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Threshold Growth is a cellular automaton on an integer lat-
tice in which the occupied set grows according to a simple
local rule: a site becomes occupied if and only if it sees at
least a threshold number of previously occupied sites in its
prescribed neighborhood. We study the minimal number of
sites that these dynamics need for persistent growth in two di-
mensions.

1. INTRODUCTION

One of the simplest imaginable cartoons for the
spread of a “droplet” in space posits that a va-
cant site should join the occupied region if it sees
enough occupied sites around it. This rule distills
some key features of cellular automaton models for
excitable media and crystallization, which were the
subject of our previous empirical and theoretical
research [Durrett and Griffeath 1993; Fisch et al.
1991; 1993; Gravner and Griffeath 1997]. The re-
sulting dynamics, called Threshold Growth, were
studied in detail in [Gravner and Griffeath 1993;
1996], where we established asymptotic shape and
first passage results in both the discrete and con-
tinuous space settings. Here we continue our in-
vestigation of Threshold Growth, focusing on the
size, geometry, and abundance of minimal seeds
needed for persistent nucleation. We feel that this
study provides some modest insight into the mech-
anism for such nucleation in deterministic spatial
interactions, a decidedly murky subject. Let us
begin, then, by briefly summarizing some basic in-
gredients of the theory; readers are referred to our
earlier work for additional background.
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Discrete Threshold Growth has two parameters:
the neighborhood N and threshold 6. Here 0 is a
positive integer, and N is a finite subset of Z? that
includes the origin; we say that x 4+ N is the neigh-
borhood of site x. Given A C Z?, define

T(A)=AU{z:|(z+N)NA| > 6}.

Start from an initial Ay C Z? and compute T"(A4y),
forn=0,1,2,..., to generate the dynamics. Also,
write T%(Ag) = U,,50 T"(4o)-

We say that a finite initial set A, generates per-
sistent growth if |T°°(Ap)| = oo. The dynamics are
omnivorous if, for every Ay that generates persis-
tent growth, T>(Ay) = Z2. Nucleation parameters
v and v are defined as follows. Let v = y(N,0)
be the smallest ¢ for which there exists an Ay that
generates persistent growth and such that |A4y| =
i. Also, let v = v(N,60) be the number of sets
Ay of size vy that generate persistent growth and
have the leftmost of their lowest sites at the ori-
gin. Call a Threshold Growth model voracious
if 7%(Ay) = Z? for any of the v initial sets Ay
described above. We believe that dynamics in-
duced by nice neighborhoods—for example, neigh-
borhoods that are obese in the sense of [Gravner
and Griffeath 1993]—are always voracious (and, in-
deed, omnivorous), but have not been able to show
this. Recently, T. Bohman devised a remarkable
combinatorial argument to prove [Bohman > 1997,
Theorem 1] that Threshold Growth dynamics are
omnivorous for any threshold in the box neighbor-
hood case, where N is the (2p 4+ 1) x (2p 4+ 1) box
centered at the origin, that is, N = N, = {z :
|z]l < p}. For this reason, and for the sake
of simplicity, we will restrict our analysis to box
neighborhoods throughout this paper. However,
many of our techniques can easily be adapted to
more general settings.

As already mentioned, our principal aim here is
to study the size, geometry and abundance of the
smallest initial configurations that generate per-
sistent growth. See [Gravner and Griffeath 1997]
on convergence to Poisson—Voronoi tessellations for
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a concrete instance of the role of v and v in the
exact asymptotics of some self-organizing random
cellular automata. The “engineering” approach
we will adopt is somewhat analogous to the SPO
recipes of [Durrett and Griffeath 1993], although
our task here is rather more difficult because per-
sistent growth involves infinitely many time steps.
We conclude this Introduction by briefly summa-
rizing our results.

Section 2 begins by establishing the threshold—
range convergence of y: we show that there exists

a right continuous function vg : (0,2) — (0, 00)
such that, for each A € (0, 2),
YNp Ap+1)%) ~ye(N)p*  as p — co.

It is not difficult to see that there exists a v. > 0
such that yz(A) = X on (0,7.) but not on (v.,2).
We proceed to combine geometric arguments with
large—neighborhood experiments in order to deter-
mine that 7. € (1.61,1.66). The way we obtain
these rather accurate upper and lower bounds of-
fers some insight into the geometry of the most
efficient growing droplets, at least if size is deemed
the ultimate measure of efficiency. The remainder
of Section 2 deals with the behavior of vy close
to 2. It is clear that yx goes to oo, but how
fast? The question remains open, though we are
able to show that vz ()\) lies between C; (2 — \)~1/2
and Cy(2 — X\)™! for suitably chosen constants C;
and C..

Section 3 continues our investigation of the size
of the smallest growing seeds, but in contrast to
Section 2 we impose a severe constraint on their
geometry, dealing only with square seeds. This
restriction makes it possible to study experimen-
tally a critical size r. = r.(N,,0), the smallest
r for which an r x r square grows. Our main
rigorous result in this section concerns Threshold
Growth at the largest threshold for which v < oo:
0 = p(2p+1). For this extremal @, and for p large,
we show that 7, is of order p?.

The paper concludes with a section devoted to
some computational and asymptotic aspects of the
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“abundance” parameter v. Not surprisingly, its
analysis is vastly more difficult, so we have many
more questions than answers at this point.

