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We show that the Holt-Rees extension of the standard MeatAxe
procedure finds submodules of modules over finite algebras with
positive probability in more cases than originally claimed. For
the case when the Holt-Rees method fails we propose a further,
but still simple and efficient extension.

1. INTRODUCTION

Finding the irreducible composition factors of a fi-
nite module M for a finite dimensional associative
algebra A over a finite field F' is one of the funda-
mental tasks in computational modular representa-
tion theory. The most commonly used practical ap-
proach to this problem is the MeatAxe algorithm
[Parker 1984], which solves the problem of prov-
ing constructively that M is irreducible. Originally,
the method did not perform satisfactorily when the
ground field F is large. Holt and Rees [1994] have
proposed an extension to Parker’s method based on
factoring the characteristic polynomial of random
elements from A. They provided an accurate analy-
sis and showed that their approach proves efficiently
that a given module is irreducible regardless of the
size of the ground field. Furthermore, in most cases
they also have a definite chance of finding a non-
trivial submodule. In this note we prove that the
extension works in more cases than claimed in [Holt
and Rees 1994]. However, there is still one type of
module where the algorithm definitely fails; we pro-
pose a method for this case. The implementation of
M. Ringe as part of the C-MeatAxe shows that our
algorithm is also practically feasible. The reader
interested in the theoretical complexity of related

problems is referred to the survey [Rényai 1993].
We restrict our attention to a fundamental sub-
task which can be interpreted as an effective version
of testing irreducibility. Let F' = GF(q) be the finite
field consisting of q elements. We assume, without
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loss of generality, that A contains an identity el-
ement denoted by 14 or by 1 for short; that the
module is M = F'?, the space of column vectors of
length d; and that the action of A on M is faith-
ful and is given in terms of matrices for generators
of A. (In contrast to the MeatAxe implementation
in GAP [Schonert et al. 1996], which is based on
row vectors and right action, our discussion is pre-
sented in terms of column vectors and left action.)
The procedure either concludes that M is an irre-
ducible A-module or returns a nontrivial submodule
of M. Furthermore, we identify A with its image
in M4(F'). Finally, we assume that we are provided
with an auxiliary procedure which generates random
elements of A (independently and uniformly).

The paper is structured as follows. In Section 2
we briefly comment on the original algorithm pro-
posed in [Holt and Rees 1994] in order to extend the
probability analysis to slightly more cases and to de-
scribe a class of algebras A which contains all the
situations where the method fails. The algorithm for
this class of algebras is outlined in Section 3. The
probability of success will be estimated in Section 4.
Finally, in Section 5 we provide some experimental
results with the C-MeatAxe implementation of the
algorithm.

For the standard notions and facts related to finite
dimensional algebras and modules, see [Pierce 1982],
for example. We adopt the following conventions.
Modules are assumed to be left modules. If H is
a subset of an algebra A and K is a subset of an
A-module (which can be A itself) then by HK we
denote the linear span of all the products fv where
6 € H and v € K. Also, if # and n are two elements
of the algebra A then [0, 7] stands for the additive
commutator n — nf. Again, if H and K are two
subsets of A then [H, K| denotes the linear span of
all the commutators [0, 7] (with § € H and n € K).
By Rad A and by Rad M we denote the (Jacobson)
radical of the algebra A and the module M. Rad®> M
stands for the iterated radical Rad Rad M. We also
use the standard notation Cy(K') and Z(H) for the
centralizer of the subset K in a subalgebra H and
the center of H, respectively.

We assume that A is a fixed algebra. It will
be convenient to introduce some additional nota-
tion. By the Wedderburn—Malcev principal theorem
[Pierce 1982, Section 11.6], A can be written as

A=S+RadA, where S A/RadA.

Since the complementary subalgebra S is unique up
to a conjugation by an inner automorphism of A,
we can speak about the structural properties of A
in terms of S even if S is not specified explicitly.

