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We present an improved method of computing the periods of
a newform for I'o(N), which converges faster than the method
used in [Cremona 1992] (and originally in [Tingley 1975]). We
also present some shortcuts that speed up the process of com-
puting all modular elliptic curves of a given conductor N. As
an application of these methods, we report on the extension
of the systematic computation of modular elliptic curves to all
conductors up to 5077.

1. INTRODUCTION

We present an improved method of computing the
periods of a newform for I'y(N), which converges
faster than the method used in [Cremona 1992]
(and originally in [Tingley 1975]). We also present
some shortcuts that speed up the process of com-
puting all modular elliptic curves of a given con-
ductor N. As an application of these methods, we
report on the extension of the systematic compu-
tation of modular elliptic curves to all conductors
up to 5077.

In Section 2, we establish a new formula for a
period of a cusp form f(z), using the information
that f(z) is an eigenform for the Fricke involu-
tion z — —1/Nz as well as being a cusp form of
weight 2 for I';(IV). The key point is that we ob-
tain a power series expression in exp(—2m/dv'N)
for a small positive integer d, instead of a series
in exp(—27n/cN) for some (other) small positive
integer ¢, so that the convergence is greatly im-
proved. This method has other applications, for in-
stance to the computation of periods of cusp forms
over imaginary quadratic fields; see [Cremona and
Whitley 1994].
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In Section 3, we show how in most cases we can
find an elliptic curve associated to a newform f(z)
without having to compute the full homology space
H(N) (defined below). Again, this extends the
methods of [Cremona 1992]. The new method is
extremely quick, and so represents a major time
saving for large conductors N where computation
of H(N) is very expensive. The disadvantage is
that the curves obtained are not guaranteed to be
the so-called “strong Weil” curves, but may only
be isogenous to them.

Using these methods, we have been able to ex-
tend our systematic computation of modular el-
liptic curves from the limit of N = 1000 as in
[Cremona 1992], to N = 5077. (The reason for
stopping at 5077 instead of (say) 5000 was simply
that we wished to verify that there was no curve of
rank 3 with conductor below the known example
of conductor 5077.) In the final section we report
briefly on the results obtained.

2. COMPUTING THE PERIODS OF A CUSP FORM

We will follow the notation of [Cremona 1992],
most of which is standard. We fix a positive in-
teger N and let I'o(N) denote the usual congru-
ence subgroup of level N. Let f be a cusp form of
weight 2 for I'y(V), so that f is holomorphic on the
upper half-plane H and also on the extended upper
half-plane 3H{* = HUQU {oo}, and the differential
wy = 2mif(z) dz is I'y(IV)-invariant.

We denote by I;(«, ) the integral I;(«, ) =
[ wy, and set Ir(a) = I;(e,00). Let M € Ty(N).
Since f is holomorphic, the period integral

I(e, M())

is independent of the basepoint «, and can be ex-
pressed as If(a) — I;(M(«)). We will denote this
period of f by Py(M). (The map M — P;(M) is
in fact a group homomorphism from I'y(N) to C,
but we will not use this fact here.)

For the application to modular elliptic curves, we
will be interested in forms that are “rational new-
forms” in the sense of [Cremona 1992]. Such forms

are eigenforms for the Hecke algebra with rational
eigenvalues. In order to compute the modular el-
liptic curve attached to such a form f, we need to
compute the set A, of periods of the differential
Wy

Ay = {Pp(M) | M €To(N)}.

For rational newforms f, the set Ay is a rank 2
lattice in C, and the elliptic curve attached to f is
E; = C/A;, which is defined over QQ and has inte-
gral invariants ¢4, ¢g. Finding the coefficients of an
equation for E is straightforward provided that we
have computed two generating periods w; and ws
for Ay to sufficient precision. We cannot say easily
in advance how much precision will be required, as
this can vary considerably with the newform, even
at the same level N. We will compute the invari-
ants ¢, and ¢ of the curve Ey as floating point ap-
proximations, so the number of decimal places we
need in order to be able to recognise them as inte-
gers depends on the number of digits in ¢, and cg.

