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We show that the norm of a composition operator on the clas-
sical Hardy space H? cannot be computed using only the set
of H? reproducing kernels, answering a question raised by
Cowen and MacCluer.

1. INTRODUCTION

Let T be a bounded linear operator taking the
Hilbert space H into itself. Recall that the norm
of T' is a measure of how much 7T distorts the unit
ball of H, and is defined as

7| =sup{||Tf| : f € H with |[f|| <1}
= sup {||T*f|| : f € H with ||f]| <1}.

Here the norm on the right-hand side is the one
induced by the inner product of H, and T denotes
the adjoint of T'.

Calculating the exact value of the norm of a con-
tinuous Hilbert-space operator can be difficult. For
example, norms of composition operators on the
Hardy space H? have been computed only in cer-
tain special cases (described in the next section).
Cowen and MacCluer [1995, p. 125] ask if the norm
of a composition operator T on H? is determined
by the action of T* on only a small subset of the
unit ball of H2—the set of normalized reproducing
kernels for H2.

Here we describe experiments that led to an ex-
ample that answers this question in the negative.
That the example fully resolves the issue raised by
Cowen and MacCluer follows from Theorem 4.4,
which is stated and proved in the last section of
the paper.
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2. PRELIMINARIES

Let H(U) denote the space of all functions holo-
morphic on the open unit disk U = {z : |z| < 1}.
Any function ¢ € H(U) satisfying ¢(U) C U in-
duces a linear composition operator C, on H(U)
defined by

Cof =fop.

Littlewood’s Subordination Principle shows that
C, restricts to a bounded operator on the Hardy
space H? [Littlewood 1925]. The space H? is the
function-theoretic incarnation of the Hilbert space
£?: it consists of those analytic functions on U
whose Taylor coefficients in the expansion about
the origin are square summable.

The inner product of the Hardy space functions
f(z) =377 yanz™ and g(z) = > o7 by2™ is given
by

<fa g> = Zangna

and thus the norm of f is given by

oo
AP =D lanl*.
n=0

The norm of f € H? is also given by
1 [7 )
2 *( _10Y\|2
IFIF = 5~ /_Wlf (e)de,

where f* represents the radial limit function of f
(see [Duren 1970], for example).

The reproducing kernels for H? will play an im-
portant role in this paper. For a € U, the repro-
ducing kernel at «, denoted k., is defined by

1
Fo(2) = 1—az

The reader may verify that the label “reproducing
kernel” is apt: for each f € H?,

fla) = (f ka).

The collection of reproducing kernels for H? is
invariant under the action of adjoint composition
operators.
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Proposition 2.1. Suppose that o maps U analytically
into U. Then Cj(ka) = ky(a)-

Proof. For f € H? arbitrary,

(f, Coka) = (fop,ka) = flp(@)) = (f, kpe))- O

We are now in a position to state carefully Cowen
and MacCluer’s question regarding the norms of
composition operators.

Question 2.2. Is there an analytic map ¢ of the unit
disk into itself such that, on H?,

ko(a
||C¢|| > sup || w( )H 7
et [|Kal

(2.1

Of course, ||C,| is always greater than or equal
to the supremum on the right-hand side of (2.1),

because
kol H < ko >‘
= |lo* ,
(LA ? \lkall

and ko /||k«|| is in the unit ball of H? (for each
acl).

We show in Section 4 that the answer to Ques-
tion 2.2 is yes. Some of the results that motivated
Cowen and MacCluer to raise this question are dis-
cussed in the next section.