2. THE EXCEPTIONAL ALGEBRAS

In [Holt and Rees 1994], the extension of MeatAxe
is proved to succeed in constructing a nontrivial
submodule with probability at least 0.144 in many
cases. In particular, it recognizes irreducible mod-
ules, finds a nontrivial submodule if M/Rad M is
decomposable or M contains non-isomorphic com-
position factors. The submodule is generated from
the kernel of p(), where 6 is a random element and
p(x) is an appropriate irreducible factor of the char-
acteristic polynomial of § on M (see Lemma 2.1 be-
low). The probability analysis of success is based
on the following observation, which will be useful in
the analysis of the present paper as well.

Lemma 2.1. Let W be an irreducible A-module and
E = Ends(W), the algebra consisting of the A-
endomorphisms of the module W. Then for at least
21.4% of the elements 6 € A the characteristic poly-
nomial over F of 6 on the module W has an unre-
peated irreducible factor of degree dimp E.

Proof. By Schur’s lemma and Wedderburn’s theorem
on finite division algebras, F is a finite extension
field of F'. Note also that if W as an E-module is
isomorphic to E" and I = {# € A | W = (0)} is the
annihilator ideal of W, then A/I = M, (E). Since
uniform selection of elements in A corresponds to
uniform selection in the factor A/I, we may assume
throughout the proof that I = (0) and identify A
with M,,(E). The statement for the case £ = F
is proved in [Holt and Rees 1994] (with a somewhat
bigger constant), therefore we may restrict ourselves
to the case e = dimp E > 1. The argument given in
by Holt and Rees for this case appears to contain a
minor mistake, therefore we give a corrected proof
below.

The condition is equivalent to saying that 6, con-
sidered as a matrix over E, has an unrepeated eigen-
value A such that A is not contained in any proper
subfield £’ with ' < E’ < E and for every au-
tomorphism o € Gal(E|F) such that A7 # X, \”
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is not an eigenvalue of #. (This follows from the
fact that the characteristic polynomial of 6 over F
is [1,eamr) (@), where c(z) € E[z] is the charac-
teristic polynomial of 6, regarded as a matrix over
E. See [Reiner 1975, Theorem 9.10 and Exercise
9.4], for example.)

Note that at most half of the elements in E can be
contained in a proper subfield of E. This establishes
the case n = 1. For the rest of the proof we assume
n > 1.

Let F = GF(¢q) and E = GF(q¢°). Following
the arguments given in [Holt and Rees 1994], let
H denote the number of matrices § € M, (E) such
that a specific A € E is an unrepeated eigenvalue
of #. Also, let H' stand for the number of matri-
ces with two distinct specific unrepeated eigenvalues
A, p € E. In [Holt and Rees 1994] it is shown that
H and H' are independent of the particular choice
of A and p, and

n—1

1 .
H = 1H(qe”—q”) and H' <
A Rt
Let R denote the set of elements A € E such that
A has exactly e conjugates over Gal(E|F') and let
r = |R|. By inclusion-exclusion, at least

rH— (A > (r- =D \y
2 2(q°—1)
matrices have some unrepeated eigenvalue from R.
For the number of matrices having at least two eigen-

values from some orbit of Gal(E|F) on R we have
the crude upper bound

(=t (0)
e \2 e\2/q*—1

Hence the number of matrices with the required
property is at least

-1

(R o ()
> Sq°H.

The first inequality follows from
“/2<r<q¢—-q<q -2

while the second follows from the fact that the max-
imal value of (e—3)/(2¢°—2) for the integers g,e > 2
is &= (taken at ¢ = 2, e = 4). Hence the proportion
of such matrices is at least

7 : T 1 .

- eH en” _ 1— —ei

500 H/d™ =55 i:2( q )
> 00(1 47 >0214. O
=301 =

Remark. The mere assumption that 0, regarded as a
matrix over E contains an unrepeated eigenvalue \
which is not contained in any proper subfield [Holt
and Rees 1994 appears to be insufficient even for
the purposes of the MeatAxe. Indeed, if an alge-
braic conjugate A’ of A, different from J, is also an
eigenvalue of 6, then the characteristic polynomial
of @ over F' contains the minimal polynomial p(x) of
A\ at least twice and therefore the dimension of the
kernel of p(#) over E is at least 2.

