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We show the existence of points in the Mandelbrot cardioid
that have the one-equator property, a property useful for the
study of quaternionic dynamics. The question whether the Julia
set is homeomorphic to a codimension-one sphere becomes a
good deal more subtle in quaternionic dynamics.

1. INTRODUCTION: QUATERNIONIC JULIA SETS

The quaternions H can be represented as a direct
sum H = R®R?. A quaternion will be denoted by

X = (&),

where ¢ € R is the real part and ¥ € R® is the
vector part. Multiplication, given by

AB = (a,3)(8,b) = (a8 — @b, ab + @ + @ x b),

is associative, distributive, yet not commutative.
In particular, squaring in H reduces to

X2 = (& - 7, 20,
The complex field C can be imbedded by
a+ bi — (a,b?),

where ¢ and b are real and 7’ is the first vector of
the canonical basis (7,7, k).

In the complex plane the Julia set is defined by
normal families. In the skew field of quaternions
there are no nontrivial analytic functions, but we
can define the quaternionic Julia set J* of a quad-
ratic function

e S

as the boundary of the basin of attraction of the
point at infinity. In the complex plane it is known
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that for every parameter ¢ from the big Mandelbrot
cardioid

M, ={N2-=X/4: ]\ <1}

the corresponding Julia set J. is a homeomorphic
image of the circle [Carleson and Gamelin 1993].

In the analysis of the quaternionic Julia sets, we
can take the parameter ¢ to be complex, with no
loss in generality. But even if ¢ is in the Mandelbrot
cardioid, the corresponding Julia set need not be
homeomorphic to the three-sphere S®. Holbrook
[1987] has shown that J is multiply connected,
and therefore topologically not a sphere, if the com-
plex Julia set J. crosses the imaginary axis more
than twice.

Suppose that +ai € J., where a > 0. The whole
sphere

S ={(0,&) : | 7] = a}

belongs to J%, because any point in S? is mapped
to the complex point (ai)? 4+ c¢. We shall call this
sphere an equator of J™. If there is only one equa-
tor it is possible to divide the quaternionic Julia
set into two hemispheres [Kozak and Petek 1994].
Only in this situation can the quaternionic Julia
set be homeomorphic to the sphere.

Of course, if we take c real and in the Mandelbrot
cardioid M;—that is, ¢ € (—2,1) C R—the com-
plex Julia set .J. intersects the imaginary axis only
twice. This follows from the symmetry of the Julia
set J. with respect to the imaginary axis for real
c. For these values of ¢ the corresponding quater-
nionic Julia set is obtained by rotating the complex
Julia set J, around the real axis:

Jo ={(&@) ¢+ |7l i € I},

so J is homeomorphic to the three-sphere.

2. DEFINITION OF THE ONE-EQUATOR PROPERTY
Let f.: C — C be the quadratic function

fo(2) =2 +c

Definition 2.1. The complex number ¢ from the
Mandelbrot cardioid M, has the one-equator prop-
erty if the Julia set J. intersects the imaginary axis
exactly twice.

It is easy to find points that do not have the one-
equator property.

Example 2.2. Set ¢ = —0.7 + 0.1¢ € M; and take
the points w, = 0.818; and w, = 0.822¢ on the
imaginary axis. The sequence (f'(w1)), cy diverges
to infinity, whereas the sequence (f'(w)), oy con-
verges to the attracting fixed point of f.. Since w;
is below w,, the imaginary axis intersects the Julia
set J. more than twice. See Figure 1.

FIGURE 1. Part of Julia set J. for ¢ = —0.7 + 0.1z,
which does not have one-equator property.

The same idea allows one to find many other points
that don’t have the one-equator property, as illus-
trated in Figure 2. It is much harder to show the
existence of points off the real axis that do have
the one-equator property.
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FIGURE 2. Black dots represent points in the upper half of the Mandelbrot cardioid that are known not to have
the one-equator property. The appearance of the picture is a consequence of the numerical method, which is
the following. For a given ¢, we look for positive numbers ¢; < t2 such that i¢; goes to infinity under iteration
and ut2 goes to the finite attracting point. If there is such a pair we know that ¢ does not have the one-equator

property; see Example 2.2.

