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We present a method to construct irreducible rational matrix
representations of finite groups, based on an efficient construc-
tion of fixed points of finite groups acting on complex vector
spaces.

1. INTRODUCTION

For finite fields there are satisfactory methods to
construct the irreducible representations of a finite
group [Parker 1984; Holt and Rees 1994]. When it
comes to computing representations over the com-
plex numbers, one can use the ideas in [Dixon 1970]
to come up with approximate solutions. For alge-
braic applications, however, one would prefer pre-
cise descriptions. This paper outlines a first ap-
proach to the problem of how irreducible ratio-
nal representations can be constructed by comput-
ing and analysing endomorphisms and homomor-
phisms of modules.

With the complex group algebra CG of a finite
group G, the rational group algebra QG still shares
the property of being semisimple. With the group
algebra F,G over a finite field it shares the prac-
tical property that computations can be done in
a precise rather than an approximate (numerical)
way. The main point of this paper is to show that
the precise calculations can be performed in a prac-
tical way when it comes to modules of dimensions
around 200. However, unlike CG and F,G, the ra-
tional group algebra QG might have simple mod-
ules whose endomorphism rings are not commuta-
tive, so that Schur indices are involved. Deciding
whether a homogeneous QG-module, i.e., a mod-
ule isomorphic to a multiple of a simple module,
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is simple or not, will in general call for a p-adic
analysis of its endomorphism ring. In Section 5
we outline some methods for avoiding this in most
relevant cases.

The paper is centred around Theorem 2.1, which
might have other applications as well, as in the
computation of polynomial invariants of finite ma-
trix groups. The theorem was known in some spe-
cial situations [Dixon 1970], in which we also apply
it. However, since we are dealing with the rational
numbers, we can use the approximative process of
Theorem 2.1 to compute precise rather than ap-
proximative solutions; see also Section 4.

There are other techniques available to construct
rational representations, for instance by reducing
permutation or monomial representations, where
it is easy to compute the endomorphism ring, or
for special classes of finite groups, such as soluble
groups, or under special assumptions for the char-
acters as in [Dixon 1993]. These topics will not be
discussed in this paper.

2. APPROXIMATING THE AVERAGING OPERATOR

Theorem 2.1. Let G be a finite group, V a finite-
dimensional CG-Module, E C G a generating set
of G with 1 € E. Define

1
p:V—>V:v|—>?ng
Gl 7=
to be the CG-projection of V onto the stabilizer
Fixg(V') of the G-action on V, and

1
pE:V—>V:v|—>fng.
1Bl %=

Then inside Endc (V') one has lim p% = p.

Remark. We have Endc(V) = C™*! if | = dim¢ V,
which clarifies the notation of convergence. Clearly
C can be replaced by any of its subfields in the
above theorem.

Proof. Since V' is an epimorphic image of a finitely
generated free CG-module ((¢CG)", one may as-
sume that V is the regular CG-Module ¢¢CG. De-

note the matrix representation of V' with respect
to the canonical basis G by A. Then clearly X :=
A(pg) is a doubly stochastic matrix.

Claim: X is irreducible (in the sense that there is
no permutation matrix P of degree |G| such that
PXP~! is triangular). To prove this, note that
each element of G can be written as a word of
length n in the elements of F, since 1 € E, pro-
vided n is big enough. But this means that X"
has no entries 0, hence X™ and therefore X is irre-
ducible. By the Theorem of Perron—Frobenius on
nonnegative matrices, [Huppert 1990, p. 398], X
has exactly one eigenvalue 1 with multiplicity one,
and all its other eigenvalues of norm less than 1.
Hence X™ converges, and therefore also p%. Obvi-
ously the limit is p. O

Some comments on the proof are appropriate. The
result is closely connected with [Dixon 1970, The-
orem 1] and [Schlosser 1978, Satz 2|. Though the
main applications will be in the same context as in
[Dixon 1970], we shall use it to perform precise cal-
culations (see Section 4), rather than approximate
ones as in that paper. Our proof is different and
relates the result to the ideas in [Thompson 1981].
It allows the following extensions of the result:

Let RG>0 be the set of formal convex combi-
nations of elements of G, that is, the subset of RG
consisting of elements of the form

zagG with Zag =1land o, >0 forall geG.

geG geG

Fore=} ,a,9 € RGy >0, define p. : V. — V by

pe(v) = Zaggv = ev.

geaG

Then p} converges to p if e € RGSS,, where RGE™S,
is the set of e € RG> such that e™ has no nonzero
coeflicient in its expansion in the elements of G, for
sufficiently big n. Note that RG, > is multiplica-
tively closed and convex.