The modular symbol method (described in detail
in [Cremona 1992]) provides us with two matrices
M; such that w; = P;(M;) for j = 1,2. Hence
to compute the periods we need to choose suitable
base points «, and evaluate integrals of the form
It(«). For the remainder of this section, however,
it will not be necessary to assume that f is a new-
form, only that w; is I'g(/V)-invariant, and later
that f is an eigenform for the Fricke involution.

Let zg = g + 1Yo € H so that yo > 0. Using the
Fourier expansion f(z) = .~ a,e*™ we can
integrate term-by-term over a vertical path from
zp to 0o, obtaining the basic formula

00
If(ZO) - _ Z %e2ﬂinxoe—2wny0; 2.1)

n=1

see [Cremona 1992, Proposition 2.10.1]. We can
sum this series to get an approximation to I;(zp),
provided that we have sufficiently many Fourier co-
efficients a,,. For a newform, these coefficients are
computed using modular symbols to obtain the a,
for prime p and multiplicative relations for general
a,: see [Cremona 1992] for details. The important
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point to notice is that this series is a power series
in e7?™° (with bounded coefficients since |a, | < n
for all n), so will converge best when y, is large (or
at least not too small).

Suppose we are given a matrix M = (% ) €
[y(NV), where a, b, ¢, d € Z, and we wish to compute
the associated period Pp(M) = I;(a) — I;(M (o))
of f. How should we choose a? If a has large imag-
inary part, M(a) will tend to have a small imagi-
nary part; we would like to maximise both of these
simultaneously. The solution used in [Cremona
1992], and before that by Tingley [1975] for the
original computations of modular elliptic curves,
is to choose

o= _Zl];_ Z, so that M(a) = ac—]t[z.
Thus both a and M («) have imaginary part equal
o (¢cN)~*. (Note that, by replacing M by —M if
necessary, we may assume that ¢ > 0; we are not in-
terested in M with ¢ = 0 since these are parabolic,
and hence have zero period.) Substituting these
values of z, into (2.1) we obtain the series

E a’" 7271'71//CN Zﬂian/cN o

- (2.2)

—27idn/cN
¢ );

as in [Cremona 1992, Proposition 2.10.1]. This se-
ries converges adequately quickly for small N, but
when N increases we require too many terms in
order to obtain the periods to sufficient precision.
(Not only does it take longer to sum the series when
we use more terms, but more significantly, comput-
ing the coefficients a,, by modular symbols becomes
more expensive as n increases.)

In [Cremona 1992], an indirect approach to the
computation of the periods w; was presented, in-
volving the computation of L(f ® x, 1) for suitable
quadratic characters x. This involves summing
series similar to (2.2) but involving e/~ for
certain primes | instead of e=27/N (see the next
section). Clearly these series will converge much
faster (unless [ > ¢v/N, which rarely happens for
large N). However, the drawback of this method is
that it only applies when N is not a perfect square:

when N is square we can only find either the real
or the imaginary period of f, but not both. This
is frustrating, since in a systematic computation it
means that the square levels take far more than
their fair share of the computation time, as we
have to use the series (2.2) to compute the peri-
ods, which in turn require the computation of very
large numbers of a,. Originally we intended to ex-
tend the twisting trick to square levels N by using
quadratic characters of conductor not coprime to
N, but we never worked out the details. Instead we
have been able to use the Fricke involution (which
was already responsible for the replacement of NV
by VN in the series for L(f ®x, 1)) to compute
the periods P;(M) using better converging series
than (2.2).

Let W = Wy denote, as usual, the transforma-
tion z — —1/Nz of H*. This induces an involution
on the space of cusp forms of weight 2 for T'y(V).
Assume that the cusp form f is an eigenform for
W, so that it satisfies the functional equation

1 -1
vl (72)
where ¢ = £1 is minus the sign in the functional
equation of the L-series L(f,s).

By changing variables in the integrals, we see
that

flz) =€ (FIW)(z) =

1 (W(e), W(B)) = Lw (e, B) = els(a, B).
In particular, if # = W («) we obtain
It (a, W(a)) = —elf(a, W(a)),

so that when € = +1 we have I;(o, W(«x)) = 0 for
all a.

