotational symmetry of order k.

We cannot prove this conjecture. However, as-
suming it to be true, we were led to the correct
Weierstrass data for the saddle towers viewed as
complete surface in R? of infinite genus, which we
explain in Section 6. The critical observations in
this process were: first, that the conjecture implied
that the values g;, which solve the period problem
Sp.x, become equidistant along the real axis as p
gets large; second, that the algebraic equation for
the underlying Riemann surface M, x then becomes
a truncation to the first 2p+ 1 terms of the infinite
product expansion for tan z. Based on these obser-
vations, we started the period calculations for 'S, x
for p > 400, with initial data ¢; = j. In so doing,
we observed that the periods nearest the point O
are nearly zero, while those far from this point can
be quite large.

6. A GLOBAL REPRESENTATION OF KARCHER'S
SADDLE TOWERS

Scherk’s original paper [1835] announced the exis-
tence of a family of singly periodic embedded min-
imal surfaces. Taking the periodic direction to
be vertical, one can think of Scherk’s examples as
a minimal desingularization of two planes in RS
meeting along the z3-axis. See Figure 10 (left).
This heuristic suggested to H. Karcher a gen-
eralization of Scherk’s surfaces that desingularizes
k planes in R®, all meeting along the r;-axis, for
k > 3. He succeeded [Karcher 1988] in constructing
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FIGURE 10.

Karcher saddle towers drawn from
global data for k = 2 (left), and 3, (right) with
a=0or¢p=m/(2k).

these surfaces, which he called saddle towers, and
which we denote here by Sy, for 0 < ¢ < 7/(2k).
See Figure 10 (right) for an image of S5 /().
Two nonparallel planes in R* can be completely
described, up to Euclidean motion, by the angle
between them, which we take as the parameter for
Scherk’s family. Given k planes, k£ > 3, with a
common line of intersection, there are more pos-
sibilities. The first case considered by Karcher
is the maximally symmetric one, where the angle
between successive half-planes equals 7/k. These
saddle towers are called symmetric, and we denote
them here by Sj /). A wing of a saddle tower
is the portion of the surface asymptotic to a half
plane. Our notation is chosen because these sur-
faces have 2k planar reflectional symmetries, one
between each pair of successive wings, and we mea-
sure the angle from these planar geodesics. On
Sk.n/(2k), the limit normals to the wings are the

horizontal vectors whose stereographic projections
equal i€, where €% = 1.

Karcher generalized these examples by construct-
ing the surfaces Sk, for 0 < ¢ < m/(2k), where
this angle is changed so that the limit normals are
e*?¢. We refer to the Sy, as symmetrically de-
formed saddle towers. For some values of ¢, these
surfaces are no longer embedded.

Since Sy, is singly periodic and nonflat, it has
infinite total curvature. But, by factoring R® by
the translational symmetry of Sj. ., one produces a
minimal surface of finite total curvature in R? x S*.
On this surface, Karcher assumed a planar reflec-
tional symmetry corresponding to inversion of the
Gauss map through the unit circle. He also as-
sumed that the fundamental domain of this reflec-
tion had 2k distinct planes of reflectional symmetry
that meet along the vertical axis. This axis inter-
sects the surface at the saddle points. The order-
preserving symmetries generated by these reflec-
tions form a normal rotational symmetry of order
k around this axis.

Using these symmetries and the end behavior,
Karcher determined the data for Sy, to be

G =g

1 d€ (6.1)
P3

T gk 1 £ —2cos(kp) €

where 0 < ¢ < 7. 4

We now prove the following result:

Theorem 6.1. Let
Mo = {(z,w) ECxP' : w* = tanzcosa+sina}l,

where a € [0,7/2). The mapping X : My, — R®
defined by (2.1) with

L =1
Ge—=Wile,

d (6.2)
P3 = az

18 a conformal diffeomorphism between M, . and
Sk,p, Where o = /2 — k.
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Remark 6.2. The symmetric saddle towers corre-
spond to a = 0, so that M, is defined by

QO 2 2
kL _ 2% — (2lm)
w” =tanz = L! - ((21_ 1)1r)2 .

Truncation of this infinite product expansion of the
tangent function produces the algebraic equations
for M, . The poles and zeros for this truncation
must be adjusted 8o as to solve the period problem
on M, ;. Truncations of the general infinite prod-
uct expansions (a # 0) have been investigated in
the hope of ﬁndlng new minimal surfaces of finite
total curvature that may converge to the S;,. In
general, this corresponds to removing the restric-
tion that'the g; be strictly real, allowing them to
vary over the entire complex numbers. When the
period problems associated with these truncations
were fed into the same software used for the periods
of M, , the solutions were observed to converge to
values associated with the more symmetric exam-
ples M, ,—that is, the g; approached real numbers
as the periods approached zero.

Proof. In order to make a comparison between the
two representations (6.1) and (6.2), we restrict the
data in (6.2) to

31fa

B = {(Z‘UJEM)‘GZ—%’—5<R.8 a 2

Using basic properties of the tangent function, we
see that g on B is a bijective mapping onto P\ {w :
w* = ie***}. Comparison of the two Gauss maps
suggests the following relationship between £ and
z:

£ = (tanzcosa + sina)'/*.

