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We present a set of generators for the sporadic group J3 de-

signed to allow easily reproducible computations in the group.

We also discuss the relationship between J3 and J3:2, and the

maximal subgroups of these two groups.

1. INTRODUCTIONThe concept of \standard generators" for sporadicsimple groups is introduced in [Wilson], as a devicefor improving reproducibility of computational re-sults and for avoiding duplication of work. In fact,these standard generators have been chosen fairlyarbitrarily in each case, but they are always chosenso that they are easy to reconstruct in (as far aspossible) any representation.Here we develop these ideas further, in the con-text of the simple group J3. This group was chosen�rstly because it has an outer automorphism groupof order 2, which introduces extra complications,and secondly because it is reasonably small (it hasorder 50,232,960) so we can do quite a large num-ber of calculations in the group. Our main aims atthis stage are:
1. To pass from J3:2 to J3 and (as far as possible)vice versa.
2. To �nd words in the standard generators foreach group, giving representatives for each ofthe conjugacy classes of elements.
3. To �nd words in the standard generators whichgenerate representatives of each of the conju-gacy classes of maximal subgroups.Eventually we hope to develop a computerised li-brary of sporadic simple groups [Suleiman et al.],containing matrix and permutation representationsof each group, as well as their covering groups and
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automorphism groups, and a whole series of proce-dures for �nding interesting subgroups, elements,and so on. The groups J1, M24, Ru, Co3, Co2,J2, M22 and their automorphism groups have beentreated in this way by P. G. Walsh [1994]. His pro-cedures have been implemented in Cayley [Can-non 1984], and implementations in Magma [Can-non and Playoust 1993] and GAP [Sch�onert et al.1994] are planned. The present paper is designedas a case study for this development, to help clar-ify our ideas about what such a library should con-tain, what is feasible and what is not, and to ex-plore some possible avenues for extensions to thelibrary. See the section on Electronic Availabilityat the end of this article.
2. STANDARD GENERATORS FOR J3:2Our initial idea for standard generators for J3:2was to take the rationally rigid triple of conju-gacy classes (2B; 3B; 8B). In other words, we tookg1 2 2B and g2 2 3B such that g1g2 2 8B. (Herewe follow [Wilson] in using (g1; g2) generically todenote a pair of standard generators for whatevergroup is under consideration.) This de�nes the pair(g1; g2) up to conjugacy, and it can be shown thathg1; g2i = J3:2. The most obvious problem withthis is that there are two classes of elements of or-der 8 in the outer half of J3:2, called 8B and 8C,and in some representations it is very di�cult todistinguish them. We therefore abandoned the ideaof using a rationally rigid triple, as rational rigid-ity seems to be of more theoretical than practicalimportance.Instead there are two much more crucial practi-cal issues. The �rst is to maximise the probabilityof obtaining a conjugate of (g1; g2) at each attempt.If g1 2 X and g2 2 Y and x 2 X and y 2 Y ,where X;Y are two conjugacy classes in the groupG, then the probability that (x; y) is conjugate to(g1; g2) is just jCG(g1)j jCG(g2)jjGj jZ(G)j :

Clearly we want to maximise this probability, sub-ject to the constraint that hg1; g2i = G.The second issue is to make it as easy as possibleto distinguish the standard generators from anynon-conjugate pair of elements of the group. Thisis not usually much of a problem if the �rst issuehas been satisfactory dealt with.After some experimentation we decided to takeg1 2 2B, g2 2 3A, with g1g2 of order 24. Thereare still two classes of elements of order 24 in J3:2,but each is an algebraic conjugate of the other.The symmetrised structure constants, which maybe de�ned by�G(X;Y;Z) = X�2Irr(G) �(x)�(y)�(z)�(1)with x 2 X, y 2 Y and z 2 Z, are�J3:2(2B; 3A; 24A) = �J3:2(2B; 3A; 24B) = 1:(Thus these triples are rigid, but not rationallyrigid.) Given a pair (a; b) of old standard gener-ators (that is, a 2 2B, b 2 3B, with ab 2 8B), wefound that e = (abab2ab(ab2)2)8 2 3A. By mak-ing several conjugates of a and e we eventuallyfound pairs (c; e) and (d; e), given by c = a(ab)3and d = a(ab)6 , with the following properties:� c 2 2B, e 2 3A, ce has order 24, and [c; e] hasorder 9.� d 2 2B, e 2 3A, de has order 24, and [d; e] hasorder 17.It is easy to check also that hc; ei = hd; ei = J3:2:In this way we have found representatives forboth triples of type (2B; 3A; 24), and we choosearbitrarily the �rst to be our standard generatorsfor J3:2. As we shall see later, we may choose thenotation so that ce 2 24A and de 2 24B. We givein Table 1 two 18� 18 matrices over GF(2), repre-senting preimages of these (new) standard genera-tors of J3:2 in the smallest matrix representation of3:J3:2. At the referee's suggestion, these matricesare given in a basis such that the GF(4)-structureof the representation for the subgroup 3:J3 is easily
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000100000000000000001000000000000000010000000000000000100000000000000000101011000000000000111101000000000000101000110000000000111100010000000000011111111100000000100101010100000000110111110011000000011001010001000000101000111111110000111100010101010000101011001111001100111101000101000100010000110011111111100000010001010101g1 = c