The main notational conventions of the paper
are as follows. As is customary, define the norms

(1, 2ol = [ |+ |22,
(21, z2)lls = V[P + [af?,
|

2
(21, 22)|oo = max{|zy], |z, ]},

and the balls B,(a,r7) = {z : ||z —a], < r}.
Also, let R(a,b) be the (2a + 1) x (2b + 1) rect-
angle centered at the origin. Context will make it
clear whether these are subsets of the lattice Z? or
the plane R?. The Euclidean version of Threshold
Growth (to be introduced in Section 2) is denoted
by Tg, and the function vz mentioned above turns
out to be the smallest area those dynamics need to
grow. Finally, r. is defined above to be the smallest
side of a growing square for the discrete Threshold
Growth, while 7. is the analogous quantity for the
Euclidean dynamics.

2. THE SIZE OF v FOR LARGE NEIGHBORHOODS

This section provides some estimates on the size of
~ and v for range p box neighborhoods. Our results
make use of the Euclidean space version of Thresh-
old Growth from [Gravner and Griffeath 1993]. All
subsets of R? that we introduce will be assumed to
be measurable. Fix a 0z > 0 and Ny C R2. Given
B C R?, define

Te(B) =BU{x:area((z + Ng) N B) > 0g}.

As before, denote T3(B) = U, T%(B). A Eu-
clidean set B is extensible if it is compact and
for every bounded F' C R? there exists an n with
F C T%(B). Define vg = yg(Ng,0g) as the infi-
mum of a > 0 such that there exists an extensible
B with area(B) = a; this is, roughly speaking, the
smallest area needed for growth.

(A technical remark is in order here. The re-
quirement that an extensible set be compact may
seem unnecessarily strict; boundedness might be a

more natural assumption. In fact, these variants
give the same value of yg. The proof is left to the
reader.)

Since our analysis will focus on the square neigh-
borhood with radius 1, that is, Ng = B (0, 1), let
us abbreviate v5(0g) = 7u(Bx(0,1),0%).

Lemma 2.1. vz s a strictly increasing function on
(0,2). In fact, for \y < Ay, we have yg(Ay) >
YE(AL)+As— A1, Moreover, g is right continuous.

Proof. To prove the first assertion, assume that it
is not true, i.e., there exists a set B, extensible
for Tp(Ng, A2), with area(By) < yp(A1) + A2 — Ap.
Construct a set B, by removing any subset of area
A2 — Ay from By. Then B must be extensible for
Te(Ng, A1), but area(By) < vg(A1), a contradic-
tion.

We now proceed to check right continuity. To
this end, fix A < 2, a > 7yg()\), and choose an
extensible By with area(By) < a. Pick a positive
€ < 0.01 small enough so that A + ¢ < 2 and take
an integer R so large that the square B, (0, R)
is an extensible set for Tg(Ng, A\ + ¢), and that
By C B, (0,R). (The choice of 0.01 will become
clear in the next paragraph.) Then there exists a
finite n such that B, (0,R) C Tg(Ng, A)"(By) C
B, (0,R +n).

Now construct a slightly larger set B, D B, as
follows. Divide B (0, R+n+2) into § X £ squares.
Let S; be one of those squares, and k; the smallest
k for which area(Tp(Ng, \)F(By) NS;) > 0.23. If
k; = 0 make B agree with B, on ;. Otherwise,
pick a set S; C S; such that S;-H‘J'g_l(Bo) = @ and
area(S}) = ¢, and then choose B so that B;NS; =
(85U By) N S;. Since, for every z € Bo(0, R +n),
z + Ng includes at least 9 such squares, area((z +
Ng) N TL(Ng, A)(B)) > max{2,area((z + Ng) N
TL(Ng,A)(By)) + €} for any ¢ < n. This clearly
implies that

TE(NEa A+ 6)n(B(l)) i Boo(oa R)

Finally, note that area(B/) < area(By) + 4e x
(R 4 n + 2)?, which finishes the proof. O
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For noninteger p and 6, let us interpret T(N,,0) =
T(N|,, [0]). Before proving a proposition that es-
tablishes vy as the threshold-range limit of v, we
need two observations that help connect discrete
and Euclidean versions of the dynamics. The first
lemma below assumes that the two versions use
the same threshold, that the radius of the discrete
growth is slightly larger, and that the initial set
of the Euclidean growth dominates (in a natural
way) the initial set of the discrete dynamics. The
conclusion is that this last property holds for the
iterates of the two dynamics as well. The second
lemma then reverses the roles of the two versions
and proves a similar statement.

