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This paper examines the question of whether there is an un-
bounded walk of bounded step size along Gaussian primes.
Percolation theory predicts that for a low enough density of
random Gaussian integers no walk exists, which suggests that
no such walk exists along prime numbers, since they have ar-
bitrarily small density over large enough regions. In analogy
with the Cramér conjecture, | construct a random model of
Gaussian primes and show that an unbounded walk of step
size ky/log |z| at z exists with probability 1 if k > /27,
and does not exist with probability 1 if k < /27 A., where
Ac & 0.35 is a constant in continuum percolation, and so con-
jecture that the critical step size for Gaussian primes is also

V2w log |z|.

1. INTRODUCTION

A problem that has attracted some recent atten-
tion [Gethner 1996; Gethner and Stark 1997; Geth-
ner et al. 1998; Guy 1994, A16] is whether there
is a walk to infinity of bounded step size along the
Gaussian primes. This was first posed by Basil
Gordon in 1962, and it was subsequently shown in
[Jordan and Rabung 1970] that there is no walk
of step length < /10 starting from the origin. In
[Gethner et al. 1998], this has been improved to in-
clude walks of step length at most V/26. Note that
these results do not rule out a walk to infinity of
such step sizes from some point far away from the
origin.

I will examine the relationship between this prob-
lem and the theory of percolation. This theory
deals with the similar problem of walking to infin-
ity on a lattice, but where the sites are now given
a fixed probability p of being included (see [Dur-
rett 1988; Efros 1982; Grimmett 1989; Stauffer and
Aharony 1994] for an introduction). The main fea-
ture of percolation is that it exhibits phase transi-
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tion, i.e., there is a critical probability 0 < p. < 1
for which an infinite path exists with probability 1
if p > p., and no infinite path exists with proba-
bility 1 if p < p.

The theory of percolation gives a heuristic rea-
son for believing that there is no walk to infinity
along Gaussian primes since the prime number the-
orem implies that the density of Gaussian primes
is about 2/(wlogz) in a disk of radius z, so that
the “probability” of a lattice point being prime be-
comes smaller than any p. This suggests the fol-
lowing conjecture:

Conjecture 1.1. For any k, there is no infinite com-
ponent of Gaussian primes connected by step size
at most k.

Note that the random model predicts that even if
there is no infinite component, there are still ar-
bitrarily large components (though their expected
size is finite [Grimmett 1989]). It seems that Gaus-
sian primes do not exhibit this behavior since they
are restricted to certain congruence classes.

Conjecture 1.2. For any k, there is a bound on the
largest component of Gaussian primes connected by
step size at most k.

J. H. Jordan and J. R. Rabung [1976] proved Con-
jecture 1.2 for k = /2, while E. Gethner and
H. Stark [1997] recently proved it for k = 2; see
Section 7.

The percolation problem most relevant to this
paper is the so-called “Poisson blob model” of con-
tinuum percolation: Consider a Poisson process of
intensity A on the plane, i.e., points X, Xs,...,
are uniformly distributed in the plane with density
A, such that the probability of having exactly n
points in area a is e~ **(a\)"/n!. Around each point
draw a disk of radius one. What is the probabil-
ity of there being an unbounded connected set of
disks? It was shown in [Zuev and Sidorenko 1985]
(see [Grimmett 1989, Section 10.5]) that there is a
constant A, such that this will occur with proba-
bility one for A > A., and with probability zero for
A < A.. It is believed that A, is approximately 0.35

[Gawlinski and Stanley 1981; Hahn and Zwanzwig
1977; Domb 1972].

The first point is that this model approximates
percolation on the integer lattice with step size k.
To see this, note that walk of step size at most k
asks for a connected set of “disks”, i.e., transla-
tions of the set of lattice points distance at most
k from the origin, and two such disks are con-
nected when the center of each disk is contained
in the other. This is the same condition as hav-
ing “disks” of radius k/2 with the simpler condi-
tion that they merely be overlapping. Zuev and
Sidorenko showed that the constants p.(k) for this
problem satisfy lim; .. (k/2)*p.(k) = A.. If primes
are in some sense “random” with density as above,
then this would imply that the first “moat” around
the origin, i.e., the outside part of the boundary
of the connected component starting near the ori-
gin (i.e., that does not lie inside the connected
component) for step size k should lie at distance
about e#/(27A<)  This seems consistent with the
data of [Gethner et al. 1998]. In fact, scaling the-
ory for percolation (see [de Gennes 1976; Grimmett
1989; Stauffer and Aharony 1994]) predicts that
the phase transition p | p. exhibits scaling prop-
erties or “power laws”. By analogy, the connected
component of Gaussian primes around the origin
should have holes whose radius grow in size accord-
ing to a power law as the distance from the origin
approaches e¥/(27A) and that near this value the
connected component around the origin should ex-
hibit self-similarity, i.e., the “moat” should have
fractal properties (pictures from [Gethner et al.
1998] indicate that the moat does have a compli-
cated shape for k& = v/18). For distances greater
than ef/(2™) there should only be small isolated
clusters.