100001101111010011010011011010110010001001100110100011000111011101010010001101011110001001001011111001000111110110011011110000101101110110100000110110000100011001101101001100110111101111000011101100011010000010011000001100001101000011001000001011000010101010101001101110010101010111011001111010110100010111100101101100111110g2 = e
TABLE 1. Standard generators for 3:J3:2visible. Each 2 � 2 block of a matrix in this sub-group can be interpreted as an element of GF(4) bythe identi�cations 0 = � 00 00�, 1 = � 10 01�, ! = � 11 10�,�! = � 01 11�, so that we get 9�9 matrices over GF(4).

3. UPWARDS COMPATIBILITYOur old standard generators for J3:2 have beenavailable in a prerelease version of a computer li-brary of groups [Suleiman et al.] for some time,and some work may have been based on them. Wetherefore found words in the new generators thatgive conjugates of the old ones, so that such workwill still be easily reproducible.Given our standard generators c; e, we found that(cece2)6 2 3B, and if we de�ne a0 = c(ce)3 andb0 = ((cece2)6)(ce2)5 , the pair (a0; b0) is conjugate to(a; b). To prove this, we took the original gener-ators (a; b) and made new generators (a0; b0) fromthem as described. Then we put both (a; b) and(a0; b0) into standard form (\standard basis") asdescribed in [Parker 1984], and observed that therepresenting matrices for (a0; b0) were identical tothose for (a; b).

Also, if we de�ne d0 = c(ce)4 and e0 = e(ce2)5 , then(d0; e0) is conjugate to (d; e).
4. STANDARD GENERATORS FOR J3As standard generators for the simple group J3 wedecided to take g1 2 2A and g2 2 3A such that(g1g2)19 = 1. Since the symmetrised structure con-stants are�J3(2A; 3A; 19A) = �J3(2A; 3A; 19B) = 2;there are four such pairs of generators up to conju-gacy. This reduces to just two pairs of generatorsup to automorphisms. We found one pair as (f; g)where f = (ce)12 and g = ecece2 , and the second as(f; h), where h = g(fg2)4 . We then have� f 2 2A, g 2 3A, (fg)19 = 1, [f; g] has order 9,� f 2 2A, h 2 3A, (fh)19 = 1, [f; h] has order 17.We choose arbitrarily the �rst of these to be ourstandard generators for J3.
5. FROM J3 TO J3:2The problems here are of quite a di�erent kind fromthose considered elsewhere in this paper. There weare working within a particular group, looking forvarious elements and subgroups. Here we have togo outside the starting group J3, and look inside alarger \universal" group for an element extendingJ3 to J3:2. If we start with a permutation represen-tation of J3 of degree n, the appropriate universalgroup is the symmetric group of degree n. If westart with a matrix representation of degree d overGF(q), the appropriate group is GLd(q).Our standard generators for J3 were de�ned byf 2 2A, g 2 3A, (fg)19 = 1, with [f; g] of order9. This de�nes the pair (f; g) uniquely up to au-tomorphisms, but there are two conjugacy classesof such pairs in the simple group J3. Note thatf�1g�1 = (gf)�1 = ((fg)�1)f , so f�1g�1 has order19, and[f�1; g�1] = fgf�1g�1 = (f�1g�1fg)g�1f�1= [f; g]g�1f�1 ;
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fg(fgfg2)2 2 8Afgfg2 2 9ABC (fg)4gfg(fg2)2 2 10AB((fg)3g(fg)2g)2fg 2 12A (fg)3gfg(fg2)2 2 15AB(fg)3g 2 17AB fg 2 19AB
TABLE 2. Representatives of the maximal cyclic subgroups of J3. We indicate in boldface the actual class thatthe given element belongs to, as determined below.