Plesken and Souvignier: Constructing Rational Representations of Finite Groups 41

3. THE RATE OF CONVERGENCE

For each e € RG;>o and each character x of G,
define Spec, (e) to be the set of all eigenvalues of
I'(e), where I' is a complex representation of G with
character x, and set

ry(e) = max {|a| : a € Spec,(e)} .

Remark 3.1. Let y = Zle mix; = mil + x' be the
character of the CG-module V' decomposed into
complex irreducible characters x; =1, x2, ..., X&.
For e € RG> one has:

(i) ry(e) = max{ry,(e):1=2,...,h, m; #0}.
(i) p — p for n — oo iff 7,/ (e) < 1.
(iii) In case 7,/ (e) < 1, one has

o= pell < (ry(e) +¢)"

for any € > 0 and n bigger than some constant
depending on ¢, where || - || is any algebra norm
on Endc(V).

Proof. Parts (i) and (ii) are clear, and (iii) follows
from the proof of [Huppert 1990, Satz I11.2.10], if
one notes p — p = (p — pe)". O

So one has linear convergence and wants r,/(e) to
be as small as possible. Here are some ideas that
are tested in examples to get a good e € RGYS,.
Replacing e = |E|7'Y° .9 by e = > 5,9,
with 0 < @, < 1 and ) .,y = 1, leads only
to small improvements. Replacing E by a different
set E' of generators with elements of bigger order
often works better. Finally, using

e= J] GO-g)

geEE’, g#1

usually leads to drastic improvements. Often

1
e= H —(14g+g*...+g9

e gz 19!

yields a smaller 7,.(e), but one step of the itera-
tions becomes much more expensive. In this con-
text it should be noted that for applications in
Section 5 these factorised versions of elements of
RG; >¢ turn out to be time-saving, since one can

compute factor by factor; however, for an element
of the form ) 5 ayg one is forced to compute the
gv first and then form the }_ _, a,(gv). The ex-
ample in Section 7 below demonstrates how good
candidates for e can be found.

Finally, in an actual computation with a given
e € RGYZ, and v € V, one needs a reasonable
estimate for ||p(v) — p(v)]| for some suitable norm
||| on V. Let v, = p*(v). Then v,,; — v, has no
Fixg(V)-component. In case ||[v,11 — vy # O for
one n it will be nonzero for all n > 0, and

)\n — ||vn+1 — vn”
“vn - vn—IH

converges to some A (see also [Huppert 1990, Satz
IV.1.15]), which is equal to the biggest absolute
value of the biggest eigenvalues # 1 of p, on the
space spanned by the v;. Usually this A will be
equal to r,/(e), hence the geometric series yields
A" /(1— ) as a realistic estimate for ||p(v) —p(v)]|.

4. EXACT SOLUTIONS AND INTEGRALITY

In this section we assume that V is a QG-module
rather than a CG-module and that V is given by
a full ZG-lattice L in V. In terms of the matrix
representation A with respect to a lattice basis of
L one gets integral matrices, and for any v € L
one has already a divisor d of |G| with dp(v) € L.
Therefore one will proceed as follows: In the course
of the iteration v = vy,vs,...,v, = p*(v),... one
will test whether the coordinates of v,, with respect
to a lattice basis of L are very close to a rational
number with a promising denominator, e.g., by us-
ing a continued fraction expansion of the coordi-
nates. Having found a reasonable denominator d
one replaces v,, by v = d~'%,, with o,, the vector in
L closest to v,. If v € Fixg(V') one is done; other-
wise one continues the iteration. By the remarks
at the end of Section 3 one has good control over
the error. This procedure works well, even if the
order of G is not known (and therefore yields divi-
sors of |G| in this situation). We have successfully
used it for modules of dimension around 40, 000.
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5. APPLICATION TO THE CONSTRUCTION OF RA-
TIONAL REPRESENTATIONS

In this section we demonstrate how the ideas de-
veloped so far can be used to find the irreducible
constituents of a rational representation of G.

Assume that a QG-module M is given by a full
ZG-lattice L C M. Then the following are ZG-
lattices that span QG-modules to which one can
apply Theorem 2.1.

() ZG, the image of ZG in Endgy(M) under the
representation ~ : QG — Endg(M). We have
ZG C QG. Here G acts by conjugation: g :
o+ gpg ! for g € G and ¢ € ZG.