Lemma 2.2. Pick an integer p, a A € (0,2) and
let 0 = [(p+ 2)°A]. Assume that By C R* and
Ao C Z* have the property that By C Ag+Boo (0, 3).
Then, for every n > 0,

Te((p+ 3)Ne, (p+3)*2)"(Bo)
C T(Np+1,9)n(Ao) + BOO(O, %)
CT(N,,0 —8(p+1))"(Ao) + B(0,3). (2-1)

Proof. The second inclusion follows from the fact
that [N,+1\N,| = 8(p+1). To prove the first inclu-
sion, assume that y € Ty((p+5)Ng, (p+3)°A)(Bo)
and let © € Z* be such that |ly — z|| < 1. Since
area((y+ (p+3)Ng)NBy) > (p+ 3)°A, there must
exist at least @ sites z; € Z? such that the inter-
section: interior(Bu (%)) N (v + (p 4+ 35)Ng)) N
By is nonempty; assume this set contains a point
y; € R?. The triangle inequality, and the fact that
|lx — ;]| is an integer, imply that ||z — z;]|c <
p + 1. Moreover, interior(B.(;,3)) N By # & im-
plies that z; € Ag. Hence z € T(N,41,0)(Ap), and
the statement of the lemma holds for n = 1. Now
iterate to finish the proof. O

Lemma 2.3. Pick integers p and 6, and sets Ay C Z?
and By C R? such that Ag+ Bo(0,3) C By. Then,
for every n >0,

T(N,10)" (A0) + B (0, 5) C Te((p+ )N, 0)" (Bo).
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Proof. Assume that z € T(N,,0)"(4) and y € R?
are such that ||y —z|| < 3. If 2; € 4N, then by
the triangle inequality, B (2, 3) C y+ (p+1)Ng.
Therefore, area(By N (y + (p + 1)Ng)) > 6 and
y € Te((p + 1)Ng, 0)"(By). This verifies the claim
for n = 1, which, again, is clearly enough. 0

Proposition 2.4. For A € (0, 2),

2

p—>00 oz

Proof. It is useful to note that the scale invariance
of the Euclidean dynamics yields, for every r > 0,

’)’E(TNE,QE) = TZ’YE(OE/T‘Z). (2—3)

First fix integers p and 0, and take an A, C Z? that
generates persistent growth, with |As| = i. Put
By = Ap+B(0,3) C R?. Then area(B,) = i, and
B, is extensible for Tx((p+1)Ng, ) by Lemma 2.3.
(Note that we have used Theorem 1 from [Bohman
> 1997] here.) It follows from (2-3) that

0 ’Y(Nme) B
7E((p+1>2>§(p+1)2' e

Now fix A’ > A\, a > vg()\'), choose an extensible
By for Tg(Ng, ') with area(By) < a, and define
Ay ={x € Z?: Bo(z,35) N (p+ 3)Bo # @}. If p
is large enough that (p 4+ £)?X —8(p+ 1) > Ap® +
1, then, by Lemma 2.2, A, generates persistent
growth for T(N,, p?A), and therefore

7(Np7p2>‘) S |A0| = a“rea‘(AO + Boo(oa %))
< (p+1)? area(By + B (0,1/(p+1))
<(p+3)a, (2-5)

as soon as p is large enough.

Abbreviate the limit in (2-2) as lim, and simi-
larly for liminf and limsup. It follows from (2—4)
and (2-5) that for any A < X,

ve(A\) <liminf < limsup < yg(X\'),

and hence lim = y(\) by Lemma 2.1. O
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We make two remarks before proceeding. First,
whether 5 is continuous remains an open prob-
lem. We suspect that the regularity of Threshold
Growth should ensure continuity, but have no com-
pelling argument. A second observation concerns
voracity of the Euclidean dynamics. Namely, call
a compact set B weakly extensible if T (B) is un-
bounded. Assume for a moment that an extensible
set is replaced by a weakly extensible set in the def-
inition of yg. As the proof of Lemma 2.3 shows,
convergence result (2-2) still holds, and hence the
two definitions are equivalent.

Having established the existence of the threshold-
range limit yg, let us turn to the question of its size.
One easily verifies that yg(\) = X for relatively
small ), e.g., for A < 1, in which case a VA x VA
square is extensible. It is natural, then, to ask
which thresholds admit an omnivorous “droplet”
of the smallest possible size, so we define

Ye = sup{A > 0: yg(A) = A},

One of our main objectives in this paper is to de-
termine 7. within two percent.

Theorem 2.5. 1.61 < 7y, < 1.66.

Proof. We start with the upper bound, for which
the following estimates will be applied.

Proposition 2.6. (i) Fiz an « € [0,1). If Tp(Ng, A\)>
of a 2 x (2 — «) Euclidean box is bounded, then
Yo < X+ 4’

(i) Fiz an integer a € [0,p]. If T(N,41,0)® of a
20+ 1) x (20 + 1 — a) box is bounded, then
¥ < 4(0 + 4a?)/(2p + 1)*.

Proof of of Proposition 2.6. Let us denote the Eu-
clidean box from (i) by B, and the discrete one
from (ii) by B,. Let A +¢ < ~,, for some € > 0.
We start by proving that there exists an extensible
B C Ng for Tg(Ng, A) with area(B/)) < A +e. To
see this, take A" € (A +¢/2,\ +¢). Then there
exists an extensible By for Tg(Ng, \') such that
area(By) < A+ e. Find an = so that area((z +
Ng)NBy) > N, and take B = ((z+Ng)NBy) —z.

Then Bj C N is extensible for Ty(Ng,A) and
area(B)) < A +e.

Denote by Fi,..., F; the four 2 X « rectangles
that can be removed from Ny to leave a 2 X (2 —«)
box. We claim that area(Bj N F;) < 4a? + ¢ for
at least one 7. If this were not true, then no site
outside the 2a X 2a Euclidean box around 0 would
be added by the dynamics since the area such a
site could see would be then less than 4a® + \+¢& —
(4a® + €) = \; thus, B) would not be extensible.