The only possible situations when the Holt-Rees ex-
tension of MeatAxe may fail are modules M such
that Rad M # (0), M/Rad M is irreducible and all
the composition factors are isomorphic to M /Rad M.
Since M is faithful, this implies that every irre-
ducible A-module is isomorphic to M/Rad M. Let
E = End4(M/Rad M), as in Lemma 2.1. Then
E is a finite extension field of F' and M/Rad M
is isomorphic to E™ as an S-module for some in-
teger n, where S is a subalgebra of A isomorphic to
A/Rad A. Note that the multiplicity of E™ in M
is d/en, where e = dimp E and S = M, (E). The
center of S is therefore isomorphic to E. We may
and shall identify E with Z(S). In summary:

{RadA £(0), =M, (E),

E =7(S) is an extension field of F'.
The Holt-Rees extension of the MeatAxe is shown

to succeed even in this case provided that £ = F.

We extend the proof given in [Holt and Rees 1994]
to the more general case where E < Z(A).

(2-1)

Proposition 2.2. Assume that (2-1) holds, M /Rad M
is irreducible and E < Z(A). Then, for at least
14.4% of the elements 6 in A, there exists a factor
p(x) € Flz| of the characteristic polynomial of 8 on

M such that the kernel of p(6) is a nonzero subspace
of Rad M.
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Proof. The case E = F is proved in [Holt and Rees
1994]. Assume that £ > F. Note that every el-
ement § € A can be uniquely written in the form
0 = 0y + 6, where 8, € S and 6, € RadA. As-
sume that the characteristic polynomial (over F') of
6o € S on the irreducible S-module M /Rad M = E™
has an unrepeated irreducible factor p(z) € F[z] of
degree e = dimpr E. By Lemma 2.1, this is the case
for at least 21.4% of the possible choices for . Let
ALy .-, Ae be the roots of p(xz) in E. Then there
exists an element A € {A;,..., A}, say A = Ay,
such that the kernel of 6, — A\ is an E-submodule
of M/Rad M of rank 1 (i.e., a one dimensional E-
linear subspace). Furthermore, 6, — \; is a unit in
Sfori=2,...e.

Obviously, for every #; € Rad A, the kernel of
0y 4+ 6; — X\ in M is nonzero, since the quotient map
on M/Rad M is 6, — A. Let L stand for the set con-
sisting of #; € Rad A for which this kernel is not
contained in Rad M. We claim that L is contained
in a proper E-submodule of Rad A. To this end con-
sider M as an S-module. Since S is a simple algebra
there exists an S-submodule M, complementary to
Rad M. Then M,, as an S-module, is isomorphic
to M /Rad M. In particular, there exists a nonzero
element v € M, such that (fy — A\)v = 0. Then for
every element 6; € Rad A, the kernel of 85 4+ 6, — A
is contained in the F-submodule Ev + Rad M. As-
sume now that 6; € L, i.e., this kernel contains an
element u € M \ Rad M. Then u = ev+ w for some
unit € € E and some element w € Rad M. Multi-
plying by e !, we may assume that u = v + w with
w € Rad M. Now

0=(O+6, —N)(v+w)=0v+ (6 — N)w + 6w,
and hence 6,v = —(6y — \)w — 6w is in
(6 — \) Rad M + Rad ARad M
= (y — A\) Rad M + Rad’ M.
Thus
LcrL
= {6, ¢ Rad A | 6,v € (fy—\)Rad M 4 Rad® M}.

Obviously L' is an E-submodule of Rad A. Assume
that L' = Rad A. Then
Rad M = Rad(Av) = Rad Av

= L'v C (fy — \) Rad M 4 Rad’ M.

(Here the first equality holds because of M = Av +
Rad M and Nakayama’s lemma.) From this we in-
fer that 6 — A acts surjectively on the factor module
Rad M/ Rad® M, and hence on its composition fac-
tors as well. Since all these composition factors are
isomorphic to M/Rad M, this is a contradiction to
the fact that € — A is singular on M /Rad M. Thus L
is included in the proper E-submodule L’ of Rad A,
as claimed.