so [f�1; g�1] has order 9. Thus f�1 2 2A, g�1 23A, (f�1g�1)19 = 1, and [f�1; g�1] has order 9, so(f�1; g�1) = (f; g2) is also a pair of standard gen-erators for J3. However, if we (arbitrarily) choosethe notation so that fg 2 19A, then f�1g�1 is con-jugate to (fg)�1, so f�1g�1 2 19B. This meansthat (f�1; g�1) is automorphic to (f; g), but notconjugate to (f; g).The crucial step in the construction of J3:2 istherefore to �nd an element � of the universal groupconjugating (f; g) to (f�1; g�1).In the context of matrix groups, there is a well-known method, based on the standard basis con-cept introduced in [Parker 1984]. In essence, a ma-trix B is found that conjugates f and g to standardform F and G, say. Similarly, we �nd C that con-jugates f�1 and g�1 to F and G. Then � = BC�1conjugates (f; g) to (f�1; g�1), and hf; g; �i is iso-clinic to J3:2. It may not be equal to J3:2, becausewe may have introduced some additional elementscentralizing J3, but it is usually straightforward toget rid of such elements. A similar idea can be usedwith permutation groups.Finally, one can �nd words in the generatorsf; g; � that are conjugate (modulo the centre of thegroup) to the standard generators c; e of J3:2 de-�ned above. For example, here we may take c0 = �and e0 = (fg2)�4g(fg2)4.
6. CONJUGACY CLASSES OF ELEMENTSFirst we �nd generators for the maximal cyclic sub-groups, and later we consider problems of algebraicconjugacy.

In J3, the maximal cyclic subgroups are as fol-lows: 8A, 9ABC, 10AB, 12A, 15AB, 17AB, and19AB. In terms of the standard generators (f; g),we have representatives as in Table 2.In J3:2, the maximal cyclic subgroups are 8A,10AB, 15AB, 19AB, 8C, 12B, 18ABC, 24AB,34AB. In terms of the standard generators (c; e),we have representatives as in Table 3. (Note thateach of 19AB, 15AB and 10AB is a single conju-gacy class.)If we consider only the information about con-jugacy classes given in the Atlas of Finite Groups[Conway et al. 1985], we can choose most of theseclasses arbitrarily. There are just two provisos: weshould be consistent between J3 and J3:2, and ourchoice should be consistent with the power maps(speci�cally, the square of class 10A and the cubeof class 15A are both 5B rather than 5A, so thechoices of 10A and 15A are not independent).In the Atlas of Brauer Characters [Jansen et al.1995], however, much more precise de�nitions ofthe conjugacy classes are used (see also [Wilson1993]). In particular, a distinction is made be-tween the three classes 9A, 9B and 9C, and be-tween the classes 17A and 17B, in the 19-modularcharacter table of J3. Using the character tablesin [Jansen et al. 1995] and explicitly calculatingthe traces of elements in the 110-dimensional rep-resentation over GF(19), we �nd that (fg)3g 217A and fgfg2 2 9B, so ((fg)3g)3 2 17B, and(fgfg2)2 2 9C and (fgfg2)4 2 9A. No distinctionis made between the other pairs of algebraicallyconjugate classes, so we can choose fg 2 19A and
(ce2)2(ce)6 2 8Acece2(ce)5ce2ce(ce2)4 2 8C (ce)4e(ce)2e 2 10AB(ce2)2(ce)9 2 12B (ce)10e 2 15AB(ce)5e 2 18ABC (ce)2(ce2)2 2 19ABce 2 24AB (ce)3e 2 34AB