Therefore, if A < 7., then for any € > 0 there
exists a set B;, obtained by adding to the full B,
a set of area at most 4o +¢, which is extensible for
T5(Ng, A). Consequently, B, itself is extensible if
the threshold is lowered to A — 4a® — e. This is
equivalent to statement (i) of the Proposition.

To prove (ii), fix @ and set @ = a/(p + 1). As-
sume that 6 < (p+3)’A. Under the hypothesis, we

claim that Tg((p+3)Ng, (p+3)* M) ((p+3)Ba) is
bounded, and therefore so is Tp(Ng, A)*°(B,). To
this end, observe that B, + B (0, ) is a Euclidean
(2p+1) x (2p+1—a) box, and (p+1)B, is a box of
the same dimensions. Therefore, Lemma 2.2 shows
that if B, does not generate persistent growth for
T(N,41,0), then (p+ %)Ba cannot be extensible for
Te((p+ 3)Ng, (p+ 3)*A), and hence 7. < A+ 4.
This completes the proof. O

Our bounds for . in Theorem 2.5 are virtually
impossible to derive by hand. To obtain them we
relied heavily on the the Windows-based CA simu-
lation program WinCA [Fisch and Griffeath 1996].
To demonstrate that experiments on finite boxes,
such as the one displayed in Figure 1, prove (or
disprove) persistent growth, we rely on the follow-
ing simple proposition. Denote R(a,b) = {(z,vy) :
|z|] < a,|y| < b}, and let T|S be the dynamics
restricted to set S C Z2, with zero boundary con-
ditions. That is, (T|S)(A) =T(4)N S.

Proposition 2.7. Assume that Ay C R(a,b).

(1) If R(a+1,b+1) C (T|R(d',b"))>°(Ap), for some
a' > a, b > b, then T>*(A4y) = Z°.

7 September 1997 at 10:13
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(2) If R(a,b)* N (T|R(a', b)) (Ao) = @, for some
a >a, b >0b, then T°(Ay) C R(a,b).

Proof. To prove (1), note that R(a,b) C T>°(Ay),
and that R(a + 1,0+ 1) C T"(R(a,b)), for some
finite ny. Hence, by translation invariance of 7,
R(a+2,b+2) C T™(R(a+1,b+1)) C T**(R(a,b)).
Continuing in this manner, we conclude that arbi-
trarily large rectangles are contained in T*(Ay).

To prove (2), note first that if n is the first time
n at which T"(Ay) N R(a,b)® # &, then

T (Ag) N (R(a+ 1,6+ 1)\ R(a,b)) # 2,
and thus
(TIR(a',b'))™ (Ao) N (R(a+1,b+ 1)\ R(a,b)) # 2.

Under the assumptions in (2), then, the restricted
and unrestricted dynamics agree on Ag, that is,

T"(Ao) = (T|R(a',0))" (Ao),
hence T"(Ap) C R(a,b) for all n. O

Propositions 2.6 and 2.7 now reduce the upper
bound to a large, judiciously chosen computation.
Namely, WinCA shows that T(Nyg1,42736)> of a
321 x 319 box is bounded, and so

e < 1.6597. (2-6)

For a lower bound we use (2-4). That inequality
implies that if a set Ay with |Ag| = € generates
persistent growth for T(N,, 0), then . > 6/(p+1)*.
Hence the challenge is to find the most efficient
shape for such an A, that grows, with the largest
possible 8. An example of our best design to date,
and its first 500 iterates, is shown in Figure 1.

The initial configuration (shaded dark gray) fits
snugly into N,. If the octagonal hole in the center
were filled the set would consist of the square N/,
where p' = [ (1 + v/5)p/4] ~ 0.809p, to which pro-
truding triangles with slopes ~ £2%%/? are added
at the corners. The octagonal hole is cut so that
the ratio of the length of its 90° sides to its height
is approximately v/2 — 1. Finally, the size of the

7 September 1997 at 10:13

FIGURE 1. A growing “hole” for p = 150, § = 36760.

hole is chosen so as to make the number of sites in
Ay exactly 6.

A few words are in order about how we deter-
mined these characteristics. Start from a “square
annulus” (1 —a)Ng\ (1 — 5)Ng, where 0 < a < 3,
with area X\. Let z < 1 — 8 and add zNg to the
hole. The dynamics then fills in at least the square
(o + A(z))Ng inside the hole, where A = A(z) =
2(1—a)—24/(1 — a)? — 2. The iteration given by
To =, Tpyy = a+A(z,), generates an x,, > 1 —a«
if @ > (3 —v/5)/4, suggesting p' ~ (1 —a)p. At
this point, we know that if 6 is such that N, grows,
then there is a set Ay of 0 sites (in fact, a square
annulus), such that T(N,,0)*(A4,) = Z*.