By the claim, for at least 1 —1/|E| of the possible
choices for 6, the kernel of 8 — A =6, +60; — X is a
subspace of Rad M. Let p = [];_,(#—X;). Then pis
a unit modulo Rad A and hence p itself is a unit in
A. Therefore the kernel of (8§ — \)p = p(#) is equal
to the kernel of § — X. Thus, the kernel of p(0) is a
nonzero subspace of Rad M provided that the kernel
of # — X\ is. As the components 6, and 6, of 8 are
chosen independently, this gives 0.214(1 — 1/|E|) >
0.214-3/4 > 0.16, so at least 16% > 14.4% of the
elements 6 € A satisfy the desired property. O

This means that the Holt—Rees extension of Meat-
Axe succeeds with probability at least 0.144 in this
case. Hence we can restrict our attention to the case
where F is not central, i.e., algebras A satisfying
(2-1) and the additional hypothesis

[A, E] > (0). (2-2)

3. THE ALGORITHM

We propose the method described below for treat-
ing algebras with properties (2-1) and (2-2). As de-
scribed in the last section, the algorithm has been
successfully incorporated into the program chop by
M. Ringe, which is part of the C-MeatAxe version
2.3.

We assume that a random element 6 € A is se-
lected and that the irreducible factors of the charac-
teristic polynomial ¢(x) of 6 over F' are computed.
Note that these computations are carried out as a
part of the original algorithm described in [Holt and
Rees 1994]. We select a factor p(x) of minimum de-
gree among the factors of ¢(x) of minimum multi-
plicity and do the following,.

(i) Determine the polynomial i(x), a representative
of the primitive idempotent of the algebra

Flz]/(e(x))
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corresponding to the factor p(z). More precisely,
by the Chinese Remainder Theorem,

Flz]/(c(x)) = Flz]/(p'(z)) @ Flz]/(q(x)),

where [ is the multiplicity of p(z) in ¢(z) and
q(z) = ¢(z)/p'(x) and we want the identity ele-
ment of the component isomorphic to

Flz]/(p' ().

To be explicit, 1 can be expressed using the ex-
tended Euclidean algorithm in the form

1= a(z)p'(z) + b(z)a(z),

with polynomials a(x) and b(z).
b(x)g(x) (mod ¢(x)).

(ii) Choose another random element 1 € A as well as
a random vector v € M and calculate the sub-
module N generated by [0,i(0)ni(0)]v. If this is
a proper nonzero submodule then return N, oth-
erwise report failure.

Then i(z) =

We make comments only on the costs of steps which
are additional to the Holt—Rees extension of the
MeatAxe procedure. The polynomial i(x) can be
determined with O(d?) operations in F' (Note that
[ is less than d). The cost of computing the vec-
tor [0,i(0)ni(0)]v is O(d*) arithmetical operations
assuming that we use a method based on perform-
ing O(d) matrix-by-vector multiplications. Using
a method based on fast calculation of Krylov se-
quences [Bini and Pan 1994] the cost can be re-
duced to O(MM(d) log d) operations, where MM(d)
stands for the number of arithmetic steps required
to multiply two d by d matrices. We remark that
Eberly and Giesbrecht [1996, Lemma 3.1] give an ef-
ficient algorithm to compute all the primitive idem-
potents of the subalgebra generated by 6 simultane-
ously in explicit matrix form. The method is based
on computing the rational canonical form of 6 [Gies-
brecht 1995|, and the running time is essentially
O(MM(d) log d).

Thus the total number of arithmetical steps re-
quired by the algorithm is dominated by the cost of
computing the submodule N in step (ii), which is
O(d?), provided that the number of generators of A
is fixed.

4. PROBABILITY OF SUCCESS

We now give an estimate for the probability of find-
ing a proper submodule in the situation where the
algebra A satisfies conditions (2-1) and (2-2). Ac-
tually we show that the commutator [6,(0)ni(0)]
has a positive chance for being a nonzero element of
Rad A.

Lemma 4.1. Assume that the finite dimensional F'-
algebra A with identity satisfies conditions (2-1) and
(2-2). Let v be an idempotent of S. Then

(@) [tE, LAl = [E, A]e,
(b) SL[E, Al)S = [E, A], and
(c) (0) C [tEt, Al C Rad A.