3. EXISTENCE OF THE ONE-EQUATOR PROPERTY

The idea in proving that there are points with the
one-equator property is to find a parameter ¢ in M,
such that the Julia set J. (which is the closure of
repelling periodic points) intersects the imaginary
axis in a periodic point zy of order n in which the
derivative of the iterate f is real and greater than
1, so at least locally there will be only one inter-
section. If the derivative is not real, the Julia set
will look locally like a spiral [Carleson and Gamelin
1993], because locally, near a periodic point zy, the
iterate behaves like z — zg — (f2)'(20)(z — 20).

We first solve the equation f(it) = it for the
periodic point it as a function of a real parameter
t. We get 2" ! curves c(t) parametrized by the real
parameter ¢.

Example 3.1. For n = 1, the equation (it)? + ¢ = it
has the solution ¢(t) = it + t*. We have c(t) € M,
only for [t| < 1, and thus it is the attractive fixed
point, not on J..

For n = 2, the equation (—t? + ¢)? + ¢ = it has
solutions ¢ (t) = it + t* and cy(t) = —it +¢* — 1.
The curve ¢; gives attracting fixed points, and c,
misses M.

For higher n we can’t get analytical solutions. Let’s
take one of these curves t — ¢(t) and look at the
real function

B (t) = Im(fcyzt)),(it)'

We find numerically that n = 4 is the smallest
integer for which this function changes sign inside
the cardioid off the real axis. Let t; be the zero of
(3 = (B4 lying in the interval (1.04,1.06), and let ¢,
be the solution of the equation f2 (itg) = ito. This
¢o is the point we are looking for. See Figure 3.

Let ity be the repelling periodic point of order
4 of the function f.,(z) = 2? 4+ ¢,. We denote by
zj = fl (it), for j = 0,1,2,3, the periodic points
of the 4-cycle. We interpret indices j cyclically
modulo 4.
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FIGURE 3. Solution curves of fi(it) = it in the
c-plane. One of the curves goes near the point
¢ = —0.067 — 0.419s, for t = 1.05.

The numerical values are
to = 1.0493404831,
co = —0.0669671577 — 0.41944714091,
Zo = tty,
z1 = —1.1680826073 — 0.41944714091,
2o = 1.1215139157 + 0.560450679z,
z3 = 0.8767213418 + 0.83765933023.

The attracting fixed point is z* = —0.149118101 —
0.3230900049:. Therefore the circle K(z*, p) with
radius p = 1—2|z*| & 0.288 and center z* lies inside
the basin of attraction of z*. This is a consequence
of the inequality

|[feo (27 +h) = 27| < (2]27| + [R[)R] < |h],

which holds if | < 1 —2]z*|.

We now construct two open domains D: ; and
D, ; as follows. At the point z; take the two cir-
cles of radius R = 1.5 tangent to the path ¢ —

7 (ito+it). Take also the circle with center z; and
radius r. These three circles bound two wedges
with vertex z;; we define D) as the wedge that
opens away from 0 and D as the wedge that

opens toward 0.

For r, = 0.3 and r, = 0.9 we will prove the
following facts.

Proposition 3.2. (i) f.,(D;. ;) C D;, ., for j =
0,1,2,3.

(i) For all points z from Dy . we have

"J

feo(2) = 2j1a] > 1.5 ]2 = 2j]

for 7 =0,1,2,3.
(iii) For z € D}, ;\D;. ; we have |f(z)| > 1.5,

and therefore z s in the basin of attraction of

infinity. (See Figure 4.)

(iv) For z € D, \D;. ; we have |f2 (z) — 2*| < p,
and the point z is in the basin of attraction of the

attracting fized point z* of f.,. (See Figure 5.)

(The 1.5 in (ii) and (iii) is unrelated to the constant
R in the definition of D;; and D, ;.)

Proof. Properties (i) and (ii) are consequences of
the following two lemmas:

Lemma 3.3. Let f(z) = z* + ¢o, and let a nonzero
complex point a and a direction e, for a € R,
be given. In local coordinates at a, wn which the
direction is preserved, the function [ is given by

2z g(z) =2|a|z + la] e 22
a
Proof. Let L, ,(z) = a+ ez, b = f(a); the direc-
tion e is determined by the image of direction e*®
in point b, 3 = arg(ae'®). Then our normalized

function is the composition Lb_},, ofolL,,=g9. O

Lemma 3.4. Let g(z) = kz+¢€"72%, where k > 1, and
let D, be the wedge

{z:]zxiR| >R, |z| <r,Re 2> 0}.