Assume we are in this case (¢ = +1). Then in
any period integral we may replace an endpoint
a with W(a) without affecting the value of the
integral. In particular,

Py (M)

= Ii(o, M(e)) = I;(W(e), M(e)).
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Setting o = dz/(\/ﬁ — ¢N7i) we find that

b c 1
-I— —= and W(a)=-+—=,
v W =GN
with the same imaginary part; now both imaginary
parts are 1/dv/N. (Again, we may assume that
d > 0 by replacing M by —M if necessary.) Hence

~ Ly (M(a))

M(a) =

Py(M) = 1;(W(a)) —

c b 1
=G+ w) ~ UG )
! d\/_ Nd " ayN
where both integrals converge relatively well.
When ¢ = —1, we can obtain a slightly more
complicated result that is just as good in practice.

Combining both cases gives the main result of this
section.

Proposition 2.1. Let f be a cusp form of weight 2 for
['o(N) such that f | W = ef with e = £1. Then,
for all

a b
M = (cN d) e ['y(N),
the period Py(M) is given by

Pr(M) = (1—&)I;(i/VN)+el;(W(a

where a € H s arbitrary. Taking

so that _
W(a) = 2 + d\jﬁ’

we have

Py(M) = (1 —e)I;(i/VN)

c 1 b 1
vetr (54 o) 1 (5 )
_ — 1y ,—2mn/VN
= E - ((6 le

+ e—zm/dx/ﬁ (e2m'nb/d_

€e2winc/d)> .

Proof. Using W(z/\/ﬁ) = z/\/ﬁ we simply com-
pute:

I(a, M(ar))
= I(a,i/VN) + I;(i/VN, W ()

+1; (W (), M (cv))

(@),i/VN) + 1;(i/VN, W ()
+1;(W(a), M ()
= (1—&)(I;(i/VN) = I;(W(a))) + I;(W (c))
—I;(M())
= (L= ) I;(i/VN) + el ;(W () — I;(M(c)).

The final formula now follows from (2.1) using the
value of o defined before. g

Note that the term (1 —€)I;(i/v/N) that appears
n (2.3) is equal to —L(f,1), by [Cremona 1992,
Proposition 2.11.1]. Hence this term is zero unless
the analytic rank of f is zero.

= €If(W
)

3. FINDING MODULAR ELLIPTIC CURVES QUICKLY

To find all modular elliptic curves of a given con-
ductor N, one proceeds in two phases. In the
first phase one computes rational newforms f for
['y(V), and in the second phase one finds the pe-
riod lattice A, of f, as defined in the previous sec-
tion. Then the final step, of determining an equa-
tion for the modular elliptic curve £y attached to
f from its period lattice, is straightforward and
quick, using the well-known rapidly convergent se-
ries for the invariants ¢, and ¢ of Ey. These are
known to be rational (since E; is defined over Q).
Moreover, work of Edixhoven [1991] on the Manin
constant implies that these computed values of ¢,
and cg are integral, which is of course crucial if we
are to recognise them from floating point approx-
imations. Given the integers ¢, and cg, it is then
easy to find a standard Weierstrass equation for
the curve Ey.

In this section we will describe an approach to
the second phase that is much faster in practice
than the one presented in [Cremona 1992], though
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yielding slightly less information. The idea is es-
sentially this: we need to compute both the real
and the imaginary periods of f in order to deter-
mine Fy; the real period may be obtained with
little extra effort during the first phase; while com-
puting the exact imaginary period then takes con-
siderable extra time, it is easy to compute an inte-
ger multiple of the imaginary period, and then one
can (by trial and error) determine which multiple
of the imaginary period this is.

In order to explain this idea, it is necessary to
recall some aspects of the modular symbol method
we described in detail in the book [Cremona 1992].
Using this method we compute the homology space
H(N) = H,(X,(N),Z), finding an explicit basis in
terms of modular symbols, and computing the ma-
trices of various Hecke operators on H(N) with
respect to this basis. The dimension of H(N) is 2¢
where ¢ is the genus of X, (V), which increases ap-
proximately linearly with IN. For the first phase,
however, we may work in H*(N), the g-dimen-
sional subspace of H(N) fixed by the involution in-
duced by complex conjugation. This space (rather,
the real g-dimensional vector space H(N) ®q R) is
dual to the space of cusp forms of weight 2 for
[y(NV) with real coefficients. Thus, using linear
algebra, one can determine the one-dimensional
eigenspaces in H(N) for the algebra of Hecke op-
erators, which correspond by duality to rational
newforms for I'y(NV).