3. WHAT’S KNOWN ABOUT NORMS

Throughout the remainder of this paper, ¢ will
denote an analytic function taking U into itself,
and C, will denote the corresponding composition
operator on the Hardy space H?. A lower estimate
on the norm of C, may be obtained as follows:

1
1CI1* = I Cokoll* = ——~7
7 ¢ 1= [p(0)?
where the inequality holds because kg = 1 is in

the unit ball of H2. Littlewood’s Subordination
Principle and a change of variables argument yields
the upper estimate on the norm presented in the
following theorem [Ryff 1966].
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Theorem 3.1. Suppose ¢ maps U analytically into
itself. Then

1 1+ |¢(0)]
<|C I < — X221

1 —1p(0)

The preceding theorem shows that ||C,| = 1 when
©(0) = 0 (this is what Littlewood proved). Because
ko)l = ||kol| when ¢(0) = 0, no ¢ fixing the
origin will resolve Question 2.2.

The norm of the composition operator induced
by a map of the form ¢(z) = sz + ¢t was proved by
Cowen [1988] to equal

2 2
<1 + 82 = [t2 + /(1 = [s[> + [t[*)? - 4Itl2) '

Cowen shows that in this case the norm equals the
supremum on the right-hand side of (2.1). Cer-
tainly Cowen’s formula hints at how difficult the
computation of the norm of composition operators
can be.

Recall that an analytic function ¢ : U — U is
inner if its radial limit function has modulus one
a.e. [Duren 1970]. The norms of composition op-
erators induced by inner functions were computed
by Nordgren [1968].

Theorem 3.2. Suppose ¢ is inner; then

1+ |¢(0)|

C,l? = —4.

For wunivalent (one-to-one) inner functions ¢, it’s
not difficult to show that the supremum on the
right-hand side of (2.1) always yields the norm of
C,. A univalent inner function must have the form

a—z

T G
for some a € U and c of modulus 1.

Even though no formula has been obtained yield-
ing the norm of a composition operator on H?2,
there is a formula for the essential norm [Shapiro
1987]. (The essential norm of a Hilbert-space op-
erator 7' is the distance in the operator norm from

T to the collection of compact operators.) The es-
sential norm of C, is not, in general, determined
by the action of C; on reproducing kernels, but
is determined by such action when ¢ is univalent.
This fact led Shapiro to conjecture (private com-
munication) that the answer Question 2.2 should
be yes in general, perhaps no if ¢ is required to be
univalent. In the following section, we show that
the answer is yes even for univalent (.

For more information about the norms of compo-
sition operators, see [Cowen and MacCluer 1995],
for example.

4. EXPERIMENTS AND RESULTS

The way to proceed in order to prove that some
¢ satisfies the inequality (2.1) seems clear: try to
find the supremum of values of

Kol
() =
: 1Kl

as « varies over U, then try to show that the norm
of C, exceeds this supremum. (We’ve chosen the
letter L to denote this ratio because it will be less
than or equal to the norm of C,.) The problem,
then, is to guess what ¢ should be.

A natural place to begin is with composition
operators induced by inner functions, since their
norms have been computed (Theorem 3.2). We've
remarked earlier that no univalent inner function
induces a composition operator satisfying (2.1). For
this reason we start by considering, for example,
the two-to-one inner function

() = (f__fz) - @.1)

Figure 1, generated by Maple, shows the graph of
pr over the unit disk. It suggests that the supre-
mum of values of L} is about 1.5. On the other
hand, because 1 is inner, Theorem 3.2 shows that
ICsl1 = (1 + [e(O))/(L = [o(O)]) = 2. Thus, if
Figure 1 is accurate, Cy, satisfies (2.1), answering
Question 2.2 in the affirmative.

19 August 1996 at 13:53
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FIGURE 1. Graph of L.

Proposition 4.1. For v as in (4.1), we have

1B
[Cy | > sup ===~
act Kol
Proof. We need to show that sup,cy Ly(a)? is less
than 3. Let oo = re” be the polar form of . Ap-
plying the definition of L, we obtain

1— |r|?
Ly(a)? = : —|r|ei" . 4.2)
1— 271
1— 5re

View r € [0,1) in the preceding equation as fixed.
The maximum in 6 of the quantity in absolute val-
ues in the denominator on the right of (4.2) is easy
to find: observe that the linear-fractional map z —
(3 —2)/(1—3z) takes the circle {re® : 6 € [0, 2]}
to a circle with diameter on the real axis between
the points (3 —7)/(1—2r) and (1 +r)/(1+ ir);
thus, the maximum of L(re®)? is