TABLE 3. Representatives of the maximal cyclic subgroups of J3:2. As in Table 2, the actual class is printedin boldface.
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(fg)4gfg(fg2)2 2 10A without loss of generality.Then we are forced to have (fg)3gfg(fg2)2 2 15B,using the 18-dimensional representation over GF(9)to distinguish the two classes of elements of order�ve.Similarly, in J3:2 the three sets of classes 34A=B,24A=B and 18A=B=C are distinguished in the 19-modular table. We �nd in the same way as beforethat (ce)3e 2 34B, ce 2 24A, and (ce)5e 2 18B.The classes 19AB, 15AB and 10AB are actuallysingle classes in J3:2, so no problem arises there.A complete set of words giving representatives forall the conjugacy classes of elements is given inTables 4 and 5.class word class word1A f2 9C (fgfg2)22A f 10A (fg)4gfg(fg2)23A g 10B ((fg)4gfg(fg2)2)33B (fgfg2)3 12A ((fg)3g(fg)2g)2fg4A (fg(fgfg2)2)2 15A ((fg)3gfg(fg2)2)25A ((fg)4gfg(fg2)2)4 15B (fg)3gfg(fg2)25B ((fg)4gfg(fg2)2)2 17A (fg)3g6A (((fg)3g(fg)2g)2fg)2 17B ((fg)3g)38A fg(fgfg2)2 19A fg9A (fgfg2)4 19B (fg)�19B fgfg2
TABLE 4. Words for conjugacy classes of elements in J3.class word class word1A c2 9C ((ce)5e)22A (ce)12 10AB (ce)4e(ce)2e2B c 12A (ce)23A e 12B (ce2)2(ce)93B ((ce)5e)6 15AB (ce)10e4A (ce)6 17A ((ce)3e)64B ((ce2)2(ce)9)3 17B ((ce)3e)25AB ((ce)4e(ce)2e)2 18A ((ce)5e)56A (ce)4 18B (ce)5e6B ((ce)5e)3 18C ((ce)5e)78A (ce2)2(ce)6 19AB (ce)2(ce2)28B (ce)3 24A ce8C cece2(ce)5ce2ce(ce2)4 24B (ce)79A ((ce)5e)4 34A ((ce)3e)39B ((ce)5e)8 34B (ce)3e
TABLE 5. Words for conjugacy classes of elements in J3:2.

7. MAXIMAL SUBGROUPS OF J3:2We have already seen how to obtain standard gen-erators for J3 from standard generators for J3:2.The other maximal subgroups of J3:2 are:L2(16):4; 24(3�A5):2; 19:18; L2(17)� 2;(3�M10):2; 32:31+2:SD16; 21+4� S5; 22+4(S3�S3)(see [Conway et al. 1985], or [Finkelstein and Rud-valis 1974; Wilson 1985]).With a group of this size, the easiest way to �ndcopies of most of these subgroups is by a randomsearch. For example, if x 2 2A and y 2 4B, wecan estimate the probability that x and y gener-ate L2(16):4 as being approximately 1 in 50. Anexample of such a pair of generators is given inTable 6.Similarly, 24(3� A5):2 and 32:31+2:SD16 can begenerated by elements x 2 2B and y 2 4B, withreasonable probabilities. The subgroup 19:18 israther more di�cult to �nd: with a random searchof this kind the best we can do is to take x 2 2Band y of order 9, giving a probability around 1 in300. Similarly we can generate 22+4(S3 � S3) byelements x 2 4B and y 2 6B.Two of the subgroups, namely L2(17) � 2 and21+4S5, are involution centralisers, for which an-other method is available, which is often quicker,although it tends to produce longer words. Takefor example the case L2(17)� 2, which is the cen-traliser of a 2B-involution. We start with a ran-dom element of order 34, such as (ce)3e, so that((ce)3e)17 2 2B. Then we take another involution(preferably not conjugate to the �rst one) such as(ce)12 2 2A. Then these two involutions gener-ate a dihedral group of order 4n, for some n, andthe central involution of this dihedral group clearlycommutes with our original involution. In this casewe found that ((ce)3e)17(ce)12 had order 8, so itsfourth power is the required centralizing involu-tion. It turned out that this element, together withthe original element of order 34, was enough to gen-erate the whole involution centraliser.The remaining maximal subgroup is (3�M10):2.To generate such a group we used a method similar
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subgroup generatorsJ3 (ce)12 ecece2L2(16):4 ((ce(cece2)2)2)ce (ce(cece2)2)(ce2)519:18 cecece2 (cece2)((ce)2(cece2)2)624:(3�A5):2 c (ce(cece2)2)(ce2)12L2(17)� 2 ((ce)12((ce)3e)17)4 (ce)3e(3�M10):2 (uv)2(uvuv2)2uv2 ce32:31+2:SD16 c(ce)3 (ce(cece2)2)(ce2)321+4S5 (cece2(ce)12)17 ce22+4(S3 � S3) (ce(cece2)2)(ce)12 ((ce)2(cece2)2ce2)(ce2)8
TABLE 6. Words for maximal subgroups of J3:2. The symbol u stands for ((ce)12)(ce2)2 , and v stands for (ce)8.to the one we used to �nd involution centralisers.We took an element x of order 24, whose eighthpower is an element x8 2 3A and looked at groupshx8; yi where y is a random element in 2A. Wefound such a group of order 48, in which it waseasy to �nd an involution z inverting x8, such thathx; zi �= (3�M10):2.