Working in H*(N) is faster than working in
H(N) as it has half the dimension. Hence it is
of interest to see exactly how much information
we can obtain here. At the end of the first phase,
we will know how many rational newforms there
are, and hence how many modular elliptic curves
of conductor N there are, up to isogeny. For each
newform f, we can (by computing the Hecke ac-
tion on H"(N)) determine a large number of co-
efficients a,, of its Fourier expansion. We can also
determine the sign of the functional equation of
the associated L-series L(f,s), and whether the L-
series vanishes at s = 1. This tells us partial infor-
mation about the analytic rank of the associated

curve E;: we know its parity and whether or not it
is zero. We can also compute an approximation to
the value L(f,1) (when it is non-zero), and a real
period Q(f), which is 1 or 2 times the least real
period (f) (though we do not know at this stage
whether Q(f)/Q(f) = 1 or 2). In other words,
we can compute the projection of the period lattice
Ay onto the real axis. Of course, this is insufficient
information from which to construct the curve Ey:
we still need the imaginary period.

In the original implementation described in [Cre-
mona 1992], this extra information was obtained by
starting afresh, working in the full 2¢g-dimensional
space H(N). In H(N) we find, for each rational
newform f, the two-dimensional eigenspace associ-
ated to f, which is split into two one-dimensional
eigenspaces by the conjugation involution. Once
we have this two-dimensional eigenspace, it is a
simple matter of linear algebra to determine ele-
ments vy, v, € H(N) such that the periods

wi = I (7i)

are a Z-basis for the period lattice A;. (Here, for
v € H(N), we denote by I(7) the integral of wy
along .) Then we may compute these generating
periods, again approximately, using the methods
of the previous section. Finally, from w;, and w,
we can compute approximations to the c¢; and cg
invariants of the elliptic curve Ej.

For large N (say over 3000), we have found this
second phase to be very costly in computation time
and space required: not only does it take longer
to compute an explicit basis for H(N) than for
H*(N) (there are approximately twice as many
modular symbol generators with twice as many
relations between them), but also the linear al-
gebra has to then work with matrices of double
the dimension, which takes at least four times as
long. Hence we have been led to develop an in-
direct approach to determining the imaginary pe-
riod of each rational newform f, where we quickly
compute an integer multiple of the imaginary pe-
riod and then guess which multiple it is. This new
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approach is extremely fast, but does have one crit-
ical disadvantage: we can (in most cases) deter-
mine a period lattice A, that is a sublattice of fi-
nite index in the full period lattice Ay, and such
that C/A’; is an elliptic curve E} of conductor N
with L(E%, s) = L(f,s), but we do not know that
A’ = Ay, so that E} might only be isogenous to
the curve Ey.

First we recall briefly the indirect method for
computing periods described in [Cremona 1992].
It relies on the fact that the values

VIL(f ® x,1)

for quadratic characters x (with conductor [ co-
prime to V) are, on the one hand, easy to compute
to high precision (given enough Fourier coefficients
of the newform f); and on the other hand, they
are integral multiples of the basic periods of f. In
our original approach we used modular symbols in
H(N) to determine these multipliers exactly and
explicitly, so that two computations of L(f ® x, 1)
for suitable characters x were enough to determine
the period lattice.

There exist positive real numbers x and y such
that, for each cycle v in H(N,Z), we have
(

Ii(y) =m™ (v)z +m™(7)yi.

Here v — m*(y) are homomorphisms I'y(N) — Z,
which may be computed easily in terms of mod-
ular symbols, provided that we have an explicit
representation of the space H(N) to hand. The
cycle v will be represented by an integer vector of
length 2¢g giving its coordinates with respect to a
specific basis of H(N); attached to f we will have
determined two integer vectors v* (eigenvectors of
explicit Hecke matrices), such that

mE =vt. .
If we only know the space H™ () explicitly, then
we can compute m* () in this way, and hence de-
termine the real part of each period I;(y), but not
the imaginary part.