Since bounded step size does not seem to pro-
duce an unbounded walk, it is interesting to see
what step size is necessary. As in Cramér’s conjec-
ture on the largest difference between two primes,
one constructs a random model of the Gaussian
primes. This is done by independently assigning
the Gaussian integer z = a + bi, with |z| > 2, the



probability 2/(mlog |z|) of being open. More pre-

cisely, if z1,...,2,,21,...,2,,, With |z, |z,| > 2,
are distinct Gaussian integers, then the probabil-
ity of that all z;,...,2, are open and all 2{,..., 2/,

are closed is

(M) (1))

Theorem 1.1. Consider the Gaussian integers with
the above probability model and consider walks of
step size at most k +/log |z| at z, where k is a con-
stant. Then for k < \/2mw\., with probability one,
there is no unbounded open component, and for
k > /27w )., with probability one, there is an un-
bounded open component.

This suggests another conjecture:

Conjecture 1.3. Consider walks along the Gaussian
primes with step size at most k+/log |z| at the prime
z =a+bi. For any k < \/27A., there is no un-
bounded walk, and for any k > /27, there is an
unbounded walk.

The problem of distribution of Gaussian primes has
been studied by Hecke [1918; 1920], who showed
that Gaussian primes are evenly distributed among
sectors 0; < argz < 6. However, current meth-
ods are very far from approaching the questions
posed here. For example, the existence of infinite
walks as in Conjecture 1.3 implies that the differ-
ence between consecutive rational primes p, and

Pn1 1s O(v/p, log p,,), which is better than known
bounds, even assuming the Riemann Hypothesis,

which only gives O(/p. log” p,,).

Some aspects of this problem not examined in
this paper consist of the following:

(a) Sieve methods [Halberstam and Richert 1974,
Rademacher 1923] can be employed to give upper
bounds on the density of an infinite component
connected by step size < k. In particular, these
methods would show that the number of Gaussian
integers that lie inside a circle of radius x and be-
long to an infinite component connected by step
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size < k is O(z?/log™ z) for any fixed A. Note
that a bound of the form at least O(x) is required
to prove Conjecture 1.1, but it seems that sieve
methods are unable to approach this.

(b) Clearly, this problem can be generalized to gen-
eral representations of integers by quadratic forms,
in particular, analogous results should hold for rep-
resentations of integers as a sum of four squares,
i.e., walks along quaternionic primes.

(c) Similar questions can be raised in other number
theoretic contexts [Vardi > 1998]. For example,
consider the set of pairs of relatively prime inte-
gers in the plane connected if they are distance
one apart: Does this set have a limiting density
and if so, is it nonzero?

2. GAUSSIAN INTEGERS

Recall that the Gaussian integers are complex num-
bers a + bi, where a and b are integers. Elemen-
tary properties of the Gaussian integers are given
in [Hardy and Wright 1979], and the one relevant
here is that Gaussian integers have a unique prime
factorization analogous to ordinary integers. The
difference is that primes of the form 4k + 3 remain
prime, while 2 and primes of the form 4k + 1 split
into two prime factors: for example, 2 = (1 4 1) X
(1 —14),5=(2+1)(2—1). In general, a Gaussian
integer a + bi, with a,b # 0, is prime if and only if
a® 4+ b* is a rational prime (a prime in the ordinary
sense).