Proof. First we note that since ¢ commutes with F,
ter = e = et for every € € E and hence (Fi =
tE = Ei. Part (a) is immediate from the following
equalities which hold for every ¢ € E and « € A.

LE - LQL — LOW * LE = LEL - QUL — L * LLE
=16 - — - €L = tlea — ag)L.
To prove part (b), let 0,7 € S, e € E, « € A. Then
oue, a|iT = oeouT — oLagLT
= eolauT — owouTE = [g,0000T],

where the second equality holds because € commutes
with the elements ¢,0,7 € S. From this we infer
that Si[E, Al.S = [E, StA.S]. It remains to estab-
lish the equality StAtS = A. To this end observe
that 5.5 is a nonzero ideal in the simple algebra S,
therefore SvS = S. Hence StALS = S1SASLS =
SAS = A. (The first and the last equalities are
obvious because S contains 14.)

Part (c) follows from (a) and (b) and the fact that
E is central modulo Rad A. O

After these preparations we are ready to give a lower
bound on the probability of success of the algorithm.

Proposition 4.2. Assume that the matriz algebra A <
My(F) satisfies conditions (2-1) and (2-2). Then
the proportion of the triples (6,n,v) € A x A x F?
for which the algorithm described in the preceding
section finds a proper submodule is at least 0.08.

Proof. Assume that p(z) is an unrepeated irreducible
factor of the characteristic polynomial of § + Rad A
on E™. Then the degree of p(z) is the dimension
(over F') of the kernel of p(§+Rad A). This subspace
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is obviously a Z(A/Rad A)-submodule of E™, and
hence the degree of p(z) is at least

e =dimp Z(A/Rad A) = dimp E.

Assume that the degree of p(z) is exactly e. By
Lemma 2.1, such a factor does exist for at least
21.4% of the elements # € A. Furthermore, all the
factors of this kind are characterized as the mini-
mum degree factors amongst the factors of minimal
multiplicity of the characteristic polynomial of 6 on
the whole module M.

Referring to the homomorphism Fz]/(c(z)) — A
induced by z — 0, it is immediate that ¢« = i(6) is an
idempotent. Let § = § + Rad A and 7 = ¢ + Rad A.
Furthermore, the characteristic polynomial of 7 on
E™ is p(z)z™ Ve, It follows that 70 and 7 have rank
e, therefore 7 is a primitive idempotent of A/Rad A.
Hence i(A/Rad A)t = iZ(A/Rad A)i. In particular,
10 € 1Z(A/Rad A). On the other hand, the mini-
mum polynomial of 76 on 7Z(A/Rad A) is of degree
e, therefore 16 generates the whole tZ(A/Rad A).

Now [6, ] is a nonzero element of Rad A for at
least 1 — 1/|E| > 2 of the elements n € A, see
Lemma 4.3 below, and let us assume in the follow-
ing that this is the case. Then [f,tn] is a non-
trivial F-linear transformation and hence the ker-
nel has codimension at least 1. Therefore for at
least 1 — 1/|F| > % of the elements v € M the

2
vector [6,une]v is a nonzero element of the proper

submodule Rad AM = Rad M. Putting the bounds
together, the algorithm finds a proper submodule
with probability at least 0.214 - % . % > 0.08. O

The proposed method, complemented with the Holt-
Rees approach, gives an algorithm of Las Vegas type
for every case.

We now give the promised proof of the statement
used above.

Lemma 4.3. Assume that the finite dimensional F'-
algebra A with identity satisfies conditions (2-1) and
(2-2). Assume further that 0 is an element of A and
L 18 an idempotent of the subalgebra of A generated
by 6 and 14 such that the subalgebra of A/Rad A
generated by 10 + Rad A is (. + Rad A)Z(A/Rad A).
Then [0,tAt] C Rad A and [0,une] # 0 for at least
1 —1/|E| of the elements n € A.

