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We study even modular lattices having level l and dimension2(p � 1), for p prime, and arising from the ideal class group

of the p-th cyclotomic extension of Q (p�l). After giving the

basic theory we concentrate on Galois-invariant ideals, obtain

computational results on minimal vectors and isometries, and

identify several old or new extremal lattices.

1. INTRODUCTIONIn this paper|a sequel to [Bachoc and Batut 1992;Quebbemann 1992; Quebbemann 1995]|we dealmainly with a family of lattices B(m)n;l in euclideanspaces, related to Craig's lattices A(m)p�1. Each lat-tice B(m)n;l has dimension n = 2(p � 1), containsthe tensor product of A(m)p�1 with the ring of inte-gers in Q (p�l), and is hermitian-unimodular overthis ring (therefore similar to its Z-dual, with de-terminant lp�1). Like A(m)p�1, each lattice B(m)2(p�1);ladmits a simple description as a cyclotomic idealdisplaying the a�ne-linear group F+p oF�p as a groupof automorphisms. Our family, however, includesmore prominent individuals: there are E8 = B(1)8;1 ,K12 = B(1)12;3, �24 = B(2)24;1, but also Plesken andNebe's[2:M12:2]20 = B(2)20;2 and [2:M22:2]20 = B(2)20;7(the latter appears to give the highest \isodualHermite number" known for n = 20, and it is one ofthree \extremal" lattices of minimum 8 we know).On the other hand, our lattices are harder to ana-lyze than Craig's: we cannot give a general lowerbound on the minimum, nor theoretically decideeutaxy when l > 3. Information on these and re-lated questions is obtained for p � 29 by machinecomputations using PARI [Batut et al. 1993].
c
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2. UNIMODULAR CYCLOTOMIC LATTICES OVER
IMAGINARY-QUADRATIC FIELDSLet l be a square-free positive integer. Set K =Q (p�l), and let OK be the ring of integers in K.Given a positive de�nite hermitian space (V; h) ofdimension k over K, we also consider it as an innerproduct space of dimension n = 2k over Q forx � y = cTrK=Q h(x; y)with c = � 1 if l � 3 mod 4,12 otherwise. (2.1)Then, if � is an OK-lattice on V , its hermitiandual lattice ��h isp�l��, where �� is the euclideandual. We shall deal with lattices satisfying� = ��h and x � x 2 2Z for all x 2 �: (2.2)(Of course, for l � 3 mod 4 the �rst condition hereimplies the second.) As a euclidean lattice sucha � is even and isometric to pl��, therefore ofdeterminant lk.Let p be an odd prime not dividing l, and �a nontrivial p-th root of unity over K. We putF = K(�) and remark that [F : K] = p� 1. Con-sequently, if p divides the order of the isometrygroup Auth � for a lattice � as above, part of Vmust be a nonzero F -vector space, and thereforep� 1 is at most equal to k. We shall deal with thecase k = p � 1, and then can assume [Feit 1974,x 9] thatV = F; h(x; y) = TrF=K(�x�y); � = I; (2.3)where the bar indicates complex conjugation, � isa totally positive element in F+ = F \R , and I is afractional ideal of F . Note that ��h = (��IDF=K)�1,where DF=K = (1��)p�2 is the di�erent. To satisfy(2.2) we therefore require thatp�I�I = (1� �): (2.4)Actually, (2.4) is equivalent to (2.2) because theabsence of dyadic rami�cation in F=F+ guarantees� is even [Bayer-Fluckiger and Martinet 1994, x 3].