8. MAXIMAL SUBGROUPS OF J3The same principles apply here. All maximal sub-groups were found by random searches, apart fromthe involution centraliser.It is worth remarking that for the time beingwe have contented ourselves with �nding arbitrarygenerators for a representative of each class of max-imal subgroups. However, it is obviously desir-able to have some kind of standardisation of the

subgroup generators as well. This seems to bequite a tall order in general, but if the subgroupis (almost) simple, then we can go some way to-wards this. For example, one might wish to takegenerators for L2(17) and L2(19) to be images ofthe \standard" generators � 0�1 10� and � 1�1 10� forSL2(p), though we have not done this here.It might also be worth considering more care-fully which representative of a conjugacy class togive, but as yet there seem to be no clear reasonsfor choosing one rather than another. A relatedissue is compatibility between subgroups of J3 andsubgroups of J3:2. For example, we may wish toarrange matters so that if we make the subgroupsJ3:2 > J3 > L2(17) and J3:2 > L2(17) � 2 >L2(17), then we end up with the same generatorsfor the same subgroup L2(17) in both cases. Again,we have not done this here, but these ideas aresubgroup generatorsL2(16):2 f (fg(fgfg2)2)6L2(19) fg ((fgfg2)3)(fg2)4L2(19) fg2 ((fg2fg)3)(fg)424:(3�A5) (fgfg2)3 g(fg2)8L2(17) fgfg ((fgfg2)3)(fg2)5(3�A6):2 fg g(fg2)232:31+2:8 f (fg)9 (fg(fgfg2)2)(fg2)621+4:A5 (fg)3fg2fg(fg2)2 ((fg(fgfg2)2)12((fg)4gfg(fg2)2)15)322+4:(3� S3) f (fg)4 ((fgfg2(fg)4(fg2fg(fg2)2)2)2)(fg2)10
TABLE 7. Words for maximal subgroups of J3.
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explored further by P. G. Walsh [1994]. Indeed, allof these ideas could obviously be taken a lot fur-ther, but we feel at this stage it is preferable notto be too prescriptive.
9. REPRESENTATIONS OF J3:2The easiest place to start making representationsof J3 and of the triple cover and automorphismgroup, is with the 18-dimensional representationof 3:J3:2 over GF(2) given in Table 1. The skewsquare of this representation has degree 153, whichcontains the two 36-dimensional irreducibles for3:J3:2, as well as the 80-dimensional irreducible forJ3:2. Other 2-modular representations can thenbe made using the Meat-Axe in usual way [Parker1984].Some primitive permutation representations canbe made as the actions on certain orbits of vectorsin the 18-dimensional space. For example, the rep-resentation of J3 of degree 20520, on the cosets ofL2(17) � 2, can be made by looking at the 61560images of the (unique) �xed vector of an elementof order 34. Similarly the representation of degree23256, on the cosets of (3�M10):2, and the repre-sentation of degree 43605, on the cosets of22+4:(S3 � S3);can be found by looking at the action on suitableorbits of vectors. Once this is done, we can makerepresentations in other characteristics by chop-ping up these permutation representations with thehelp of the condensation method [Wilson 1993].
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