There are two possibilities for the period lattice
Ay: either Ay = (2x, z + yi), in which case we say
the lattice is of Type 1, or Ay = (z,yi), when it is
of Type 2. In the notation used earlier, Q(f) = 2z
in both cases while the least real period Qy(f) =
Q(f)/t if the type is t.

The direct method of computing the lattice Ay
is to compute I;(7y) numerically for a cycle 7 such
that m¥*(y) are both non-zero, using the formula of
the previous section. Here, v will be expressed as a
linear combination of paths of the form a — M («)
for various M € T'¢(N). This is the only method
we can use when N is a perfect square; otherwise
we may alternatively obtain the periods indirectly,
using special values of twisted L-series L(f ® x, s).

For each odd prime ! not dividing the level NNV,
let x be the quadratic character modulo [. Then
there is an integral period

P(l,f) = VIEL(f ®x, 1) = I;(m),
where [* = £l =1 (mod 4) and

w= Y x(a){0,a/i}.

a (mod I)

Here the modular symbol {«a, 8} denotes the image
in the homology of Xy(N) of a geodesic path from
« to B in the upper half-plane.

If ] =1 (mod 4) then m~(y,) = 0, since v, €
H*(N), and now the integer m™(l, f) = m™(y)
satisfies P(l, f) = m™(l, f)x. Secondly, when | =
—1 (mod 4) we have m™(y;) =0, since y, € H~(N),
and the integer m~ (I, f) = m~(v,) satisfies

P(, f) = m~ (I, fyi.

Hence to compute z and y, and so determine the
period lattice, we simply have to find primes |+ =
+1 (mod 4) such that the integers m* = m* (y+)
are non-zero, and set x = P(I", f)/m™* and yi =
P(l~, f)/m~. For the multipliers to be non-zero it
is necessary (though not sufficient) that x(—N) be
equal to the eigenvalue of the Fricke involution Wiy
(denoted ¢ in section 2), since otherwise the sign
of the functional equation of L(f ® x, s) is —1 and
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the value L(f ® x, 1) is trivially zero. This is what
makes this method fail when N is a perfect square,
since then x(—N) = x(—1) cannot have the correct
sign for both real and imaginary periods.

For each quadratic character x such that x(—N)
equals ¢, the value of L(f ® x, 1) is computed using
the following series [Cremona 1992]:

L(f®x, 1) =2 f: @ exp(—2mn/IVN). (3.1)

As explained above, the integers m* may be ob-

tained algebraically from modular symbol calcula-
tions in H(N). The result of this algebraic compu-
tation thus consists of the following data for each
rational newform f: primes [T congruent respec-
tively to #1 modulo 4; nonzero integers m*; and
the type (1 or 2) of the lattice. (The type is defined
at the top of the preceding column.) To compute
the period lattice from this data set of five integers,
we compute the periods P(I%, f) using (3.1), divide
by m* respectively to obtain z and y, and take A;
to be the lattice (2z,z + yi) (if type 1) or (z,yi)
(if type 2). In practice we can store these five inte-
gers with the Hecke eigenvalues from which we can
obtain the Fourier coefficients, and recompute the
periods when we need them. In particular, if at
the first attempt we are unable to compute the in-
teger invariants cy, c¢ of the curve Fy to sufficient
precision to recognise them, then we will return
to H*(N) in order to compute more Hecke eigen-
values, and then recompute the periods to greater
precision without having to recompute H(N).

However, the data [T and m™ can be computed
earlier in the first H*(N) phase, since they only
depend on the real projection of the period lattice,
so we can already compute the real period z from
the data we have from the first phase. Moreover, it
is easy to find a suitable prime [~ once we know the
Hecke eigenvalues of f, by numerically computing
P(l, f) for several primes [ = —1 (mod 4) until we
find a value which is clearly non-zero.

