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We study even modular lattices having level [ and dimension
2(p — 1), for p prime, and arising from the ideal class group
of the p-th cyclotomic extension of Q(v/—1). After giving the
basic theory we concentrate on Galois-invariant ideals, obtain
computational results on minimal vectors and isometries, and
identify several old or new extremal lattices.

1. INTRODUCTION

In this paper—a sequel to [Bachoc and Batut 1992;
Quebbemann 1992; Quebbemann 1995]—we deal
mainly with a family of lattices BT(:;) in euclidean
spaces, related to Craig’s lattices Al(,rf)l. Each lat-
tice Bf:';) has dimension n = 2(p — 1), contains

m)

the tensor product of AI(,_1 with the ring of inte-
gers in Q(v/—1), and is hermitian-unimodular over
this ring (therefore similar to its Z-dual, with de-
terminant [P~'). Like A;T)l, each lattice Bé?;)_l),z
admits a simple description as a cyclotomic ideal
displaying the affine-linear group I,/ [ as a group
of automorphisms. Our family, however, includes
more prominent individuals: there are Fg = Bé}l),
K, = Bg??,, Aoy = Béi?l, but also Plesken and
Nebe’s

[2.M12.2]20 = B£3?2 and [2.M22.2]20 = Bé?)?7

(the latter appears to give the highest “isodual
Hermite number” known for n = 20, and it is one of
three “extremal” lattices of minimum 8 we know).
On the other hand, our lattices are harder to ana-
lyze than Craig’s: we cannot give a general lower
bound on the minimum, nor theoretically decide
eutaxy when [ > 3. Information on these and re-
lated questions is obtained for p < 29 by machine
computations using PARI [Batut et al. 1993].
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2. UNIMODULAR CYCLOTOMIC LATTICES OVER
IMAGINARY-QUADRATIC FIELDS

Let I be a square-free positive integer. Set K =
Q(v/—1), and let O be the ring of integers in K.
Given a positive definite hermitian space (V, h) of
dimension k over K, we also consider it as an inner
product space of dimension n = 2k over QQ for

z-y=cTrg/q h(z,y)

with

(2.1)

{1 if I = 3 mod 4,

% otherwise.

Then, if A is an Og-lattice on V, its hermitian
dual lattice A}, is v/ —! A*, where A* is the euclidean
dual. We shall deal with lattices satisfying

A=A; and z-x€2Z forall ze€A. (2.2

(Of course, for I = 3 mod 4 the first condition here
implies the second.) As a euclidean lattice such
a A is even and isometric to v/IA*, therefore of
determinant [*.

Let p be an odd prime not dividing [, and
a nontrivial p-th root of unity over K. We put
F = K(¢) and remark that [F' : K] =p— 1. Con-
sequently, if p divides the order of the isometry
group Auty A for a lattice A as above, part of V'
must be a nonzero F'-vector space, and therefore
p— 1 is at most equal to k. We shall deal with the
case k = p — 1, and then can assume [Feit 1974,

§ 9] that

V=F, h(z,y)="Trrk(bzy), A=7T, (2.3)

where the bar indicates complex conjugation, 6 is
a totally positive element in F* = FNR, and J is a
fractional ideal of F. Note that A} = (6JDp/x) !,
where Dp/x = (1—()?? is the different. To satisfy
(2.2) we therefore require that

p6IJ = (1 - (). (2.4)

Actually, (2.4) is equivalent to (2.2) because the
absence of dyadic ramification in F'/F" guarantees
A is even [Bayer-Fluckiger and Martinet 1994, § 3].

Proposition 2.1. Condition (2.4) can be satisfied (with
some 6 € F™ totally positive) if and only if

(ll> =1

p

Proof. The extension F/F* is unramified at all fi-
nite primes, so class field theory tells us that the
left-hand side of (2.4) is in the kernel of the Artin
map. In other words, for (2.4) to hold (1 —¢) must

be decomposed in F', and so p decomposed in K.
Conversely, if this is satisfied, we can write

(1—-¢)=2PP, (2.5)

where P is a prime ideal in O, and then (2.4) holds
with 6 = 1/p and J = P. O

From now on we assume (‘7’) =1, and fix P as in
(2.5). In order to satisfy (2.4) with § = 1/p, we
may also put J = JJ~'P, where J is any nonzero
fractional ideal of F'. This will turn out to be al-
ready the most general case. Namely, let cl(J) de-
note the ideal class of J, and C1(F') the class group;
put G = Gal(F/K). Denote the K-isometry class
of the lattice A by [A].

Theorem 2.2. If (V, h,A) is given by (2.3) and (2.4)
is satisfied, then § = 1/p up to isometry. Further-
more, with this choice of 6, the mapping

cl(d) — [A], where A =JJ P,

gives a bijection between G\ (Cl(F)/im Cl(F™1))
and the set of all K-isometry classes of lattices A
as before.