1—|r)? (2+7)*
4 2\ "
1+%r

The quantity on the right increases to % as r in-

creases to 1, and thus sup, ., Ly(a)® = £, which is
less than 2 = ||Cy 2. O

19 August 1996 at 13:53

This Cy, though it answers Question 2.2, is unsat-
isfactory in two respects: it is not univalent, and,
more important, the norm of Cy ¢s determined by
Cy’s action on reproducing kernels! One must al-
low Cy (instead of C})) to act on the kernels.

Theorem 4.2. Suppose ¢ is inner; then

k
< (e |
o (5

The following Lemma will facilitate the proof.

|Cy | = sup
acU

Lemma 4.3. Suppose that f(z) = (az +b)/(cz + d)
is a nonconstant H? function; then

la|? + |b]? — 2 Re(abc/d)
|d[* — |cf? '

Proof. Find the power series in z for f; verify that
it is square summable if and only if |d| > |c|, and
that the sum of the squares of the moduli of se-
ries coefficients is given by the formula above (f is
nonconstant means ad — bc # 0). g

I£11* =

Proof of Theorem 4.2. We employ a fact observed by
Nordgren [1968, p. 443]: if ¢ is inner with ¢(0) = 0,
then C, is an isometry; i.e., ||C,f|| = ||f]| for all
f € H%. Let ¢ be an arbitrary inner function and
set B = (0). The function

v(z) = b —Z

1-pz
is a self-inverse automorphism of U. Thus for ar-
bitrary f € H?,

1CFll = [(CeCL)CL £ = I CL Al

where we have used the fact that C,C, = C,.,, is
an isometry (since v o is inner and fixes 0). Thus

k k
Co | )| =sup ||C | 5 ) |-
""(ukau)H ne (nkan)H

Employing Lemma 4.3, we have

sup
acU

Je- (ep) | - - P+ L+ 2Re G
v - — | — — —
[1Kall 1 —apl? —|a—p
B(a=p
_IBP +1+2Re (ot
117
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As a — (/|| from within U, the last quantity
approaches (1+ |3])/(1 —|8|), which is the square
of the norm of C, by Theorem 4.2. U

Remark. Because the normalized kernels go to 0
weakly in H? as |a| — 17, the proof of Theo-
rem 4.2 shows that the essential norm of an inner-
function-induced composition operator equals its
norm. This fact was first proved by Shapiro [1987,
Theorem 2.5].

Given Theorem 4.2, the issue of whether reproduc-
ing kernels determine composition-operator norms
is unresolved.

We now present an example that remedies both
defects of the map ¢ above, namely, a univalent
map v of the disk into itself such that ||C,|| is not
determined by the action of C, on the set of nor-
malized reproducing kernels.

Theorem 4.4. Suppose v(z) = 2/(3 — z), and set
k k
()l (i)l
T\ Rl "\ lkall

Then ||C,| > S > S*.

Maple plots over the unit disk of the functions o +—
1, (o IaDI] and @ — G2k Ial )| suggest
that each of these functions attains a maximum
along the positive real axis. Thus Figure 2 provides
numerical evidence supporting the validity of the
second inequality of Theorem 4.4.

, S*:=sup
acU

S:=sup
acU

Proof of Theorem 4.4. We show explicitly that

S = \/(25 —2V5)(=2+ V125) ~ V2167 (4.3)
40 + 215

To prove (4.3), use the formula of Lemma 4.3 (with
a = re') to obtain the value

(1 —7?)(72 — 108r cos 0 + 407?)
(8 — 127 cos @ + 4r2)(9 — 12r cos 0 + 4r?)

for ||C,(ka/||kal])||?. Replacing cos by y, differ-
entiating with respect to y, and simplifying gives