Using a similar argument, one can add sites (and
simultaneously increase 6) outside N,. Assume
that their number if sites in the n’th vertical strip
of N,, starting with the leftmost one, increases lin-
early as An. Consider an occupied set of octagonal
shape in the middle, with the ratio of the length of
its 90° sides to its height given by «, that is, the
convex hull of {(£n,+an),(£an,£n)}. This set
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will grow if its area 2(2— (1 —«)?)n? is larger than
the maximal area a point on its boundary does
not see, which is 2(1+ «?)n?. This determines the
largest possible 3 to be 4v/2, and the corresponding
« then is 2 — 1. A little experimentation shows
that the proper placement of the extra sites is at
the outside corners; in this case there is room for
some sites to be added inside the hole. We have
chosen the final shape of the hole to be octagonal
supposing that the greatest number of sites can be
added if the resulting shape matches the described
growing octagon. (An octagonal shape is merely
one that works, and most likely is not optimal.)
Using this architecture, and a substantial amount
of interactive optimization at the pixel level, we
have designed a growing set of size 6 for p = 150
and 6 = 36760 (the one in Figure 1), hence

. > 1.612. (2-7)

(Actually this configuration was obtained by first
finding analogous shapes for range 50, and then
range 100, optimizing interactively in each case,
and then rescaling with a paint program to boost
the range.) Since the upper bound (2-6) and the
lower bound (2-7) are so close, we conclude that
the suggested design is not too far from being an
optimal one. This completes the proof of Theorem
2.5. d

We now turn to the study of yg(\) near A = 2. Let
us begin by determining how large R should be so
that B, (0, R) is extensible. An easy computation
shows this as soon as R- (2 — \) > 2. But then
B, (0, R) \ B»(0, R — v/2) grows, proving the upper
bound

ve(\) < C - —— (2-8)

for some constant C' > 0.

The issue of lower bounds is much trickier. We
start with a relatively simple argument that shows
that

ve(A) > —Clog(2 — \). (2-9)

The argument begins with the elementary obser-
vation that there exists a large enough R, so that
area((z + Ng) N B2(0,R)) < 2 — 1/(4R) for any
z ¢ By(0,R) and R > Ry. Next, start with an
extensible set Ay, tessellate the plane R? into 2 x 2
squares, and call such a square S R-occupied if
area(SNAp) > 0.1/R. Assume now that 100- Ry <
R <1/(4(2—X)). Then we claim that the number
of R-occupied squares is at least 0.01 - R. Given
this, the logarithmic lower bound (2-9) follows eas-
ily.

To prove the claim above, assume that it is not
true for an R in the specified range. This implies
that there exist a finite set of balls By, Bs, ... with
radii ry, 72, ..., which are at least distance 4 apart,
cover all R—occupied squares, and are such that
71+ 73+ ... < 0.04 - R. The final observation is
that the dynamics cannot add even one new point
outside the union V = B; U By U.... To see this,
note that any point x ¢ V has area((x + Ng) N
V) <2—-1/(0.04 - R) and moreover z + Ny has
nonempty intersection with at most 4 squares from
the tessellation, so that area((z+Ng)N(VUA)) <
2—-1/(0.04- R)+0.4/R < X. This contradicts the
assumption that A, is extensible.

Which bound is closer to the correct order, (2-8)
or (2-9)? In fact, our next proposition indicates
that yz(A) obeys a power law close to A = 2. A
detailed proof of this result would be exceedingly
technical, so we will merely sketch the argument.
We suspect, but are presently unable to prove, that
(2-8) gives the correct exponent.

Proposition 2.8. For some constant C > 0,

1

AN >C- .
’YE()_ 5\

(2-10)

Proof. In this proof, C' will be a “generic constant,”
possibly changing value from one appearance to
the next.

We start by introducing the comparison dynam-
ics Tg,, a “local” version of Tg. In this part of
the argument, a set By C R? will remain fixed,
and is not the starting state for Tg,, but rather

7 September 1997 at 10:13



214 Experimental Mathematics, Vol. 6 (1997), No. 3

consists of “helpful” points. Let’s define T, (B) as
the union of B with the set of z € R? such that
(z4+Ng)NB # @ and area((z+Ng)N(BUBy)) > A.
The following estimate gives a lower bound on the
additional area T, needs to see in order to add
a shell of width 2 to a ball of radius R. We be-
lieve that the order 1/ VR is optimal; integration
then yields (2-10). This suggests that substantial
improvement on (2-10) is impossible without in-
troducing variable shapes into the argument.

Claim. There exists a small enough constant C > 0
so that Ty, (B2(0,R)) C By(0,R + 2) as soon as
area(B, \ B»(0,R)) < C/VR, and

5<R<C(2-))"1

To prove the claim, pick an M > 0 and divide the
annulus A(R) = B»(0,R + 2) \ By(0,R) into M
small radial sectors Sy, S1,...,S5y = Sy of equal
shape (see Figure 2). M should be chosen so that
S; N B3(0,R + 1) C z + Ny for every z € S; N
B5(0,R + %) (hence it is of the order O(R)). As-
sociate every sector S; with an angle «; defined
so that the following holds. Let W(z;, ;) be any
wedge with opening «; based at a point z; € S; N
B»(0, R+ 1) so that B,(0,R) C W (x;, ;). Then,
for every « € (S; N B2(0,R + 1)) \ Wz, ), we
have area((x +Ng) N (B2(0, R) U By) < A. A short
computation shows that that m — «; can be chosen
to be
i+m
C- Z area(S; N By),

j=i—m

where m is some fixed number. Another observa-
tion is that the two tangents to B, (0, R) at a point
z with [|z]l; = R+ 1 form an angle ¢ such that
T — @ ~ /2/R, when R is large.