Proposition 2.1. Condition (2.4) can be satis�ed (withsome � 2 F+ totally positive) if and only if��lp � = 1:
Proof. The extension F=F+ is unrami�ed at all �-nite primes, so class �eld theory tells us that theleft-hand side of (2.4) is in the kernel of the Artinmap. In other words, for (2.4) to hold (1��) mustbe decomposed in F , and so p decomposed in K.Conversely, if this is satis�ed, we can write(1� �) = P�P; (2.5)where P is a prime ideal in OF , and then (2.4) holdswith � = 1=p and I = P. �From now on we assume ��lp � = 1, and �x P as in(2.5). In order to satisfy (2.4) with � = 1=p, wemay also put I = J�J�1P, where J is any nonzerofractional ideal of F . This will turn out to be al-ready the most general case. Namely, let cl(J) de-note the ideal class of J, and Cl(F ) the class group;put G = Gal(F=K). Denote the K-isometry classof the lattice � by [�].
Theorem 2.2. If (V; h;�) is given by (2.3) and (2.4)is satis�ed , then � = 1=p up to isometry . Further-more, with this choice of �, the mappingcl(J) 7! [�]; where � = J�J�1P;gives a bijection between G n (Cl(F )=imCl(F+))and the set of all K-isometry classes of lattices �as before.
Proof. Exactly the same as for the case l = 1 treatedin [Quebbemann 1992, Theorem 3]. �To produce an explicit family of lattices we shallmake use of G-invariant ideal classes.
Proposition 2.3. The group Cl(F )G is generated byimCl(K) and cl(P). Its order is r = hK(p�1)=uK,where hK = #Cl(K) and uK = #O�K .
Proof. Let � be a generator of G. If cl(J) is G-invariant, then J = �J� for some � 2 F satisfyingNF=K(�) 2 O�K. The local norm at the rami�ed
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prime P is the (p� 1)-st power (i.e., trivial) on Fp .This shows that NormF=K(�) = 1. Then � = �=��for some � 2 F � by Hilbert's Theorem 90, andJ may be changed to become a G-invariant ideal.Since only P and �P are rami�ed in F=K, then J isequivalent to a power of P times an ideal comingfrom K. The value of r is given by the formula ofTakagi and Chevalley in [Lang 1990, Ch. 13, x 4].�
Definition 2.4. For m = 1; : : : ; r, let B(m)n;l denotethe unimodular OK-lattice given as above by (theclass of) J = Pm�1. Explicitly,B(m)n;l = Pm�P1�m; h(x; y) = 1p TrF=K x�y:The relation cl(P)r = 1 implies that B(r+1�m)n;l mustbe isometric to the complex conjugate of B(m)n;l .Therefore, being interested in B(m)n;l as a euclideanlattice, we can restrict ourselves to the range1 � m � b 12(r + 1)c:We note that Pm�P1�m contains the ideal (1� �)m,and the latter is just the lattice A(m)p�1 of Craig [Con-way and Sloane 1988, Ch. 8], tensored with OK .
Theorem 2.5. Considered as a euclidean lattice indimension n = 2(p � 1), the lattice B(m)n;l is even,of determinant lp�1, and isometric to pl (B(m)n;l )�.Moreover we have minB(m)n;l � 2c minA(m)p�1, wherec is as in (2.1). If l 2 f1; 2; 3; 5; 7; 11; 23g (that is,if 24=(1 + l) is integral), we also haveminB(m)n;l � 2 bn(1 + l)=48c+ 2: (2.6)

Proof. Only the last statement is not yet obvious. Ituses Fricke modular forms and is a general boundbased on [Quebbemann 1995, Theorem 7]. For l =1 and 3 see [Conway and Sloane 1988, Ch. 7]. �One has minA(m)p�1 � 2m, with conjectural equalitywhen m � 14(p + 1) [Bachoc and Batut 1992, x 3].However, only in some special cases does B(m)n;l at-tain the minimum value of 4mc and the bound in(2.6). The computations reported on in the next

section will exemplify this. We are particularly in-terested in examples that attain the bound (2.6).Such lattices are called extremal (after Sloane),and their theta-series are uniquely determined bythe theory of modular forms [Quebbemann 1995].
3. COMPUTATIONAL RESULTS