Now, let 7, (x) be the number of ordinary primes
of the form 4k + 1 that are less than or equal to
x, and let w3(z) be the corresponding number for
primes of the form 4k + 3. In a circle of radius
x, there are exactly 87 (z?) Gaussian primes cor-
responding to factorizations of ordinary primes of
the form 4k-+1, since each a+bi contributes +a+bi
and +b+tai, while there are 4m3(z) Gaussian primes
corresponding to rational primes of the form 4k+3,
since each rational prime p of this form also gives
the primes —p and =£ip. The prime number the-
orem and the Chebotarev density theorem imply
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FIGURE 1. Gaussian primes at distance at most 100
from the origin.

that m(x) ~ m3(x) ~ z/(2log x), so the number of
Gaussian primes in a circle of radius z is

222 2z 212

48 (2%) + dmy () ~ log x * log = - logx

Since the number of Gaussian integers inside a cir-
cle of radius z is asymptotic to wx?, this says that
the density of Gaussian primes is asymptotic to
2/(mlog z).

Since all Gaussian primes except £1 4+ ¢ must be
of the form a + bi, where ¢ and b have different
parity, only Gaussian integers of this form, known
as odd Gaussian integers, will be considered. Note
that these form a lattice that is the same as the or-
dinary plane integer lattice when considered side-
ways (i.e., at a 45° angle) so that step size k along
the ordinary lattice corresponds to step size k/ V2
along odd Gaussian integers.

Next, it will be useful to know what the per-
centage sieved out is. Now if a prime ¢ is of the
form 4k + 3, then ¢ remains prime, so of the ¢?
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FIGURE 2. Odd Gaussian integers.

numbers a + b, 0 < a,b < ¢, which T will iden-
tify with [0, ¢g—1] x [0, g—1], only 0 is divisible by
q. It follows that the numbers prime to ¢ have
density 1 — 1/¢*>. On the other hand, if p is of
the form 4k + 1, then there are 2p — 1 numbers
in [0, p—1] x [0, p—1] that have a common factor
with p, namely (0,0), and (a,%ta) modp, where
1 = =1 (modp) and a = 1,2,...,p — 1. This
means that the density of numbers prime to such a
pis1—(2p—1)/p* = (1—1/p)*. Another way to see
this is to consider the factorization p = a® + b* =
(a+bi)(a—bi), where a+ bi and a — bi are distinct
Gaussian primes each generating an ideal of norm
p, so there are p — 1 numbers relatively prime to p
in a fundamental domain mod a %+ bi containing p
Gaussian integers.

In general, given a rational integer N = 2M,
where M is odd, the density of odd Gaussian inte-
gers relatively prime to N will be given by

sy = ] o)

- I () T ()

p=1 (mod 4) ¢=3 (mod 4)
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FIGURE 3. Fundamental domain for 5 + 2¢ of norm 29.

As a consequence of this, one sees that sieving by
primes of the form 4k + 3 is not very efficient, and
in fact, sieving by all such primes only removes a
finite fraction since

- I

¢=3 (mod 4)

= 0.8561089817218934769060330061480611734811 . ...

This value can be computed by relating it to § =
1/ v2a, the constant appearing in a closely related
formula of Landau and Ramanujan which says that
the number of integers < x that can be written as
a sum of two squares is asymptotic to Sz /v/log z.
In [Flajolet and Vardi 1996] it is shown that

00 ny N 1727t
= %g <<1 - 21> Jg((22”))>

= 0.7642236535892206629906987312500923281168 . . .,

where L(s) = 1-37°4+57°—7"°+.-.. This gives a
fast algorithm for computing  due to the lacunary
character of the product.

For the purposes of the next section, it will be
necessary to compute the minimal density among
integers < N, which is given by the following re-
sult:
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Proposition 2.1. The minimum value of 6(n), for n
odd, n < N, is asymptotic to 8/(e"mloglog N) and
15 taken on by

lezlp II «

a<y/z/2

p<z
p=1 mod 4
¢=3 mod 4

where x ~ 2log N.

Proof. Clearly the minimal density will occur for a
product of consecutive primesp < z, p =1 (mod4)
and consecutive primes g < y, ¢ = 3 (mod 4). Solv-
ing for (1—1/¢%) < (1—1/p)?, one sees that taking
Yy = \/m is optimal.

Next, one notes that

1 (1 1\’ 8
P eYralogx

p<w
1
(-3)
q

p=1 mod4
Merten’s theorem [Hardy and Wright 1979] says
that AB ~ 2e77/log z, while

() I ()

To see why this holds, let

1
o (1)),
p<z p
p=1 mod4

s= ]

q<e
¢=3 mod 4

p<z g<w
p=1 mod 4 ¢=3 mod 4
— = — —,
B ) 1 TQ
q<w
¢=3 mod 4

since the product in the numerator tends to 1/L(1),
which equals 4/7. Solving for A? gives the result.