With some work one can show that if ) . (m —
;) < C/V/R for some small enough C, then there
exists a piecewise linear closed curve ¢, such as
that partly shown in Figure 2, which encloses the
boundary of T3 (B2(0, R)). To illustrate how the
curve is constructed, imagine that only one of the
sectors, say Sy, has nonempty intersection with A,
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(we believe this is the worst case). Start with the
described wedge (with angle opening on the order
1/vR) inside S, and “bend” it at angles of or-
der 1/R in the other sectors. The general case is
considerably messier, since it is then necessary to
combine many bends of different magnitudes. We
omit the remaining details of the proof of the Claim
from our sketch.

FIGURE 2. Proof of the Claim.

For the second part of the argument, fix an ex-
tensible set A,. We will use the Claim to find a
lower bound on area(A,) for A close to 2. Sites in
Ay will be “helpful” for the local dynamics com-
parison. The initial step is to cover all “nucleation
centers” (sets that are able to start growing imme-
diately) with well separated balls.

To accomplish this task, choose any z;, such that
area((z; + Ng) N Ag) > \. Let BY = By(x,,8). If
there is an =, ¢ By(z,4) with area((z, + Ng) N
Ag) > A, let BY = By(w,,8). If there is an z5 ¢
By(21,4)UBy(xy,4) with area((z3+Ng)NAy) > A,
let BY = B,(xs,8). Continue until no more steps
are possible. After this is done, find two sets B?
and B;-) at distance less than 4, and replace them by
the smallest £? ball containing both. Continue this
procedure until all the balls are at distance at least
4. The final outcome is a set of balls BY,BY, ...
with radii ) > 7) > -+~ and r® = r{ + 79 4+ ---.
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(Note how this procedure is quite similar to part
of the argument that establishes (2-9).)

We now present an iterative scheme that first
enlarges any ball that has the potential to grow,
and then forms a well-separated covering of balls as
in the previous paragraph. (Enlargement mimics
growth, while the covering mimics coalescence, of
nucleating droplets in the underlying dynamics.)
More precisely, assume that there is a collection
of balls B¥, BY ... at distance at least 4 from one

another, with radii r¥ > 78 > ... and 7% = r¥ +
r¥ + ... If Ay has area at least C'/+/r¥ (where

C is the constant in the statement of the Claim)
in the annulus (BY + B,(0,2)) \ BF), then B¥! =
BF + B,(0,2). Otherwise Bf*' = BF. Then use
the same procedure as in the initial step to get
new balls separated by distance at least 4, and call
them Bt

Stop this procedure when it either leads to a
collection of balls that are unaffected by the first
step described in the previous paragraph, or else
r* > C(2—X)7'. In the first case, the Claim guar-
antees that A, cannot be extensible. Therefore, to
finish the proof, we have to find a lower bound on
area(Ap) in the second case.

In the k¥ — k+1 step described above, any 4 such
that B! # B requires at least area C/\/rF >
C/Vrk in Ay. Tt follows that the entire step re-
quires A, to have area at least C(r*t* — r*)/\/rk
in U, Bff' \ U, Bf. Another observation is that
rtt < rk 4 3.(number of balls Bf) < 4rk. The
proof is finished immediately if * > C/(2 — \).
Otherwise,

area(A,) > Cr’ + C "
(0)_ Z \/7”_k

k>0,rk<C/(2—))

/=N gy
> Crd + C/ —
To \/F
> ¢ )
2—-A
as required. O

3. THE SMALLEST GROWING SQUARES

Thus far, while studying the smallest sets that
grow forever, we have imposed no restrictions on
their geometry. However, when doing computer ex-
periments one typically starts with simple shapes
for the configuration of occupied sites, since it is
tedious to initialize the dynamics with sets such as
that shown in Figure 1. In this vein T. Bohman
recently posed a question, which arose in [Bohman
> 1997], concerning the size of the smallest square
box that grows forever if 8 is the largest supercrit-
ical threshold, i.e., 8 = p(2p + 1).

Bohman’s problem has motivated us to study
the size of the smallest r x r squares that gener-
ate persistent growth. We start this analysis by
proving that the iterates must have a high degree
of regularity in this case. To this end, we use the
concept of an obese set, a strong form of convex-
ity introduced in our paper [Gravner and Griffeath
1993]. Let us briefly review the definitions here.

A set A C Z? is called completely symmetric if
it is symmetric with respect to switching sign of
either coordinate and switching the coordinates.
Moreover, A is obese if the two—part cone condition
is satisfied:

(i) If x € A and the first coordinate z; > 0, then
r—e €A
(iIfx € Aand £, > 25 > 0, then z —e; + e, € A.

If A is obese, then Proposition A1l of [Gravner and
Griffeath 1993] guarantees that so is T(A); obese
initial sets thus eliminate nightmares associated
with irregular growth. In addition, obesity enables
us to prove the following simple proposition, useful
in deciding whether a square grows. In its state-
ment, the set Sy consists of the four points: (0,0),
(0,1), (1,0) and (1,1) (note that by adding Sy to
a square of odd side length one obtains a square of
even side length).