Proof. Exactly the same as for the case [ = 1 treated
in [Quebbemann 1992, Theorem 3]. O

To produce an explicit family of lattices we shall
make use of G-invariant ideal classes.

Proposition 2.3. The group Cl(F)€ is generated by
im CI(K) and cl(P). Its order isT = hx(p—1)/uk,
where hg = # CI(K) and ug = #0%.

Proof. Let o be a generator of G. If cl(J) is G-
invariant, then J = aJ? for some a € F satisfying
Np/k(a) € 0. The local norm at the ramified
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prime P is the (p — 1)-st power (i.e., trivial) on F,,.
This shows that Normpg, () = 1. Then oo = 3/37
for some 8 € F* by Hilbert’s Theorem 90, and
J may be changed to become a G-invariant ideal.
Since only P and P are ramified in F/K, then J is
equivalent to a power of P times an ideal coming
from K. The value of r is given by the formula of
Takagi and Chevalley in [Lang 1990, Ch. 13, §4].
O

Definition 2.4. For m = 1,...,7, let BT(:';) denote
the unimodular Og-lattice given as above by (the
class of) § = P™~1. Explicitly,

1
j)m:])l m h(l’,y) = —'TI‘F/KJJ?].

nl_

The relation cl(P)" = 1 implies that B, ™™

be isometric to the complex conJugate of B,(:,’).

must

Therefore, being interested in Bf:r;) as a euclidean
lattice, we can restrict ourselves to the range

1<m< |L(r+1)).

We note that P™P~™ contains the ideal (1 — ()™,
and the latter is just the lattice A(m1 of Craig [Con-
way and Sloane 1988, Ch. 8], tensored with Ox.

Theorem 2.5. Considered as a euclidean lattice in
dimension n = 2(p — 1), the lattice B,(:,';) is even,
of determinant [P~ and isometric to \ﬂ(BT(L";))*
Moreover we have min B( < 2¢ min Az() 1, where
cisasin (2.1). Ifl € {1,2,3 5,7,11,23} (that is,

if 24/(1 +1) is integral), we also have

min B{"Y < 2 [n(1+1)/48] + 2. (2.6)

Proof. Only the last statement is not yet obvious. It
uses Fricke modular forms and is a general bound
based on [Quebbemann 1995, Theorem 7]. For [ =
1 and 3 see [Conway and Sloane 1988, Ch. 7]. O

One has min A(m) > 2m, with conjectural equality
(p + 1) [Bachoc and Batut 1992, §3].
However, only in some special cases does B,(;r[) at-
tain the minimum value of 4mc and the bound in
(2.6). The computations reported on in the next

when m <

section will exemplify this. We are particularly in-
terested in examples that attain the bound (2.6).
Such lattices are called extremal (after Sloane),
and their theta-series are uniquely determined by
the theory of modular forms [Quebbemann 1995].

3. COMPUTATIONAL RESULTS

Proposition 3.1. Let a € Z satisfy a*> = —I mod p,

and put m = a—+/—1l. Then P = (1—(, 7) satisfies
(2.5), and

PP = ((1-0O™ (10 ) 3
for1<m< %p.
Proof. Clearly PP = (1 — (). Then

:J)mj)lfm — (1 _ C)lfmgﬂmfl,

and it suffices to consider P for 1 < i < p—1. Now
(m,7) = (1), and multiplying by = we obtain (7) =
(r%, ) C (w2, (1 — ¢)%). Then, by induction,

=((1-Q"h,ml-¢m=(1-¢)m). O

Using (3.1) we obtain 2n generators of BT(:';) over
Z (in an obvious integral basis of F/Q). After
Hermite reduction of the (n, 2n) coefficient matrix,
we arrive at a Gram matrix for this lattice. In
the following examples the level will be restricted
to the values | = 1,2,3,5,7. We always assume
1 <m < [3(r+1)], with 7 as in Proposition 2.3.

7). Herel =3 or 5. For [ = 3 we
have » = 1 and obtain ng = K, as in [Bayer-
Fluckiger and Martinet 1994, §4]. For [ =5 we
have r = 6 and m < 3. Actually B 5 and B(3)
are extremal, with minimum 4, and nonisometric
(over Z), with automorphism groups of order 2°3%7
and 2°3%5 7, respectively. It was shown in [Scharlau
and Hemkemeier 1994] that there are exactly two
further lattices of minimum 4 in this genus. They
are modular and have automorphism groups of or-
der 263 and 283%5, respectively, neither of which
is divisible by 7. This result has been obtained
independently by G. Nebe at Aachen.