Finally, as noted above, the prime number the-
orem (see [Davenport 1980]) and the Chebotarev
density theorem imply that

> logp~ %

p<z
p=1 mod4

which shows that M is of order e*/2. The proposi-
tion follows. O



280 Experimental Mathematics, Vol. 7 (1998), No. 3

3. PERCOLATION

In this section I will examine several examples of
percolation on the two dimensional lattice. The
theory of percolation was introduced first devel-
oped mathematically by Broadbent and Hamimer-
sley [1957]. They modeled the probability that
a fluid will seep through a solid substance that
has wide and narrow channels with a given proba-
bility distribution — hence the name percolation —
and proved the existence of a critical probability
at which this occurs. This type of problem is best
described by bond percolation, where edges of the
square lattice are randomly included or excluded;
this is the focus of [Grimmett 1989]. Note that
what is being examined here is site percolation.
Site percolation is more general in the sense that
any bond problem can be restated as a site prob-
lem. In particular, I will consider the lattices L(k)
where the sites are pairs of integers (a,b) and two
sites are considered connected if they are distance
at most k£ apart. The simplest case is the ordinary
integer lattice L(1). Unlike the bond percolation
problem, where the percolation constant for the
two-dimensional integer lattice has been proved by
Kesten to be 1 (see [Grimmett 1989] for a proof of
this difficult result), the exact value of the site per-
colation constant p.(1) for the plane lattice L(1) is
not known exactly but is believed to be approxi-
mately 0.5927 [Ziff and Sapoval 1986]. The best
rigorous bounds are p.(1) > 0.556 [van den Berg
and Ermakov 1996] and p.(1) < 0.679492 [Wier-
man 1995].

A key concept in the theory of site percolation
is the matching lattice which can be described in
terms of the game of Go. Recall that a set of Go
stones form a live group if they are a connected set
under the integer lattice L(1) and that a group of
Go stones is captured if every point on the bound-
ary of the group is occupied by the opponent.

The outside set of capturing white stones can be
thought of as being connected by the lattice L(1/2),
so this is exactly the matching lattice of the ordi-
nary nearest neighbor lattice. Conversely, if the

FIGURE 4. A connected set of black Go stones cap-
tured by white.

white stones are considered connected by this lat-
tice, then they must be captured by a set of black
stones that are connected by the ordinary lattice.
Thus, the matching lattice of L(v/2) is L(1). It is
seen that boundaries of connected sets in one lat-
tice are described by connected sets in the match-
ing lattice. Now Kesten [1982] has shown that if p.
and p; are the percolation constants of a lattice and
its matching lattice, then under certain symmetry
conditions one has p.+p* = 1 (this was first proved
for the site problem on the square lattice by Russo
[1981]). It follows that p.(v/2) = 1 — p.(1) ~ 0.41.

The general problem of walking along Gaussian in-
tegers with bounded step size corresponds to look-
ing at the integer lattice where two sites are con-
nected if they are at distance less than or equal
to a fixed k. This problem was first examined by
Gilbert [1961] and as k — oo, it corresponds to
continuum percolation, and in particular to the so
called “The Poisson blob model,” because the disk
centers can be thought of as a Poisson process of
intensity A, where X\ represents the average density
of a circle center per unit area. In particular, this
means that a sequence of circles of radius 1 are
to be placed in the plane at centers X, Xs,...,
with a Poisson distribution, i.e., the probability of
n centers appearing in area a is e~ ** (a\)"/n!. This
implies that the percentage of area covered by disks
is 1 — e ™; see [Hall 1988].

The percolation problem for the Poisson blob
model was solved in [Zuev and Sidorenko 1985] (see
[Grimmett 1989, Section 10.5; Meester and Roy
1996]) by considering it as a limit of the discrete



FIGURE 5. Poisson blob model of intensity A = 0.4.

site percolation problem L(k) since this problem
is the same as drawing circles of radius | = k/2
around each lattice point and asking for an un-
bounded walk along overlapping circles. In [Zuev
and Sidorenko 1985] it was shown that the con-
tinuous problem has percolation at intensity A,
where (1 — p.(k))#/2° — e~ It follows that
Ao = lim(k/2)*p.(k). The exact value of A, is
unknown, though it is believed to be about 0.35
(see [Hahn and Zwanzwig 1977; Domb 1972]). The
best provable bounds are 0.174 < . < 0.843 [Hall
1985].