Proposition 3.1. Fiz an integer k > 0.
(1) Either T>°(B4(0,k)) C B1(0,2k) or else
T°(B,(0,k)) = Z>.
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(2) Either T°°(Sy + Boo(0,k)) C Sy + B1(0,2k) or 8 |

else T°(Sy + B, (0,k)) = Z>.
Proof. We will only prove the first statement, the

proof of the second being quite similar. If 6

TnO(BOO(Ouk)) N Bl(07 2k) 7é 9,

then, by obesity, 7"°(B,(0,%)) must include the 4 |

points (k+1,k) and (k+1, —k). For the same rea-
son, T™ (B (0, k)) includes all of e; 4+ B, (0, k), and
hence by symmetry B, (0,1) + B, (0, k). Thus, for

every n > 1, By (0,n)+Bau(0, ) C T (B, 0, k).
i
Define r. = r.(N,#0) as the least value of r such

that an r x r square generates persistent growth,
and define 7.(\) as the infimum of R > 0 such
that B, (0, R/2) square is extensible for Tp(Ng, A).
Then the same argument as in the proof of Propo-
sition 2.4 yields that

2
hm TC(NP7>\p )

p—r00 P

at all points A € (0,2) for which 7.(\) is contin-
uous. Unfortunately, it turns out that continuity
of 7. is even more difficult to establish than con-
tinuity of 5. So far, we have been able to prove
only that 7. is continuous on the interval (0,7.),
where v/, is the largest threshold A for which Ny is
extensible (or, equivalently, for which 7.(A) < 2).
Methods developed in Section 2, together with the
fact that T°(Nye1,42837)(Nig) = Z2, imply that
vl > 42837/162% > 1.63. We will not present the
complete argument for continuity below . (which
uses the Euclidean version of obesity quite heav-
ily), but merely indicate the main idea. Fix an R <
2 and € < 2 — R. Then every point z € B;(0, R)
sees a protruding corner of the e—enlarged box, i.e.,
area((z4+Ng)N(By (0, (R+¢)/2)\B, (0, R)) > £2/2.
This property (which fails to hold for R > 2), al-
lows one to show that there exists a 6 = d(¢) > 0 so
that if B, (0, R/2) is extensible for T(Ng, A), then
B, (0, (R + ¢€)/2) is extensible for T(Ng, A + 9).
Exploiting Proposition 3.1, 7.(N,,0) is easy to
compute for rather large ranges. We have used a
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0.2 0.4 0.6 0.8 1 1.2 14
FIGURE 3. Graph of .(N,,,8)/p versus v/8/p, for p = 20.
computer program and some WinCA experimen-
tation to determine r.(N,,0)/p for p = 20 and
0 =1,...,820: Figure 3 shows a plot of this func-
tion vs. v/#/p. The graph should approximate well
that of the function #.()\) versus v/); the emerging
message seems to be that this graph is not only
continuous, but even convex. What is clear from
the arguments in Section 2 is that 7,(\) = VX if
and only if A € [0,1] and that 7.()\) diverges like
(2—X)"! as A 1 2. Note that Figure 3 also suggests
discontinuous derivatives at the two values vV = 1
and V) = VL = 1.28.

To conclude this section, we provide an answer
to Bohman’s question mentioned earlier. As a con-
sequence of the argument below,

7e(N,, p(2p + 1))

lies between (v/2/16)p? and 2v/2p?, ignoring lower
order corrections in p. Figure 4 shows the largest
box that stops, together with its iterates, in the
case p = 20, 0 = 820. Its side has 322 sites; thus
r./p =16.1 and r./p* = 0.8075 in this case.

Proposition 3.2. There exist constants C; and Cs
such that for every p,

re(Ny, p(2p + 1)) € [C1p?, Cop?].
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It seems difficult to prove that r.(N,, p(2p+1))-p~2
converges, as there is no threshold-range limit in
this regime and so a straightforward comparison
with Euclidean dynamics is unavailable. Instead,
we make use of the transformation T, which oper-
ates on subsets of R? and is conjugate to T [Gravner
and Griffeath 1996]. We will also use the standard
notation for half-spaces: for a unit vector u € S,
H, ={z €eR : (z,u) <0}.

FIGURE 4. Growth from a square of side 322 for
p =20, 6 = 820.

Proof. It is enough to show that T°°(B,(0, R)) is
unbounded if R > C,p? and bounded if R < C\p?,
for suitably chosen constants C), and C..

To prove the first assertion, assume R is so large
that, for every u € S,

|(Ru+ N) N (Ru+ H) N (interior(B2(0, R)))‘|
<2p+ 1L

Then there is an € such that B,(0, R + ¢) is con-

tained in T(B,(0, R)) and thus T°°(B,(0, R)) = R?.

How large must R be so that the preceding con-
dition is true? A simple geometric argument shows

that the worst case is when « is a 45 degree vector,
in which case the lower bound for R (up to order
p?) is given by the following equation:

\/R2 — (pV2)2 = R — V2/2.

Therefore, if R > v/2p* + o(p?), then the ball will
grow forever.

To prove the second assertion, assume R is small
enough so that, for every u € S', we have

|(Ru +N) N B,(0, R)| < 6, (3-1)

in which case T(B»(0, R)) = B»(0, R).

To see when (3-1) is true, assume without loss
of generality that the direction of u is between 45
and 90 degrees. Then for any integer i € [—p, p],
the vertical line {z + ie; + aey,a € R} (where ey,
e, are the standard basis vectors) intersects

(Ru+N)N(Ru+ H, )N (Ru—2e;,+ H",) (3-2)

in at least two integer points. Hence the set (3-2)
intersects {x + be; + aey : a € R, |b] > p/2} in at
least p points. We are done once we make sure that
B, (0, R) leaves out these points. The worst case
situation is now when u is the 90 degree vector,
which, up to order p?, requires R to be smaller
than the one given by

VEZ— (p/2)? =R - 2.