Thus the only purpose of the time-consuming
second phase of the computation, working in H(N),

is to determine the integer factor m~ and the type
of the lattice. Our new method, which we have
used systematically for larger levels (N > 3000),
is simply to guess the value of ™ by trying each
positive integer n in turn. For each m > 1 we set
yi = P(I7, f)/m and test the two possible lattices
(one of each type). If either lattice has approxi-
mate integer invariants ¢, and cg, and the rounded
integral values are valid invariants of an elliptic
curve over (, and the resulting curve has conduc-
tor N, then we store for later use the successful
value m~ of m, and the type, and consider the
curve E we have found as a possible candidate for
the actual modular elliptic curve Ej.

As we pointed out above, the curves E; and EY
are certainly isogenous; they even have the same
real period. In many cases, the curve E} has no
rational isogenies; in such a case we can conclude
that E; = E} with no ambiguity. In any case, we
can compute the isogeny class of curves isogenous
to B} via rational isogenies, and the only loss is
that we do not always know exactly which curve
in the class is the “strong Weil curve” E;. A fur-
ther disadvantage is that we cannot compute the
degree of the modular parametrisation of £y, as
this requires knowledge of H(N): see [Cremona
1995].

The huge advantage of this method is that in
only a few extra seconds computation time, as soon
as we have a rational newform, we can (almost al-
ways) write down an associated curve E; before
this was implemented, it could take many hours
of computation time to determine H(N), find the
eigenvectors corresponding to f, and hence deter-
mine the factor m~ and the lattice type, before we
could compute E;.

We will give an example of this method (with
N =11) below.

We now discuss some variants of the method just
described.

1. We may use same trick to find [T and m™ if
we have not computed them earlier. Then we are
obtaining the period lattice and equation of the
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curve using only: the Fourier coefficients of f (i.e.,
the coefficients of the L-series of the curve); the
sign of the functional equation; and the conductor
N. No modular symbol information at all is needed
in this case. For an example of this, see the case
N = 11 below; we have carried this out for other
examples too, but at present we do not normally
need to use it, as in our implementation we always
compute the real period directly.

One may also guess the sign of the functional
equation if all one has is the L-series [Cohen 1993,
p. 406].

2. Let I; and [, be two primes congruent to —1
(mod 4), for which —N has the correct quadratic
character, so that P(l;, f) and P(l,, f) are both
not trivially zero. We may compute both the pe-
riods P(l;, f); assume that these are nonzero (or
use different primes ;). We know that there exist
nonzero integers m; such that P(l;, f) = mjyi for
j = 1,2. Therefore
P(l27 f) _ %

P(ly, f) my’

and we may compute a floating point approxima-
tion to this rational number. In practice (provided
we have many Fourier coefficients, and the primes
l; are fairly small) we will be able to recognise this
rational number using continued fractions. Its de-
nominator is a factor of the unknown integer m;.
If we do this for several different values of [, (with
the same ;) then the least common multiple of the
denominators may give us a nontrivial factor of m,,
and then in our search for the exact value we may
restrict to multiples of this factor. This is useful in
practice.

3. Another possibility, which we have not imple-
mented, is to compute H (N) in order to deter-
mine m~ exactly, as we do m* from H*(N). This
would be about as much work as the original com-
putation of H*(N) (in fact, it would be easier to
find the eigenvector corresponding to each new-
form, since we already know its eigenvalues), and
certainly less work than computing the larger space

H(N). The result would be that we would have
computed exactly all the data we need, in a shorter
time than would be required for computing H(N),
except for the type of the lattice. If we do not
know the type, we can try both types to see which
results in a curve with integral coefficients. If both
types succeed (as does happen), we will only know
the curve E; up to a 2-isogeny. This final ambi-
guity can in fact be eliminated, at least in prin-
ciple, since the lattice has type 1 if and only if
mt(y) = m () (mod 2) for all vy € H(N), and
the parities of these numbers may be determined
while working in H*(N) and H~(N) respectively.

4. The formulas of Section 2 enable us to compute
the period P;(M) quickly for each M € T'y(N).
Another variant would then be to choose matri-
ces M € T'y(N) at random (with small entry d
for greater precision) until some value of P;(M)
had non-zero imaginary part. This imaginary part
would be an integer multiple of the quantity de-
noted y above, and as before we could guess y by
repeated division and testing. Again, we could also
determine divisors of the multiplier, by comparing
the imaginary parts of P;(M) for several different
matrices M.