Continuum percolation is believed to satisfy the
same properties as the ordinary lattice problem
[Grimmett 1989; Meester and Roy 1996]. For ex-
ample, it is known that if A > A., then with prob-
ability one, there is a unique infinite connected
component. Furthermore, in [Zuev and Sidorenko
1985] it was shown that if \, is the smallest value
for which the expected size of clusters is infinite for
A > Ay, then N\, = \.. Penrose [Penrose 1991] has
also shown that for large intensities, i.e., A — 00,
the probability that a disk is isolated, given that it
lies in a finite cluster, approaches 1. Penrose has
also shown that the cluster density or “free energy”
defined by

Py =2 32 P 1C0I=1)

n=1
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where C(0) is the cluster containing zero is a con-
tinuous function of A. It is also believed that con-
tinuum probability should satisfy the same conjec-
tural properties as lattice problems, e.g., that there
should not be an infinite cluster when A = X, (i.e.,
the percolation probability is continuous), and that
as A — A, power laws should hold (see [Grimmett
1989] [Stauffer and Aharony 1994]).

4. A RANDOM MODEL OF GAUSSIAN PRIMES

In analogy to Cramér’s model of prime numbers
([Cramér 1937]; see also [Riesel 1985]), one can
construct a model of Gaussian primes by consid-
ering each lattice point z € Z* with |z| > 1 to be
“open” with probability 2/(7 log |z|) (so a nonopen
lattice point will be “closed”). Using the exact
same argument as Cramér, one can find the asymp-
totics of the largest expected “gap” of Gaussian
primes:

Proposition 4.1. Let d(x) be the radius of the largest
closed disk at distance at most x from the origin.
Then, with probability one, limsupd(z)/logxz = 1.

Proof. (a) limsupd(x)/logz < 1. Let ¢ > 1 be a
constant, and consider about each each Gaussian
integer z where |z| > 1, a disk of radius clog|z|.
For each € > 0 and sufficiently large z, each such
disk contains at least (1 — ¢)wc? log”|z| Gaussian
integers, so the probability that such a disk has no
open points is at most

. 9 (1—¢) wc? log? |z|
mlog |z + clog |z|‘

9 (1—e)mc?log? 2|
LK|(1l————
mlog | 7|

< |Z|—2(1—s) ¢ .

Now summing over all such Gaussian integers gives
an upper bound

Z |Z|—2(1—s) c27

|z|>1
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which converges for any ¢ > 1, upon choosing small
enough €. The Borel-Cantelli Lemma shows that
the probability of infinitely many such disks being
closed is zero.

(b) limsupd(x)/logz > 1. Let ¢ < 1, and for each
Gaussian integer z with |z| > 1, consider a disk
of radius clog |z| centered at zlog”|z|. As in the
previous part, it follows that for any € > 0 and
sufficiently large |z|, each disk has a probability at
least A |z|7249)¢® of being closed, where A is an
absolute constant. Moreover, all of these events
are independent, so the fact that the series

Z |Z|72(1+6) 2 logb |Z|

|z|>1

diverges for sufficiently small ¢ and any fixed b
proves the result. O

Remark. Clearly, Proposition 4.1 can be generalized
to other (noncircular) domains.

The general philosophy of this paper leads to the
following conjecture:

Conjecture 4.1. Let d,(x) be the radius of the largest
prime free disk of distance at most x from the ori-
gin. Then limsupd,(x)/logz = 1.

The best result in this direction is due to Coleman
[1990], who has shown that d,(z) = O.(z7/1%*)
for any € > 0. Lower bounds of Rankin type on
the size of prime free regions should be obtainable
using methods for rational primes; see [Guy 1994,
AS].

As in the final remarks of Section 3, one could
conjecture that walks of size ry/log |z| along Gaus-
sian primes should satisfy all the properties (in-
cluding conjectural ones) for continuum percola-
tion. In some cases this requires normalization; for
example, one defines the normalized cluster den-
sity, or “free energy”, of the step size at most

k+/log |z| as

(Number of clusters of Gaussian)
E,(k) = lim primes in a circle of radius =

S 22/ (kv/log )

Conjecturally, this should equal the cluster density
of the the Poisson blob of intensity A = k?/(27),
Le., E,(k) = E(k*/(2m)), where E()\) was defined
in Section 3.