Thus we conclude that B,(0, R) does not grow for
R < p?/16 + o(p?). O

4. COMPUTATION OF v FOR SMALL AND LARGE
NEIGHBORHOODS

Recall that v measures the abundance of persistent
seeds of minimal size. Thus, in order to compute
v, we need to determine those A, with |Ay| = v
for which T>(A) is bounded, and those for which
T>(Ap) = Z?. Bohman’s Theorem ensures that
these are the only two possibilities, although our
approach will end up checking voracity anyway. At
first glance, this task seems formidable, even in
small cases, since T>°(A;) depends on arbitrarily
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large times (and we cannot assume that iterates
become obese). Fortunately, Threshold Growth is
so well-behaved that Proposition 2.7 allows us to
compute v and check voracity in all cases we have
tried. In fact, if we chose o’ and b' about 2p larger
than a and b, respectively, then either (1) or (2) of
that Proposition always occurred. In any case, a
computer program can set a flag whenever neither
(1) nor (2) happens, and those cases can then be
checked separately.

We remark that Proposition 2.7 is formulated
in terms of rectangles to facilitate the computa-
tion of v. Suppose v = 6, so that all Ay with vy
sites that generate persistent growth are included
in a translate of N. To determine v one does not
count translations of a set Ay as distinct. An easy
implementation translates any prospective Ay so
that its leftmost lowest site is at the origin. Such
an Ay has all its other sites in ([—2p, 2p] x [0, 2p]) \
([—2p,0]x{0}). Thus one must check all subsets of
size #—1 within a set of 4p(2p+1) sites, a consider-
able but easily automated task. Interested readers
can download the program c4.c, which was used to
generate the Table below, by anonymous ftp from
cam8.math.wisc.edu. Ounly the 8 = 2 case of this
algorithm is easy to enumerate.

Proposition 4.1. If 0 = 2, then v = 2 and v =
4p(2p +1).

Proof. We only need to show that every pair of
sites inside N fills Z2 This is clearly true for a
horizontally adjacent pair. However, such a pair
must exist at time 2. U

Let us conclude the paper with a brief and rather
speculative discussion of the behavior of v for large
range. One expects %logu to have a threshold—
range limit, i.e.,

i 108 V(Ng, Ap?)

p—c0 Ap? = () @

should exist and be finite for A € (0,2). At present,

however, we do not know techniques to show con-
vergence, or even to give reasonable estimates on
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ne(A) for general A. This section contains a cou-
ple of simple preliminary results indicating only
that minimal seeds are effectively random when A
is small.

Proposition 4.2. Let \ be such that
Y(N,,0) = 0 for any 6 < \p>. (4-2)

Then ng(X') € (0,00) for any X' < X (meaning that
liminf of the expression in (4-1) is strictly positive,
and lim sup s finite).

Proof. If X satisfies (4-2), then there exists a set Ay
of size § = | \p?] that generates persistent growth.
Let 0 < 6 and A} C Ay with |A}| = ¢'. Then A}
grows indefinitely for the dynamics with threshold
¢', and therefore v(N,,6") > D\}T(ﬂa’) This gives

> (- 1)/ G -1)

On the other hand, v(N,,0) < ((2";1)2), which
gives

0= (1) (1)
O

Proposition 4.3. Assume that p — oo, § — o0,
slogp =0, and A =6/p*> — 0. Then

1 4

Elogu—log; — 0.
Moreover ng(A) ~ log s as A — 0 (meaning that
both liminf and limsup of the expression in (4-1)
satisfy this asymptotic formula).

Proof. Fix an ¢ > 0. Then, for large enough p,
4e?p* > 0, so N., grows. Therefore any subset of
N, of size 6 will grow as soon as it has no sites
outside N(1_.),. However, if n = (2p + 1)* and
a = (1-¢)? (%) > a’- (), which reduces the
proof to showing that

L
0

0 -nn—1)...(n—0+1)
e’ - 0!-n?

log -0,
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vN,0) | 6=2 | 6=3| =4 | 6=5 | 6=6| 6=T7
p=1 12 42 — — — —
p=2 40 578 | 4683 | 24938 | 94050 | 259308
p=3 84 | 2602 | 46704 | 574718
p=14 144 | 7702 | 241151
p=5 220 | 18038

TABLE 1. Values of v for small range.

219

an easy consequence of Stirling’s formula. The last
assertion of the proposition is even easier to check.
O

To our annoyance, we are not able to prove either
that (4-2) holds for all A < ., or that np is always
finite. Let us however assume these “facts” for the
sake of some speculative discussion. It seems clear
that nz()\), which is infinite at A = 0 by Propo-
sition 4.3, should decrease as A increases from 0
to 7., since there is less and less room for distri-
bution of sites inside N. Is ng(y.) = 07 We do
not hazard an answer to this intriguing question.
Neither do we offer a plausible scenario for the be-
havior of 7 (A) when A > 7. On the one hand, the
number of available sites grows in this regime since
the most efficient seeds no longer need be subsets
of N. On the other hand, the severe optimization
constraints inherent at v, should remain in effect.
A likely scenario would be for iz to have a strict
minimum at ., but it is conceivable, for instance,
that 1z might be constant on [y, 2).
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