3r(1—72)(144+ 16172 +44r1 — 4327y — 24073y +3247r2y?)
(—2—r24+3ry)?(—9—4r2+12ry)? '

(4.4)

0 t t t } 1

7
FIGURE 2. Graphs of ||C, (k. /| k.||)||* (solid) and
1C5 (ke /1 er DI, for 0 < 7 < 1.

The discriminant of the quadratic expression in
y in parentheses in the numerator is negative for
each r € [0,1), and since the expression is positive
when y = 0, we have an increasing function in y.
Thus for fixed r the quantity on the right of (4.4)
is maximized when 8 = 0, or y = 1. We now know
that

2 (1 —1r?)(72 — 108r + 40r?)
S° = sup .
r€[0,1) (8 — 12r + 47'2)(9 — 12r + 47"2)

(4.5)

Calculus shows that the supremum is attained at

rs = ¥ — 2./5 which gives (4.3) upon substitu-

11 11
tion.
The value of S, is even easier to compute. We

have
1—7r?
1—2/(3 —rei?)?”
Here, it’s clear that for fixed r the quantity on the

right of the preceding equation is maximized when
0 = 0. Thus

I1C5 (ka/llkalDII* =

1—7r2
S? = sup ,
re01) 1 —(2/(3—1))?

and calculus yields

_ [(V/33-1)2(9-V33)
S, = \/ G S V/2.095.

19 August 1996 at 13:53
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To complete the proof of Theorem 4.4, we must
show that the norm of C, exceeds S. What we need
is a norm-one H? function f such that ||C, f]| > S
or |C3f]l > S.

We first experimented with functions of the form

1/(1—=2)°

/@ -2)Ppr
where 0 < # < %, but numerical computations

were inconclusive. We then considered the family

()

(s )M

for A > 0, where rg is the number yielding the
supremum in (4.5). The reason for considering this
family is clear: when we maximize ||C, fy|| over A
we must get at least S since ||C, fi|| = S. We com-
puted ||C, f,|| numerically using the integral repre-
sentation of the H? norm (the integrals being eval-
uated with Simpson’s rule). We remark that these
norm computations using the integral representa-
tion stabilized fairly quickly with increasing num-
bers of partition points; hence, the integral norm-
representation appears to be a viable experimental
tool. Results were encouraging; in particular, the
plot shown in Figure 3 suggests that ||C., fi| ex-
ceeds S for some values of A.

If one can prove Figure 3 is accurate, all issues
are settled. To test the accuracy of the plot we
symbolically computed the derivative of ||C,(f)]|?
with respect to A (differentiating under the inte-
gral sign) and then numerically computed the value
of the derivative at 1. The result was negative—
comforting, but task of verifying that the nega-
tive result was not due to numerical error appeared
daunting (to the authors, at least). We abandoned
this family of test functions.

The family of test functions that settled the issue
for us is

f(2)

f(z)

ke + ks

fr,s T ——
[[kr + K|

for 0 < r,s < 1. Since the set of all linear combina-
tions of reproducing kernels is dense in H?, some

19 August 1996 at 13:53
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FIGURE 3. Graph of ||C, f,]|? for 0.8 < A < 1.2.
The dotted line is at height S2.

linear combination of reproducing kernels (normal-
ized to have length one) must under the action of
C, yield an image with norm exceeding S (pro-
vided the numerical results depicted in Figure 3
are accurate). Figure 4 is a plot suggesting that
the family f, ; does the trick.

Fortunately, ||C? f .|| may be computed exactly.

In the following, we set r = 0 and s = %, so that
e Sy
T —— S ——Y

S T

00
FIGURE 4. Graph of ||C2 f, ,|?, for 0 <r,s < 1.
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f = (]. + k17/20)/“1 + k17/20||. Then, as we wished
to show,
et ke
34+1/(1—s?)
= 733 (k30 + Ky(e)s By(o) + Ey(s)

_ 32708888 2

Iy 1

We conclude with a question.

Question 4.5. What is the norm of C,?
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