(i) Endz(L) C Endg(M). Here G acts by conju-
gation as in (i); indeed ZG is a Z-sublattice of
Endg(M).

(iii) Bilz(L), the space of Z-bilinear maps ® : L x
L — Z, and a subspace of Bilg(L). Here g € G
maps ® € Bily(L) to the map ,® defined by
s @(my,my) = ®(g'my, g 'm,) for all m; and
Mo in L.

(iv) If M’ is a further QG-representation module
spanned by a ZG-lattice L' C M', one has a fur-
ther ZG-lattice Homy(L, L") C Homg(M, M'),
where G acts as in (ii).

The machinery developed in Sections 2—4 allows to
compute, as fixed point sets of the modules above,
elements or even a basis of each of the following:

() Z(QG) = Z(Endgg(M)), where Z denotes the
centre.

(i) Endgg (M).

(iii) Bilgg (M), the space of ® € Bilg(M) such that
=@ forall g eG.

(IV) HOII]QG (M, M,)

We comment on each case separately.

5(i). Z(Endgg (M)): Splitting M into its Homogeneous
Components

Lemma 5.1. Let V = QG and p as in Theorem 2.1.

Denote the image of ¢ € G in QG C Endgy(M)

by g. Then the eigenvalues of p(g) are given by

x(9)/x(1) with multiplicity m, x(1), where x is a

complex irreducible character of G occurring with
multiplicity m, in the character afforded by M.

Proof. It suffices to assume that M is an irre-
ducible CG—I_nodllle with character x. Then p(g) =
|G|~ ZheG h='gh = X\ids; by Schur’s Lemma. The

result follows by comparing traces. O

Hence, if the splitting of the character of M into
irreducibles is known and one has access to repre-
sentatives of the conjugacy classes, one can easily
produce elements z; € Endgg (M) such that the
kernels (or the images) of the z; are the homo-
geneous components of M. If one does not know
the irreducible characters one still can produce el-
ements of Z(Endgg(M)), but then one has to fac-
torise the minimum polynomials of the elements
computed to get a splitting of M. If this fails, one
computes a basis for Z(Endge(M)) and decom-
poses Z(Endgg (M)) into its minimal ideals, again
by factorising minimum polynomials.

5(ii). Endge (M)

Usually one will approach this problem only if M
is already homogeneous, that is, (i) is performed
and Z(Endgg(M)) is already computed. Again
the characters tell us the dimension of Endgg (M),
which is a simple Q-algebra. Hence one will com-
pute two elements of Endgg (M), say p(z;) and
p(xs), for z1, z2 € Endg(M), and see whether they
generate Endgg (M) as an algebra, and compute
more p(z;) if necessary. One ends up with a ba-
sis of Endgg (M) and the regular representation of
Endgg (M). If one has not found singular elements
in the course of the computation, one has to anal-
yse Endgg (M), some ideas for this will be sketched
in Section 6. There is one more situation where it is
worthwhile to work with Endg(M), namely if one
wants to compute Z (Endge (M)) for irreducible M,
when the Schur index of M is 1, i.e., Endgg (M)
is commutative: This is because in (i) one might
have difficulties finding a suitable ¢ € G to start
with if there are only few classes with irrational
character values.
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5(iii). Bilgg(M): Invariant Bilinear Forms

There are various situations when bilinear formes,
both symmetric and antisymmetric, are relevant.
First of all, one is well advised to keep with each
matrix representation an invariant positive definite
scalar product, because this allows one to manipu-
late the basis by various reduction routines to keep
small coefficients for the matrix entries in the rep-
resentation. For dimensions below forty the algo-
rithm of [Seysen 1993] is often very efficient for
this purpose. If one does not have an invariant
symmetric positive definite bilinear form, one gets
one by applying the averaging operator p to any
symmetric positive definite ® € Bilz(L). In prac-
tice one will start with some ® € Bilz(L), whose
symmetric part is only positive semidefinite # 0
and whose antisymmetric part is nonzero. Then
p(®) = &,4+P,, where the symmetric and antisym-
metric parts ®,, ®, € Bilgg (M) can easily be ex-
tracted from p(®). (Note that switching the argu-
ments in ® commutes with p.) ®, will be nonzero
positive semidefinite. If it is not positive definite,
its radical will be a QG-submodule of M, which
is always a welcome reduction. If ®, is positive
definite, it turns Endgg (M) into an algebra with
involution. This becomes immediately clear if one
identifies Bilog (M) with Homgg (M, M#), where
M# = Homg(M,Q) is the contragredient module
of M. Of course one can do this on the level of
ZG-lattices as well.