Proof. Let Ay denote the subalgebra of A generated
by t8. We first note that ¢ is the identity element
of Ay. Indeed, ta = ar = « holds for every element
a € Ay. On the other hand, it is straightforward to
see that Aj = Ay + F. is a subalgebra and Ay is an
ideal of Aj. By the assumption

(A, + Rad A)/Rad A = (Ay + Rad A)/Rad A
~ 7(A/Rad A);

thus Aj is a local algebra and Ay is not a nilpotent
ideal. But since in a local algebra every proper ideal
is contained in the radical, Ay = Aj, establishing the
containment ¢ € Ay.

We will now replace S and E with appropriate
conjugates in order to achieve the situation where
L € S and (F is a subalgebra of Ay. By the Wedder-
burn—Malcev principal theorem, Ag = Sy + Rad Ay,
where Sy is a semisimple subalgebra of Ay. Since ev-
ery maximal semisimple subalgebra of A is a conju-
gate of S by an inner automorphism [Malcev 1942],
there exists a unit ¢ € A such that S = ¢~ 'So >
Sp. Because conditions (2-1) and (2-2) are invari-
ant under automorphisms, we may replace S with
S7 and E with E7, or, equivalently, assume Sy < S.
Note that ¢ is just the identity element of Sp.

By the assumption,

(Ap+Rad A)/Rad A = (1+Rad A)Z(A/Rad A) = E

is a simple algebra; therefore Rad(Ay + Rad A) =
Rad A. On the other hand, Rad Ay + Rad A is ob-
viously a nilpotent ideal of Ay + Rad A. It follows
that Rad 4y < Rad A, Ay + RadA = Sy + Rad A
and Sy = LE.

Observe that, since the idempotent ¢ commutes
with 6, for every n € A we have

[0, tmt] = Ounpe — 1 = Buune — el
= 0 — el = 10, tne].

The equality ¢t = Sy and the preceding lemma give
[Se,tAt] C Rad A. Since Sy < Ag < Sy + Rad A, we
have

[Ag, tAl] C [Se,tAt] + Rad A C Rad A.

The first inclusion of the formula above holds be-
cause Rad A is a two-sided ideal and hence

[tAr,Rad A] C Rad A.



Ivanyos and Lux: Treating the Exceptional Cases of the MeatAxe 379

In particular, [#,tAt] = [10,0tA] C Rad A. So we
have proved the first part of the statement.

In order to see the second part, notice that, since
SO S A97

CLAL(G) = CLAL(AO) S CLAL(SO) < LAL.

The latter inclusion is strict because not the whole
tAr commutes with Sy = +FE by Lemma 4.1. Obvi-
ously, C,4,(Sp) is an Sp-submodule of tA¢ (multipli-
cation by elements from Sy from the left hand side).
The set of elements n such that [f, (] = 0 is the
F-linear subspace (14 —¢)A + A(1a —¢) + C,4.(0).
By the preceding argument the codimension of this
subspace is at least dimg Sy = dimp E, whence the
second part of the assertion follows. O

5. EXPERIMENTAL RESULTS

We conclude with a running time comparison for two
versions of the composition factor program chop in
the C-MeatAxe written by M. Ringe. For the details
of the algorithm used for determining the composi-
tion factors of a given representation, see for exam-
ple [Lux 1997]. For our purposes the following rough
outline of the algorithm is sufficient: the main sub-
routine of chop takes as input a sequence of matrices
for the generators of the algebra A. Its aim is to find
a proper A-invariant subspace or to prove that there
is no such subspace. If it finds an A-invariant sub-
space, it determines matrices for the generators on
the subspace and the quotient space and calls itself
with the matrices obtained. The search for the in-
variant subspace is done by looking for the kernel of
words in the matrices for the generators using the
Holt—Rees approach; see [Holt and Rees 1994]. In
the old implementation, if a word 8 did not lead to
splitting of the given representation and irreducibil-
ity could not be shown in reasonable time using Nor-
ton’s lemma, then the algorithm would just take the
next word. In the new implementation, before tak-
ing the next word, we check for the exceptional case.
This is done as follows:

For all factors p(x) of the characteristic polyno-
mial of 6 of degree at least two, do the following;:
determine i(x) as defined above. Then choose a sec-
ond word 1 and random vector v. Furthermore, de-
termine the vector [0,i(6)ni(6)v. If it is nonzero,
check whether it lies in a proper invariant subspace.