Note that the random model is taken to be a first
order approximation of the behavior of Gaussian
primes. A. Hildebrand and H. Maier [1989], and
A. Granville [1995a; 1995b], have shown that in
some cases rational primes exhibit behavior which
is different from the one predicted by the random
model.

5. PROOF OF THEOREM 1.1

The idea of the proof is that the percolation prob-
lem for the random model of Gaussian primes ap-
proximates the Poisson blob model. To see this,
consider the map

fs(z) = z/(sx/log |2 ),

for |z| > 1. This map normalizes the Gaussian
prime distribution in the sense that, under this
map, the lattice points that appear with proba-
bility 2/(7 log|z|), approach a Poisson process of
intensity A\ = 2s*/w. Furthermore, this map sends
a disk with center z and radius sy/log |z| to a disk
with center z/(s+/log |z| ) and radius 1 in the sense
that

. z .
(z+ sy/logl|z]e?) = —Z—— +¢%
fole+ s viogeTe) = —

_ zcos(f —arg z)

2|z| log |2|

1
(Izlx/log |z|>
Since continuum percolation occurs at A = A, this
gives 25/ = X, or s, = \/7A./2. This predicts
that the random prime model should have an infi-
nite connected component of disks for [ = k/2 >
/A /2. Since the overlapping disk problem corre-
sponds to walks of length the diameter of the disks,
this implies that for k¥ > /27A., there should be
an unbounded walk of step size at most k/log |z|.

Equivalently, the map g¢;(z) = sy/log|z| z is the
“Inverse” of fs(z) and takes a circle with center z



and radius 1 to a circle with center sy/log |z| z and
radius s/log |z|. The map g;(z) increases areas by
a factor of s? log |z| as can be seen from the formula

fo(z+¢) = szy/log |2|+se+/log |Z|+O(#>,
Viog ]
where ¢ is a complex number of absolute value < 1.
To the Poisson process of intensity A will be asso-
ciated a probability distribution on the Gaussian
integers through the map z — |szy/log|z|], where
|z +iy] = |x] +i|y]| (|z] is the greatest integer
less than or equal z) and a Gaussian integer a + bi
is considered “open” if there is a point of the Pois-
son process that maps to it. From the above, it is
seen that the probability that the Gaussian integer

z is open is
A 1
T ERAL (et
52 10g|Z| 10g3/2 |Z|

To prove the result, one has to show that for s >
VA /2, with probability one, there is an infinite
connected component by step size sy/log |z| in the
random model of Gaussian primes, and that for
s < /mA./2, with probability one, there is no such
infinite component.

(@) Assume s > /7A./2. Let A = 2s*/m, then
A > A, so there is a A; such that A > A\ > A,
and consider the Poisson blob model of intensity
A1. Since A; > A, there exists an infinite compo-
nent of disks of radius one. Let s, = \/7mA/2,
and consider the map f;, on the disks and the
probability distribution on the Gaussian integers
generated by z — |s;z4y/log|z||. By the above
discussion it is seen that the disks of the Poisson
model will have radius asymptotic to s;/log |z| at
center |s;y/log|z|], so that if two disks intersect
in the Poisson model, then they are at distance at
most V24 0(1) when mapped to the random prime
model. Therefore replacing each such disk with ra-
dius sy/log |z| at |s;zy/log|z|] will produce disks
which definitely overlap if they overlapped in the
Poisson blob model (for large |z|). Also, by the
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above, the probability of z being open is asymp-
totic to

A (s1log |z]) ~ 5%/ (st log|2]) < 2/(mlog|z])

for large enough |z|, so this implies that, with prob-
ability one, there is an infinite connected compo-
nent in the Gaussian prime model.

(b) Assume s < y/m\./2, and assume that with
probability one there is an infinite connected com-
ponent in the Gaussian prime model for this s.
Let s < 81 < \/mA./2. Consider the Poisson blob
model of intensity A; = 2s%/m < A.. This does not
exhibit percolation, but the Gaussian prime model
does for step size s;/log |z| since s, > s. The map
fs(z) takes circles of radius radius s;4/log |z| into
circles of radius s;/s > 1 so that these intersect if
and only if the circles of radius s, 1/log |z| intersect.
Since the probability distribution on the Gaussian
prime model resulting from the map f,, is asymp-
totic to 2s3/(s*mlog|z|) > 2/(wlog|z|) for suffi-
ciently large |z|, this gives a contradiction, proving
the theorem. 0