Remark 5.2. Let ® € Bilgg (M) = Homgg (M, M#)
be nondegenerate, and symmetric or antisymmet-
ric. Then ® turns Endgg (M) into a Q-algebra with
involution ¢ by

¢ : Endgg (M) — Endge (M) : a — ®a¥®7,
where o' : M# — M# is the transpose of a.

In the above situation, if ®, or ®, is nondegener-
ate, that is, represents a QG-isomorphism M —
M#, then ®,%,! and ®,%,! lie in Endgg(M). So
one gets an element of Endgg (M) and via the in-
volution a new element for each further element
one computes in Endgg (M). Of course, there are

also theoretical reasons why one should be inter-
ested in Endgg (M) as an algebra with involution.
For instance, the Brauer—Speiser Theorem, which
says that a Schur index of an irreducible represen-
tation can be at most two if Z(Endgg(M)) is a
real number field, is due to the fact that an al-
gebra with involution fixing the centre is split or
a matrix ring over a quaternion algebra. Here is
one more reason why antisymmetric bilinear forms
might be relevant.

Lemma 5.3. Assume that the character x of M con-
tains a C-irreducible real-valued character ¢ with
odd multiplicity m > 1. Then Bilgg (M) contains
nonzero antisymmetric forms and each such form
is degenerate.

Proof. Tensoring with R and splitting into homo-
geneous components reduces the problem to RG-
modules of the form @], My, where M, is an irre-
ducible RG-module with character ¢. By Schur’s
lemma M, allows up to scalar multiples only one
G-invariant bilinear form ®,. Moreover ®; is sym-
metric and can be chosen to be positive definite.
By choosing an ®j-orthonormal basis of M,, one
obtains a matrix representation A, for G on M,
and a representation +7"; Ag on ;" My. The an-
tisymmetric G-invariant bilinear forms on ;" , M,
have Gram matrices A®I,,, where A € R™*™ is an-
tisymmetric and I, is the n X n-unit matrix. Since
m is odd, det A = 0 and the result follows. O

Note that, if M in Lemma 5.3 is homogeneous, so
are Rad(®) and M/ Rad(®). Either one of these is
a simple QG-module, or the hypothesis of Lemma
5.3 applies again to one of them.

Finally we mention that real Schur indices of real
valued C-irreducible characters can be determined
by the distribution of invariant bilinear forms into
symmetric and antisymmetric ones.

5(iv). Homgg (M, M’)

This becomes relevant when dimg M is so big that
one hesitates to compute Endgg (M), and some
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irreducible QG-modules M' are already known. In
this case one can compute a nonzero element

¢ € Homgg (M, M")

and continue with the kernel of ¢ as new M (of
course, one will always work with lattices).

There are more situations where the possibility
of computing Homgg (M, M') might be relevant.
We mention only one:

Remark 5.4. Assume M and M' are isomorphic to
multiples @™ M, and @™ M, of a simple QG-
module M,. Then one can construct a QG-module
M" = P™ M, where mz = ged(my, my).

6. SOME REMARKS ON HOMOGENEOUS MODULES

The essential problem that might be left is to ex-
tract the irreducible constituent from a homoge-
neous QG-module M. Hence € := Endgg (M) is a
simple Q-algebra, and one has two problems:

(i) Decide whether € is a division algebra.
(i) If not, find a singular element in E.

Obviously, (i) can in principle be decided by us-
ing p-adic methods, which we do not want to go
into here. However, there does not seem to be a
feasible procedure for (ii). Here, we just give a few
easy solutions for (i) and (ii) in the most frequently
occurring situations.

Clearly € = D™*" for some (-division algebra D
and n € N. Let Z := Z(€) = Z(D), k := dimg Z
and dimz D = s*. Hence dimg & = k(ns)?.

Task (i) means determining n, or equivalently
the Schur index s. We treat the cases ns < 3 and
assume that Z is known and €& is given, for ex-
ample, in its regular representation over Z, which
will be of degree (ns)?. We note that there are ef-
ficient procedures available to solve relative norm
equations in algebraic number fields [Pohst 1989;
Fieker et al. 1996].

Lemma 6.1. Assume ns = 2. Then problem (i) can
be reduced to deciding whether a certain norm
equation for some quadratic extension of Z can

be solved, and problem (ii) to finding a solution
if there is one.