Proposition 3.1. Let a 2 Z satisfy a2 � �l mod p,and put � = a�p�l. Then P = (1��; �) satis�es(2.5), andPm�P1�m = ((1� �)m; (1� �)1�m�) (3.1)for 1 � m < 12p.
Proof. Clearly P�P = (1� �). ThenPm�P1�m = (1� �)1�mP2m�1;and it su�ces to consider Pi for 1 � i � p�1. Now(�; ��) = (1), and multiplying by � we obtain (�) =(�2; ���) � (�2; (1� �)i). Then, by induction,Pi = ((1� �)i�1; �)(1� �; �) = ((1� �)i; �): �Using (3.1) we obtain 2n generators of B(m)n;l overZ (in an obvious integral basis of F=Q ). AfterHermite reduction of the (n; 2n) coe�cient matrix,we arrive at a Gram matrix for this lattice. Inthe following examples the level will be restrictedto the values l = 1; 2; 3; 5; 7. We always assume1 � m � b 12(r + 1)c, with r as in Proposition 2.3.
Dimension 12 (p = 7). Here l = 3 or 5. For l = 3 wehave r = 1 and obtain B(1)12;3 = K12 as in [Bayer-Fluckiger and Martinet 1994, x 4]. For l = 5 wehave r = 6 and m � 3. Actually B(2)12;5 and B(3)12;5are extremal, with minimum 4, and nonisometric(over Z), with automorphism groups of order 25327and 25325 7, respectively. It was shown in [Scharlauand Hemkemeier 1994] that there are exactly twofurther lattices of minimum 4 in this genus. Theyare modular and have automorphism groups of or-der 2634 and 28345, respectively, neither of whichis divisible by 7. This result has been obtainedindependently by G. Nebe at Aachen.
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Dimension 20 (p = 11). Here l = 2 and 7. Inboth cases r = 5, so m � 3. For l = 2 againtwo nonisometric extremal lattices arise, of whichB(2)20;2 = [2:M12:2]20 has �rst occurred in [Pleskenand Nebe 1995]; also B(3)20;2 occurs there, but wasknown before. (In this case the identi�cations viaGram matrices were done by Nebe.) For l = 7 weobtain one extremal lattice (minimum 8), namelyfor m = 2; B(3)20;7 has minimum 6. We have iden-ti�ed B(2)20;7 with [2:M22:2]20 of [Plesken and Nebe1995], which was commented on in Section 1.
Dimension 24 (p = 13), l = 1 and 3. For l = 1we have r = 3, so m � 2, and B(2)24;1 = �24 as in[Quebbemann 1992]. For l = 3, the value r = 2excludes extremality.
Dimension 32 (p = 17), l = 1 and 2. In the �rst casewe have r = 4, som � 2. Actually B(2)32;1 is extremaland not isometric to the ubiquitous BW32. Thelatter, however, arises from a noninvariant idealclass [Quebbemann 1992]. In the case l = 2 wehave r = 8;m � 4. No extremal lattice is obtainedhere (for m = 2; 3; 4 the minimum is 4 and thenumber of minimal vectors is 237 � 17, 233217, and2313 � 17, respectively).
Dimension 36 (p = 19), l = 2 and 3. For l = 2 (withr = 9 and m � 5) we obtain extremal lattices(minimum 6) when m = 3; 4; 5. For l = 3 (withr = 3 and m � 2) an extremal lattice would haveminimum 8 and improve the sphere packing record.However, B(2)36;3 has only minimum 6. Now in thiscase hF = 9 and hF+ = 1, and we are very gratefulto H. Cohen for computing Cl(F ) for us. The groupturned out to be cyclic and generated by cl(Q),with Q a prime ideal over 37; but also � = Q�Q�1Phad minimum 6. (The six ideal classes of order9 make up two G-orbits, and the two lattices arecomplex conjugate; so all lattices from Theorem 2.2have been considered now.)
Dimension 44 (p = 23), l = 5 and 7. For l = 5 wehave r = 22, so m � 11, and extremality wouldmean that the minimum were 12. However, com-putation gives the mysterious sequence of minima

m 1 2 3 4 5 6 7 8 9 10 11min 2 4 6 8 8 8 8 8 10 8 4� � 1 5 9 11 2 15 3 5 114 8 1
TABLE 1. Minimum of B(m)44;5.shown in Table 1. The last row � � in this tableshows the number of minimal vectors, divided by22 � 23. For l = 7 extremality is impossible alreadyby the fact that in this case the extremal modularform contains a negative Fourier coe�cient.

Dimension 56 (p = 29), l = 1, 5, and 7. For l = 1we have r = 7 andm � 4. Form = 2 and 3 the lat-tices have minimum 4, and the number of minimalvectors is 42 �28 �29 and 5 �28 �29, respectively. Thelattice B(4)56;1 turns out to be extremal. An extremalunimodular lattice in dimension 56 had been ob-tained previously by combining a construction ofOzeki with the existence of a ternary [56; 28; 15]-code [Ozeki 1989, Example 5]. We did not try toidentify B(4)56;1 with some lattice coming from thiscode construction. For l = 5, the largest minimumof a lattice B(m)56;5 is 10. So these lattices are farfrom being extremal (min = 16). For l = 7, theextremal modular form has a negative coe�cient.Finally, Table 2 summarizes all extremal B(m)n;l forn � 56. Part of the data also follows from theoreti-cal reasons. For example, the number � of minimalvectors is predicted by the extremal modular form,and for l = 1 and 3 all B(m)n;l (no matter if extremalor not) are eutactic because then O�K � (F+p o F�p),and therefore AutB(m)n;l , acts R -irreducibly.One might hope for the existence of extremaleven unimodular lattices in dimensions n = 72 andn = 80. Actually B(4)80;1 and B(5)80;1 remain candi-dates after LLL reduction, but we are unable toverify that the minimum really is 8. All B(m)72;1 haveminimum at most 6.
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n l m min � P E4 2 1 2 24 yes yes4 5 1 2 6 no no4 11 1 4 12 no no4 23 2 6 12 no no8 1 1 2 240 yes yes12 3 1 4 756 yes yes12 5 2 4 126 no no12 5 3 4 126 no no20 2 2 4 3960 yes yes20 2 3 4 3960 yes yes20 7 2 8 6160 yes yes24 1 2 4 196560 yes yes32 1 2 4 146880 yes yes36 2 3 6 164160 yes yes36 2 4 6 164160 yes yes36 2 5 6 164160 yes yes56 1 4 6 15590400 yes yes
TABLE 2. Extremal B(m)n;l for n � 56. The last twocolumns indicate whether the lattice is perfect andeutactic.
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