6. WALKS RELATIVELY PRIME TO AN INTEGER

The walks considered here are of Gaussian integers
relatively prime to a given IV, which reduces the
question of infinite components to examining the
finite set of Gaussian integers modulo N. One can
think of integers modulo N as being in a fundamen-
tal domain [0, N—1] x [0, N —1], i.e., a big square.
The integers relatively prime to N in this square
have reflection symmetries generated by (a,b) —
(—a,b) and (a,b) — (b,a), corresponding to re-
flection the vertical line x = N/2 and reflection
about the 45 degree line x = y. I will also assume
that N is even so that there is an extra reflection
about the line z +y = N/2 given by the map
(a,b) — (N/2 —b, N/2 — a). These generate 16
reflections that break up the fundamental domain
into 16 triangles each of which is a reflection of its
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neighbors along an adjacent side. A fundamental
domain for these reflections can be given by the set

F(N)={(a,b):a>b, a <N/2, a+b< N/2}.

F(N)

FIGURE 6. Reflection symmetries modulo V.

Since the fundamental square tiles the plane by
translations by (NV,0) and (0, N), the following re-
sults are clear:

Proposition 6.1. There is a walk to wnfinity along
Gaussian integers relatively prime to N if and only
if there is a path inside the triangle F(N) that
touches all 3 edges of the triangle.

Proposition 6.2. If there is no walk to infinity along
Gaussian integers relatively prime to N, then there
15 an upper bound on the largest connected compo-
nent, so Congecture 1.2 holds.

Proposition 6.3. There is at most one wnfinite con-
nected component of Gaussian integers relatively
prime to N.

The next question is how well different 20, for
M odd, model percolation. In general, one should
expect this to hold:

Conjecture 6.1. (i) Set D(M) = {M <z : §(M)<
pe(k/\/2) and there is a walk to infinity rela-
tively prime to 2M}‘ Then

lim D)
smvoe [{M <z : 5(M) < p.(k/V2)}]

(i) Set G(M) = {M <z : §(M)>p.(k/V2) and
there is mo walk to infinity relatively prime to

2M}‘ Then
lim G(M) =0
om0 [{N <z : 6(M)>p.(k/V2)}]

(Note that step size k corresponds to step size
k/v/2 along odd Gaussian integers.)

This approach reduces a question of infinite walks
to a finite problem, and in particular, only a single
N needs to be found to prove Conjecture 1.2, and
so Conjecture 1.1 (so Conjecture 6.1 also implies
Conjecture 1.2).

This gives a method for checking Conjecture 1.1:
Show that there are no unbounded walks of step
size k by showing that there is no walk modulo
some large N of low density.

According to Conjecture 6.1, the smallest value
of N which will work is the smallest N = 2M for
which 6(M) < p.(k/v/?2). By Theorem 2.1,

8/(e"mloglog N) & pe(k/V2) ~ 8. /K,

so the value of N is of order exp(exp(k?/(e7mA,))).
In other words, the growth of N is doubly expo-
nential, and therefore so is the above algorithm. It
follows that this method will not be computation-
ally feasible except for very small values of k.

7. WALKS OF STEP SIZE /2

I will illustrate the ideas of the previous section in
the case of walks of length v/2. As noted above,
such walks can be considered as walks on the ordi-
nary 2-dimensional integer lattice, which has per-
colation at p.(1) = 0.59 (in fact, with probability
one, there is no walk at p.(1) either [Russo 1981]).
One should therefore expect that percolation for
numbers relatively prime to 2M, where M is odd
and squarefree, should occur when 0(M) is approx-
imately p.(1).

In fact, let N = 2M = 130 = 2 -5 - 13, then
d0(M) = 0.545325. .., which is less than 0.59. By
the above, checking to see if there is an unbounded



path reduces to checking to see if there is a path in
the triangular region F'(65) that touches all three
sides. To see this graphically, one draws a filled
disk of radius 1/v/2 around every Gaussian integer
relatively prime to 130 = 2-5-13, and then visually
checks to see if there is a connected set of disks
touching all three sides.

FIGURE 7. There is no unbounded walk prime to
2-5-13 of step size V2.

Since no such path exists, this proves the follow-
ing result (which actually follows from a stronger
result of Jordan and Rabung [1976]; see below).

Theorem 7.1 [Gethner and Stark 1997]. There is no
unbounded walk of step length \/2.