Proof. Pick ©x € & — Z of regular trace 0. Let
t> — d € Z[t] be the minimal polynomial of z. If
t2 — d splits over Z, we are done. If not, find y € &
with y # 0 and yz = —=zy, so that y induces the
nontrivial Galois automorphism of Z[z] = Z[/d).
Then & = Z?*2 if and only if there exists r € Z[z]
with Nz;p,z(r) = y72, Le., if € is a split crossed
product of Z[z] by Cy = Gal(Z[z]/Z). If r exists
then (ry)? = 1, hence 7y — 1 is nonzero singular. [J

It should be remarked that there are other pos-
sibilities to deal with the case ns = 2, namely
to find or prove nonexistence of an u € & with
trace(u) = 0 and trace(u?) = 0, which amounts
to finding a trace zero element representing 0 in
the trace bilinear form. For Z = Q constructive
procedures of finding isotropic vectors for ternary
quadratic forms are known [Mordell 1969]. How-
ever, the crossed product approach of Lemma, 6.1
still works for ns = 3, although less efficiently. But
the case ns = 3 is only relevant in case Z is not
a real number field because of the Brauer—Speiser
theorem.

Lemma 6.2. Assume ns = 3. Then problem (i) re-
duces to deciding whether a certain norm equation
Np/k(x) = b is solvable with K = Z or a certain
quadratic extension of Z, b € K, and L/K a cer-
tain cubic cyclic extension of K. If it is solvable,
(ii) reduces to finding a solution.

Proof. Choose a € € — Z. If the minimum poly-
nomial p(t) € Z[t] of a over Z is reducible we are
done. Assume it is irreducible and define L, =
Zla] = Z[t]/(p(t)). Then L, is a cubic extension
of Z contained in €. If (Ly/Z) is a Galois exten-
sion, let L := Ly; otherwise let L be the normal
closure of Ly. In the second case Gal(L/Z) = S.
Set K = Z in the first case; in the second, define
K as the subfield of L fixed by an element o of
order three in Gal(Ly/Z). Since [K : Z] is rela-
tively prime to ns = 3, € splits over Z if and only
if K ®z € splits over K. Identify a € € with 1® a.
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Represent K ®7 € as a crossed product of K|a] by
Gal(L/K) = C; by solving ya = a”y fory € KQE.
Let b := y=3. Then b commutes with a and lies in
K[a] = L. The crossed product K ®z€ splits if and
only if the norm equation Ny x(z) = b(= y~?) is
solvable. If z is a solution, then (zy)® = 1. Clearly

Vi={veK®,&: (xy—1)v =0}

is an irreducible K ® 7 &-module (note that K ®
& = K*<3 in this stage). Restricting the action
of K ®; € to € on V turns V into a reducible
&-module of composition length 2. The compo-
sition length of the regular €-module is 3 since
& = 7Z3%3, Hence one can construct an irreducible
&-module, i.e. an isomorphism & — Z3*3 (see also
Remark 5.4). This clearly exhibits a singular ele-
ment of €. O

7. AN EXAMPLE

From [Conway et al. 1985], for example, we get
this list of irreducible rational characters for G =

Sp4(3):

1 (trivial),
5ab, 6,10ab, 15, 15/, 20, 24, 30, 30ab, 40ab, 45ab,

60, 64,81 (factoring over SU4(2)),
4ab, 20',20ab, 20'ab, 36ab, 60', 60ab, 64', 80 (faithful).

(The notation is based on the characters’ degrees
and their splitting into complex irreducible char-
acters.) From [Holt and Plesken 1989, p. 338], for
example, we are given the rational representation
with character 4ab, and want to construct all the
faithful irreducible rational representations.

Step 1: We carry out some character calculations in
GAP [Schonert et al. 1994] to find a good order for
the construction of the irreducible representations.
Each time we find a new character needed later

on, we underline it. Each time we get a faithful
character we are looking for, we underline it twice.

4ab-4ab=2-1+2-6+2-15+ 10ab
10ab - 4ab = 4ab + 36adb + 20ab + 20'ab
6-6=1415420

20 - 4ab =20"ab+ 2 - 60’

6-20 =6+ 20+ 30+ 64

6-30 =15+ 20+ 64 + 81

15' - 4ab = 60ab

6 - 20ab = 2 - 20" + 36ab + 2 - 64

6 - 20" = 20ab + 80

Step 2 (choosing a suitable e € RGY’S)): We first
compute Endge (M) where M has character 4ab
[Holt and Plesken 1989, p. 338]. For each generat-
ing set {z, y} that we tested for rate of convergence,
three tests were performed:

=1i(l4+z+y), (7.1)

—%(Hw) (1+y), (7.2)

(l—l—x—f—---—f—x‘zl_l)(l—l—y—i—---—|—y|y‘_1) 73
=] ly] ‘

They require 2, 2, and |z| + |y| — 2 conjugations
in each step, respectively. Analogously, we tried
generating sets {x,y, z} with three generators. See
Tables 1 and 2.