Then for pairs (k,7) from Lemma 3.3 we have, for
all periodic points z;,

9(D,,) C D,, (3.1)

and

lg(z)| > 1.5|z| forall z € D,,. (3.2)
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FIGURE 4. Convergence to infinity. The images under f, of the regions D\, ;\D}. . are shaded and lie outside
the circle of escape radius 1.5.

FIGURE 5. Convergence to to the finite attracting point. The images under f;, of the regions D j\Dr_l j are

shaded. The smooth curve is the third preimage of the attracting circle. The regions D, j\D;l ; lie within this
smooth curve.
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Proof. The function ¢ is analytic, so it is enough
to show the inclusion ¢(0D,, \{0}) C D,,. If we
parametrize circles S(+iR, R) by

k(t) = R(sint +4(1 — cost)),

the expression |gok(t) FiR|> — R* can be simplified
to

SR sin? - (lk(k — 1) + R¥(1 — cost)
+R(k —1)sin(t £ s) F Rksin 5).

It is a strictly positive function of ¢ on the interval
(0,7/2) for all four periodic points z;. This fol-
lows from elementary reasoning, because the pairs
(k,7v) in question are (2.099,0), (2.482,—0.345),
(2.508, —0.119), (2.425,0.046). Since, for all |2| =
r; and all j, we have |g(2)] < kry + 1 < ry, we
have verified (3.1). Inequality (3.2) is trivial since

9(2)| = (k= |z])|z[ = (2= 0.3) [z] 2 1.5]z]. DO

This concludes the proof of parts (i) and (ii) of
Proposition 3.2. For the proof of (iii) and (iv), it is
enough to look at the shaded domains sz 7]-\Dri1 g
More formally, to prove (iii), we should look at
the boundaries of domains D; y \D;" _j» because the
function f,., is analytic. We can choose points
Wi, ..., w, from the boundaries of our domains in
such a way that the union of the disks with center
wy, and radius 0.05 covers the boundaries. For all
these finitely many points (approximately 80) we

can computationally verify that

| feo (wi)| > 1.8,

Each point from our boundaries can be written in
the form wy + h for some |h| < 0.05. From the
inequalities

[ Feo (wr) [ =1 feo (Wi +R)] < | foy (i A1) = foy (wy))|
< (2 |wy|+[R[)[R] < M]h|
we get

| feo (Wi, + B)| > | fey (wi )| = M]h|
>1.8—6x 0.05 = 1.5,

since all domains lie in the circle of radius 2.5 cen-
tered at the origin.
The proof of (iv) is similar, with |h| < 0.001,

|fe, (wi + h) = f2, (wi)| < Mh]
for M = 50, and finally

12 (wy + h) — 27| < |f2 (wy,) — 2°| + M|h
< 0.23 + 50 x 0.001 < p.

The verification that |fZ (wy,) — 2*| < 0.23 must be
carried out for approximately 4000 points wy,. O

Theorem 3.5. There is a point ¢y in the Mandelbrot
cardiord, off the real axis, that has the one-equator

property.

Proof. We have to show that the sequence
wy, = f(it),

where ¢ > 0, diverges to infinity if £ > ¢, and con-
verges to the attracting fixed point z* of f., for
0<t <.

We consider first the case t > t,. If t > t5 +
Ty, then |wg| > 1.5 and therefore we are in the
attraction basin of infinity. If ry <{t—ty < ry, part
(iii) of Proposition 3.2 gives |w;| > 1.5, so again go
to infinity.

If0 <t—ty <ry, parts (i) and (ii) of Proposi-
tion 3.2 say that some w, is in D}, ;\D}. ; by part
(iii) we have |w, 4| > 1.5.

Now assume instead that 0 <t < t,.

If0o <t <ty—ry = 0.14, then wy is in the
basin of attraction of finite attracting point z*. If
ry < to—t < 19, then by part (iv) of the proposition
we have wy = f3 (it) € K(z*,p). Finally, If 0 <
to—t < ry, parts (i) and (ii) say that some w,, is in
D;, \D., ;; by part (iv) we have wy,5 € K(2%,p).

El
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