As noted above, this shows that Conjecture 1.2
is true for step size v/2, so there is an upper bound
on the size of connected components of Gaussian
primes with step size v/2 and one can ask the ques-
tion: “What is the largest connected component of
primes that occurs infinitely often?” In the ordi-
nary case, Hardy and Littlewood [Hardy and Lit-
tlewood 1922] made the k—tuples prime conjecture
that any admissible k—tuple of numbers, i.e., tuples
that do not have a congruence obstruction (e.g., n,
n + 2, n + 4 has an obstruction mod 3), should
occur infinitely often (see [Riesel 1985]). So analo-
gously, one can look for admissible connected sets
of Gaussian integers, and the conjecture would be
that, infinitely often, each of these sets consists
only of Gaussian primes.
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This same question was examined by Jordan and
Rabung [1976] (see also [Holben and Jordan 1968]),
who showed that the largest admissible connected
component has size 48 (note that this implies The-
orem 7.1).

Theorem 7.2 [Jordan and Rabung 1976]. The largest
admissible /2-connected component has size 48. It
18 the result of removing one A and one B in Fig-
ure 8 in such a way that the component remains
connected.

FIGURE 8. The largest admissible connected components.

I will give a brief description of the proof of this
result, since this is not provided in [Jordan and
Rabung 1976]: A necessary and sufficient condition
for a set to be admissible is that for every Gaussian
prime p there is a residue class not represented by
the set. This means that one only has to check this
for complex primes of norm less than or equal to
the size of the set, and for primes of the form 4k+3
less than the square root of the size of the set.

An upper bound for the number of elements in
this set is provided by the proof of the Theorem 7.1.
Inspection of the diagram shows that the largest
connected component has 580 elements. One can
do better by looking at numbers prime to 390 =
2-3-5-13, and this gives a largest connected com-
ponent of size 71.

Figure 9 gives rise to 506 connected components
of sizes 1 to 21 inclusive, and 25, 27, 28, 29, 32, 37,
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FIGURE 9. Walks relatively prime to 2-3-5-13.

50, 51, 71. The only ones that need to be checked
are those of size 50,51, 71.

The component of size 50 is given in Figure 8 and
contains 95+ 88¢ and 1004 107¢. It only has prob-
lems, i.e., repeated values, modulo 29. As noted
above, it can be made into a maximal admissible
set of size 48 by removing a circle labeled A and a
circle labeled B in such a way as to keep the pic-
ture connected. This results in 6 different maximal
admissible sets, up to symmetry.

The next case is the component of size 51 con-
taining 704237 and 97+ 18, shown in Figure 10. It
passes all tests except modulo 17. To analyze this
case, two graphs are generated, one for 4 + ¢ and
4 —1, respectively, with the numbers 1,...,17, rep-
resenting the 17 possible values modulo 4 +i. One
has to remove elements to leave one residue class

free, and it is seen that the maximal connected sub-
set that works is to remove the elements marked
“14” in the top graph and the elements marked “5”
in the bottom graph, leaving a maximal connected
component of size 43. Removing “14” and “17”
in the bottom graph yield maximal components of
size 42 and and 41, respectively. One can also get
maximal components of size 39.

The final case is the component of length 71 con-
taining 35 £ 22i; see Figure 11. This component
also passes every test except modulo 17. As in the
previous case, the graph is given modulo 4 + ¢ and
4 — 1, respectively, each number representing a dis-
tinct residue class modulo 4+4. A computer search
shows that the largest admissible connected com-
ponent has size 45, which is achieved by deleting
points “2” in the 44 case and “4” in the 4—1 case.

FIGURE 10. Left: Component of size 51 modulo 4 + ¢. Right: Component of size 51 modulo 4 — .



FIGURE 11. Left: Component of size 71 modulo
4 + 1. Right: Component of size 71 modulo 4 — i.

Remark. Jordan and Rabung conjectured that such
connected sets of Gaussian primes occur infinitely
often. Following Hardy and Littlewood [Hardy and
Littlewood 1922], one can further conjecture that
for each such connected set, there is an asymptotic
formula for the number of times it appears in a
disk of radius R, as R — oc.

Remark. Gethner and Stark also showed that there
is no walk of step size 2 (and also proving Con-
jecture 1.2 in this case). Note that with respect

Vardi: Prime Percolation 287

N

to odd Gaussian integers this is step size <
(king moves) and corresponds to the lattice L(1/2).
Since L(v/2) is the matching lattice for L(1), one
has p.(V2) = 1 — p.(1) ~ 0.41 in this case.

S
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