So e = (14 ab): (1 + abab) (1 + (abab®ab)?) is
the element we work with.

Step 3 (Computing the representations): 4ab - 4ab
yields the modules with characters 2-6, 2-15, 10ab
which one gets by computing p(a) € Z(Endgg (4ab-
4ab)) in one go. To split up 2-6 and 2 - 15 one has
to compute Endgs for these two modules, which
are easily recognised as Q?*2. For 10ab - 4ab one
computes p(a) € Z(Endgg (10ab-4ab)) and gets the
desired splitting as indicated in step 1. One pro-
ceeds in the order suggested in step 1. For exam-
ple, 20 - 4ab yields (via p((ab)?)) the module 2- 60,
whose endomorphism ring is a positive definite ra-
tional quaternion algebra. Similarly 20’ and 64’
can not be realised over Q but only 2 - 20" and
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(7.1) (7.2) (7.3)

T y z #conj A1 #conj A1 #conj At
a b — 300-2 1.036 150-2 1.075 90-6  1.129

(ab)®  ab®ab — 470-2 1.024 180-2 1.067 150-6  1.079
ab ab3ab — 60-2 1.229 50-2 1.316 10-12 3.158
ab ba — 110-2 1.103 100-2 1.111 20-16 1.939

ab’ab  b*abab - 190-2 1.062 130-2 1.094 80-8 1.316
ab abab  (abab®ab)? 50-3 1.279 50-3 1.278 10-14 3.871

TABLE 1. Experiments with generators acting on the module M with character 4ab. The first three columns

express T,y, z in terms of the generators a, b given in [Holt and Plesken 1989]. (Note that a? is central, |b| = 4,
lab] = 9, |ab3ab| = 5, |(ab)(ab®ab)| = 6.) The remaining columns refer to the choices of e given in (7.1)—(7.3),
and they show the number of conjugations needed (number of steps times conjugations per step) and A1,

where ) is as in the end of Section 3.

(7.1) (7.2) (7.3)
z vy z #conj A! time | #conj A7! time | #conj A7!  time
ab abPab  — 2602 1.062 9955 | 170 -2 1.099 65.7s | 6012 1.304 133.2s
ab ab3ab (abab3ab)2 170-3 1.099 97.4s 70-3 1.267 41.9s | 40-14 1.600 104.5s

TABLE 2.

For the two best generating sets of Table 1, we tested the performance on the 64-dimensional module

M ® M. We show the time needed to compute one endomorphism, on an HP9000/730.

2-64'. These two modules are obtained from split-
ting the 240-dimensional module 6 - 20ab, where it
takes about 70 minutes to compute one endomor-
phism. The irreducibility of 2-20' of course means
that the representation in the last row (6-20' = - - -)
has to be replaced by 6 - (2-20") which is of degree
240 rather than 120. Also 2-80 belongs to an irre-
ducible QG-module.

If the reader tries to continue the exercise to
find also the irreducible non-faithful representa-
tions of Sp,(3), i.e., the ones factoring over Uy(2),
he will find that 5ab is the most difficult one to
get, for instance via the symmetrised tensor square
10abl?l = 1 + 5ab + 15 + 2 - 20 + 24 + 30ab + 60,
which means to decompose a module of dimension
210, and it takes about 40 minutes to find one en-
domorphism. Here of course (as well as in some of
the cases above) one can profit from the fact that
homomorphisms rather than endomorphisms can
be computed as well.

Remark. As an afterthought, one might ask what
sort of information one might want to store about

the representations constructed. At first glance,
one will think of the generators a,b, possibly the
invariant scalar product and generators for the en-
domorphism ring. But sometimes it might be more
advantageous to store the way the representations
were constructed, i.e., the matrices of the kernels of
the various module homomorphisms etc., in such a
way that one is able to first compute a (long) word
w(a,b) in a and b in the first representation (here
of degree 8) and then go quickly through the var-
ious constructions of intermediate representations
for w(a,b) to get A(w(a,b)) for the desired rep-
resentation A. If w(a,b) is a long word and A of
big degree, this might be considerable cheaper than
computing w(A(a), A(b)) naively.
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