Dimension 12 (p =
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Dimension 20 (p = 11). Here | = 2 and 7. In
both cases r = 5, so m < 3. For I = 2 again
two nonisometric extremal lattices arise, of which
Bég?2 = [2.M;13.2]3 has first occurred in [Plesken

and Nebe 1995]; also Bég?Q occurs there, but was
known before. (In this case the identifications via
Gram matrices were done by Nebe.) For [ = 7 we
obtain one extremal lattice (minimum 8), namely
for m = 2; 35337 has minimum 6. We have iden-
tified 35337 with [2.M35.2]59 of [Plesken and Nebe
1995], which was commented on in Section 1.

Dimension 24 (p = 13), l = 1 and 3. For [ =1
we have r = 3, so m < 2, and Béi?l = Ay as in
[Quebbemann 1992]. For [ = 3, the value r = 2
excludes extremality.

Dimension 32 (p = 17), ! = 1 and 2. In the first case
we have r = 4, som < 2. Actually B?E;?l is extremal
and not isometric to the ubiquitous BWj3,. The
latter, however, arises from a noninvariant ideal
class [Quebbemann 1992]. In the case | = 2 we
have r = 8,m < 4. No extremal lattice is obtained
here (for m = 2,3,4 the minimum is 4 and the
number of minimal vectors is 237 - 17, 233217, and
2313 - 17, respectively).

Dimension 36 (p = 19), [ = 2 and 3. For [ = 2 (with
r = 9 and m < 5) we obtain extremal lattices
(minimum 6) when m = 3,4,5. For | = 3 (with
r = 3 and m < 2) an extremal lattice would have
minimum 8 and improve the sphere packing record.
However, ngzg has only minimum 6. Now in this
case hr =9 and hp+ = 1, and we are very grateful
to H. Cohen for computing C1(F') for us. The group
turned out to be cyclic and generated by cl(Q),
with Q a prime ideal over 37; but also A = QQ 1P
had minimum 6. (The six ideal classes of order
9 make up two G-orbits, and the two lattices are
complex conjugate; so all lattices from Theorem 2.2
have been considered now.)

Dimension 44 (p = 23), [ =5 and 7. For | =5 we
have r = 22, so m < 11, and extremality would
mean that the minimum were 12. However, com-
putation gives the mysterious sequence of minima

m 123 45 678 9 10 11
mn | 2 46 88 8 88 10 8 4
T 159 11 2 15 3 5 114 8 1

TABLE 1. Minimum of B‘gzg.

shown in Table 1. The last row 7* in this table
shows the number of minimal vectors, divided by
22-23. For | = 7 extremality is impossible already
by the fact that in this case the extremal modular
form contains a negative Fourier coeflicient.

Dimension 56 (p = 29), [ =1,5,and 7. For [ =1
we have r = 7and m < 4. For m = 2 and 3 the lat-
tices have minimum 4, and the number of minimal
vectors is 42-28-29 and 5-28-29, respectively. The
lattice Béé?l turns out to be extremal. An extremal
unimodular lattice in dimension 56 had been ob-
tained previously by combining a construction of
Ozeki with the existence of a ternary [56,28, 15]-
code [Ozeki 1989, Example 5]. We did not try to
identify Béé?l with some lattice coming from this
code construction. For [ = 5, the largest minimum
of a lattice Bég’g is 10. So these lattices are far
from being extremal (min = 16). For [ = 7, the
extremal modular form has a negative coeflicient.

Finally, Table 2 summarizes all extremal BT(:;) for
n < 56. Part of the data also follows from theoreti-
cal reasons. For example, the number 7 of minimal
vectors is predicted by the extremal modular form,
and for [ = 1 and 3 all BS”;) (no matter if extremal
or not) are eutactic because then 0% x (F} x Fy),

and therefore Aut BT(:;), acts R-irreducibly.

One might hope for the existence of extremal
even unimodular lattices in dimensions n = 72 and
n = 80. Actually Béé?l and Bég?l remain candi-
dates after LLL reduction, but we are unable to
verify that the minimum really is 8. All B;gfi have
minimum at most 6.
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n | m min T P E
4 2 1 2 24 yes yes
4 5 1 2 6 no no
4 11 1 4 12 no no
4 23 2 6 12 no no
8 1 1 2 240 yes yes
12 3 1 4 756 yes yes
12 5 2 4 126 no no
12 5 3 4 126 no no
20 2 2 4 3960 yes yes
20 2 3 4 3960 yes yes
20 7 2 8 6160 yes yes
24 1 2 4 196560 yes yes
32 1 2 4 146880 yes yes
36 2 3 6 164160 yes yes
36 2 4 6 164160 yes yes
36 2 5 6 164160 yes yes
56 1 4 6 15590400 yes yes
TABLE2. Extremal Br(:;) for n < 56. The last two

columns indicate whether the lattice is perfect and
eutactic.
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