This last variant works equally well when N is
a square, as we compute periods directly. Taken
to the extreme, it amounts to computing random
periods P;(M) in the period lattice Ay, until one
has a sublattice A’; of Ay of (unknown) finite index,
and then searching for a superlattice A of A’; for
which the curve C/A has integral invariants and
conductor N. See below for examples of this.

Example: N = 11

There is a single newform f for I'y(11), with Fourier
coefficients given by the following table.

n 1 2 3 4 5 6 7 8
a(n) 1 -2 -1 2 1 2 -2 0
n 9 10 11 12 13 14 15 16
ain) | =2 -2 1 -2 4 4 -1 —4
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Modular symbol calculations in H*(11) show
that L(f,1)/Q(f) =1/5. We compute

L(f,1)=2)

where ¢ = exp(—2n/v/11) = 0.15.... Using the
first 16 terms that we have already gives this to
13 decimal places: L(f,1) = 0.2538418608559 ... ;
thus Q(f) = 5L(f, 1) = 1.269209304279 . .. .

Next, modular symbol calculations in H(11) re-
veal that the period lattice is of type 1, say

a(n) .
n

(wy,ws) = 2z, x + yi) .

Hence Q(f) = Qo(f) = 2z, so x = 5L(f,1)/2 =
0.634604652139 . ... For the imaginary period, we
find that y = P(3, f)/2i = V3L(f ® 3,1)/2. Sum-
ming the series for L(f ® 3,1) to 16 terms gives
only 4 decimal places: L(f ® 3,1) = 1.6845....
This is less accurate than L(f,1), since it is a
power series in exp(—27/3v/11) = 0.53..., com-
pared with 0.15.... Hence y = 1.4588. .., so that
wy = x + yi = 0.634604652139... + 1.4588...1.
If we use these approximate values for the period
lattice generators we find the approximate values
cy = 495.99 and ¢ = 20008.09, which round to
the integer values ¢y = 496 and cg = 20008. These
exact values of ¢, and ¢z are the invariants of an
elliptic curve of conductor 11, which is therefore
the modular curve E:

y' +y =2 —2° — 10z — 20.

This is the first curve in our tables, with code 11A1
(or code 11B in [Birch and Kuyk 1975]).

We now illustrate the shortcut method presented
above, where we guess the imaginary period and
lattice type without computing H(11). Having
computed P(3, f) = 2.9176...7 # 0, we consider
the lattices (x,yi) and (2z, x + yi), where 2z =
1.2692... (from above) and yi = P(3, f)/m~, for
m- =1,2,3,.... Withm~ = 1 we do not find inte-
gral invariants, but for m~ = 2 and lattice type 1
we find the curve E; = [0,—1,1,—10, —20] given
above.

Using the first variant of the method, where we
do not even know z, we can take [T = 5 since
P(5,f) = 6.346... # 0. The correct value of
m™ here is 10; if we do not know this, but try
mt =1,2,3... in a double loop with m~, the first
valid lattice we come across is with (m*™,m~) =
(2,2) and type 1, which leads to the curve E' =
[0,—1,1,0,0] of conductor 11; this is 5-isogenous
to the “correct” curve Fy, which comes from

(m*,m™) = (10,2)

and type 1.
We may also consider the ratios P(l, f)/P(3, f)
for other primes [ = 3 (mod 4); we restrict to those

[ satisfying
)= ()=

since otherwise P(l, f) is trivially 0 (since the sign
of the functional equation for the corresponding
L(f®x, s) is then —1). We find the following ta-
ble of values (rounded: they are only computed
approximately

)
l 3 23 31 47 59 67 Tl
ERa 1 1 1 o0 1 9 1
l 103 163 179 191 199 223 251
ERa 0 4 2 1 4 1 1

The zero values for [ = 47 and [ = 103 indicate
that the corresponding twists of the newform f
have positive even analytic rank (the correspond-
ing twists of the curve E; do indeed have rank 2).
As all these values are integral here (a priori they
are only known to be rational) we do not find any
nontrivial divisor of m~ (which we know in fact
equals 2). The fact that all the integers are perfect
squares is an amusing observation, but has a sim-
ple explanation in terms of the numbers appearing
in the Birch-Swinnerton-Dyer conjecture for the
twists of Ey.