Performing this change of variable on 3 in (6.1),
we see that the height differentials differ by a real
constant dependent on k and a. Therefore, up to
homothety, X(B) is congruent to a fundamental
domain of S; 4.

We next show that X (B) consists of planar
geodesics, from which it follows that X (M, ,) and
Sk, are congruent. Let 85 = (v;(t), wi(v;(¢))),
where v;(t) = —n/4+jr—a/2+it, teR,j = 0,1,

and w;, 0 <! < k — 1, denotes the I-th sheet over
7,- Noting that

tanzcosa + sina = M,
Co8 2
we have
sin( -2 +5 +it)
x _ 472
w*(70(t)) = o
cos(—z—§+it)
. T « . T a\ .
_ sm(—z+§ coeht+tcos(—z, E)smht
coe(—% %) cosht— tsm( ;—r %) sinht
_-—acosht+ibsinht
" acosht+ibsinht ’
where
a =cos(—m/4 — a/?),
b=cos(—7/4+ a/2).
Hence w* on f,,; is unitary, and therefore so is

g = w*!. Therefore (dg/g)(B;;) C iR, so that
II(Bo,) € R. Since the automorphism of M, , in-
duced by z — —z — /2 — « is an isometry fixing
Bo,1, we see that (B, is a geodesic. By Lemma 2.1
it is planar. A similar analysis for j = 1 reveals
that g(3,,) is unitary and 3, is a geodesic.

We have shown that § X (B) consists of 2k planar
geodesics. Extending X (B) across these curves by
Schwarz reflection produces a surface that agrees
with X(My,), so X(M,,) is congruent to Si,.
This completes the proof. O

6.1. A Global Representation of Scherk’s Doubly Peri-
odic Surfaces

Scherk’s 1835 paper also describes a one param-
eter family of embedded doubly periodic minimal
surfaces in R3. Factoring any surface in the fam-
ily by its two translational symmetries produces
a minimal sphere in T' x R with four points re-
moved, where T is a rhombic torus and the punc-
ture points represent the ends. With the tradi-
tional orientation and position of this surface in R3,
the stereographic projection of the limit-normals
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FIGURE 11. Two views of Scherk’s deformation
of Sy. The image on the left is computed in the
quotient and the one on the right is computed by
global data.

at these ends is +e*, for 6 € (0,7/4]. Consecu-
tive 90° rotations about the x, and z3 axes repo-
sition the surface so that the values omitted by
the stereographic projection of the Gauss map be-
come {0, 0o, ai, —a~ '3}, with a € (0, 1]. We choose
to use a as the deformation parameter, and denote
the complete surface in R?* by S,, and its quotient
in T'x R by S,. In this section we describe the
global representation of the surfaces S,, but first
we review its quotient representation.

Since the quotient surface is conformally a sphere
with four ends and the Gauss map is injective, we
parametrize it by this map. The end behavior,
together with the fact that the height differential
has no zeros at finite points, determines the height
differential up to a nonzero multiplicative complex
constant. The absolute value of this factor is cho-
sen to simplify a later calculation and corresponds
to a rescaling in R®. The phase of the multiplica-
tive constant is determined to be zero by the be-
havior of the data along the straight lines on the

surface. Therefore, the Weierstrass data for S, in
T xR is

g =2,
o2 de¢
2 ramii 1 %o

where £ is the standard coordinate on C \ {0, at,
—a_li}. The Weierstrass representation given by
this data is multivalued with two linearly indepen-
dent periods.

Using arguments similar to those used for the
saddle towers, we can prove the following result:

R

Theorem 6.3. S, is conformally diffeomorphic to

M, = {(z,w)éCz o — —iﬂ}

aeiz + e—iz

via the mapping X : M, — R*® defined by (2.1),
with

g —_ e‘UJ
w3 = dz.
When a = 1, this data simplifies to e¥ = tan z,

which corresponds to the most symmetric Scherk
surface.

Remark 6.4. With the global representation in this
theorem, one sees directly that, as @ — 0, the Wei-
erstrass data converges to

M= {lza) eCh el = —iem} S
= _ie2i:’
Y3 = dZ,

which is the global data for the helicoid [Hoffman
et al. 1993; Hoffman and Wohlgemuth].

Osserman [1985] made the following observation:

Proposition 6.5. S, has infinite genus and one topo-
logical end.

Applying the results of M. Heins, we have an alter-
native proof of this. Let f : C — C be an analytic
function whose zeros are simple and discrete. Heins
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[1952] observed that if such a function has at least
two zeros, the Riemann surface defined by

e* = f(2)

has infinite genus and one end.

Examination’ of Heins’s argument reveals that
the same proof applies to the case in which f has
discrete simple poles. Hence, together with Theo-
rem 6.3 we have Osserman’s result. Given the con-
formal diffeomorphism presented above, one may
follow Osserman’s and Heins’s arguments in paral-
lel, to see that they are virtually identical.
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Software Availability

The code for solving the period problem is available in
the form of a C++ function that returns the values of
q1,92,---,qp given p < 34 and some values of k. Send
requests to the author at ed@gang.umass.edu.

The program MESH, created by Jim Hoffman, was
used to generate all the surfaces shown. MESH is avail-
able by anonymous ftp from ftp.gang.umass.edu, in di-
rectory pub/mesh. Questions concerning this distribu-
tion should be directed to Dave Oliver at mesh_help@
gang.umass.edu.
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