Finally, there is one other curve E" isogenous
to E; in addition to E' (found above). If the pe-
riod lattice of E; = [0,—1,1,—10,—20] is (2z, yi)
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with z = 0.6346... and y = 1.4588..., then E' =
[0,—1,1,0,0] has period lattice (10z, 5z + yi), and
E" =10,—1,1,-7820,263580] has lattice

(x/5, 2z /5 + yi) .

These curves are linked by 5-isogenies E <> E' and
E < E".

Lastly, we give examples of the method that
works for all IV, including squares.

Example: N = 36

At level 36 there is a single newform f. We com-
pute P;(( ;. 1)) = 0 (approximately) and

Pi((3,3)) =z +yi
with
x = 2.103273157988181392. . .,
y = 1.2143253239437908058 . . . .

The lattice (2z, z + yi) leads to the correct curve
y? = 2% + 1 of conductor 36.

Example: N = 4900

At level 4900 there are 23 newforms; let f be the
first of these, with ay, =1, a3 = —1, a5 = —1, a; =
—1, a;, = =3, a3 = —2, a1y = —3, and a9 = —1.
We compute the period P;(M) of f for various ma-
trices M = ( Z) € I'y(4900); we find each one to
be (approximately) a Z-linear combination n,x +
n,yt of x and yi where z = 0.350453337706059 . ..
and y = 0.368564884916029..., as given in the
following table. For brevity, we only give b/d and
the coeflicients n, and n,, which we emphasize are
only obtained approximately.

b/d | ny, | n, b/d | n, | n,
/35[0 /11| 2 | 4
1/9| 1| 4 2/11| 2 | 4
2/9| 1| 4 3/11 1|0
4/9| 7 | 0 4119 | 1

From this we test the lattice (x,yi). It gives
cy = 137200, cg = 9604000, and hence the curve
y? = 23 — 2% — 2858z — 10163 of conductor 4900.

4. CURVES OF CONDUCTORS UP TO 5077

We have carried out the computations described
above for all levels NV up to 5077. For each N we
found the rational newforms, and computed many
Hecke eigenvalues for each; in the worst case we
needed all a, for p < 30000. For each form we
computed a period lattice, and hence found a corre-
sponding curve of conductor N. At present (Febru-
ary 1996), we have found the full period lattice and
hence Ey only for N < 3200; for 3200 < N < 5077
we have only used the method of section 3 to find a
suitable curve, which we only know to be isogenous
to E;. For each curve, we verified by 2-descent (in
most cases, including all cases of rank 2) that the
rank was equal to the analytic rank, and by find-
ing the Mordell-Weil group of each curve (again, in
most cases) we were able to compute the value pre-
dicted by the Birch-Swinnerton-Dyer conjecture
for the order of the Tate—Shafarevich group.

We summarise the results obtained in Table 1,
where for brevity we only give the numbers of new-
forms found, subdivided by rank. The first exam-
ples of each rank are: N = 11 for rank 0; N = 37
for rank 1; N = 389 for rank 2; and N = 5077 for
rank 3.

Range of N | Total |r=0|r=1|r= r

1-1000 | 2463 | 1321 | 1124 18
1001-2000 | 3391 | 1575 | 1737 79
2001-3000 | 3661 | 1663 | 1852 146
30014000 | 3836 | 1664 | 2006 166
4001-5000 | 3948 | 1685 | 2087 176
5001-5077 284 121 148 14

1-5077 | 17583 | 8029 | 8954 599

RO OO OoOOoO|Ww

TABLE 1. Summary of rational newforms for I'g (IV),
N < 5077.

ELECTRONIC AVAILABILITY

For conductors N > 1000, tables of the curves
and related data may be obtained from the author
from ftp://euclid.ex.ac.uk/pub/cremona/data. At
present the data available is not quite as extensive
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as that published in [Cremona 1992] for conductors
up to 1000; more complete data is in preparation,
and a fuller report will be published when it is
available.
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