If it does, call the main subroutine with the two new
representations obtained.

This method (actually, an implementation based
on an earlier version of the paper) differs from the al-
gorithm described in Section 3 in the sense that just
one factor is selected in order to assure that the algo-
rithm never performs more than roughly O(d®) op-
erations. As the number of factors of the character-
istic polynomial is usually small (probably around
O(logn), where n is the number given in (2-1)),
the exhaustive search given here does not cause too
much loss of efficiency in practice. Furthermore, the
algorithm succeeds usually with the first factor with
a probability much higher than the modest estimate
given in Section 4.

We now compare the running times of the old and
the new version of chop. The new version is part of
the MeatAxe 2.3.2 release and the old is part of the
MeatAxe release 2.2 as delivered with GAP 3.4.

In order to test the two programs we proceed as
follows. We first construct a reducible representa-
tion for a finite group that has two isomorphic com-
position factors with a large endomorphism ring.
This is done using GAP [Schonert et al. 1996).

We first take the two generators A, B for SL(n, Fy),
q = p°® with p prime, as produced by the command
SpecialLinearGroup in GAP. We then form the ma-

trices
A I
“=o a2

B 1
b1:(0 Bq>>

Here I is the n by n identity matrix over F, and &
denotes the Frobenius automorphism of F, mapping
x € F, to zP. Note that ® is applied to the entries
of A, B. The GAP command BlowupSQ is used to
perform the Galois descent, i.e. to replace all entries
in the matrices by the corresponding matrices in the
regular representation of F, over F,. In this way we
construct two 2en by 2en matrices a; and b; over
F,.
We then proceed by conjugating a; and b; by a
random invertible matrix produced by GAP, the re-
sulting matrices are a and b. Furthermore, let

z(a,b) = ababbabababbabb,
y(a,b) = ababbabbabababb

and
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be given words in a and b. We test the programs on
the representation generated by the pairs of matrices

(z'(a,b),y'(a,b)), where
2°(a,b) = a, y°(a,b) = b,
xi(aab) = w(mi_l(aab))a yi(aa b) = y(yi_l(aab))a

fori=1,...,5. As already mentioned in [Holt and
Rees 1994], the old chop program can only success-
fully split a representation if it finds a null vector
of a word in the generators contained in an invari-
ant subspace. If the representation is given by the
matrices a and b, it follows from the construction
of a and b that the first basis vector of a singular
word in the generators will lie in the invariant sub-
space generated by the first ne basis vectors. This
justifies the conjugation with a random invertible
matrix. The reason for taking random elements in
the group is given by the observation that if the cho-
sen generators are not random enough there will be
short words in these generators whose nullspace is
contained in the proper invariant subspace.

The tables below compare the running time. The
first column gives the running time for the old ver-
sion, the second column the running time for the
new version. As one can see, if we input the origi-
nal matrices a and b to chop, the old version has no
problem in splitting the representation.

The first example is of dimension 8 over Fjio0, S0
the resulting representation over F3 is of dimension
160.

generators old new
a, b 0.1s 0.1s
z'(a,b), y*(a,b) 66.4s  0.6s
z*(a,b), y*(a,b) 999.3s  1.9s
z3(a,b), y*(a,b)  1216.5s  1.6s
z*(a,b), y4(a,b) 558.8s  0.6s
z°(a,b), y°(a,b)  1081.9s  0.6s

The next example is of dimension 8 over Fyiz2, so
the resulting representation over F is of dimension
192.

generators old new

, b 0.4s  0.5s

z'(a, b), y*(a,b) 7.0s  23s
z?(a,b), y*(a,b)  272.8s  2.2s
z*(a,b), y*(a,b)  117.5s  6.1s
z*(a,b), y*(a,b)  551.4s  2.4s
z°(a,b), y°(a,b)  813.5s  2.3s

Similar runs for other primes indicated the same
tendency. The running time of the old version is
longer, the fluctuation is greater, and in principle it
would be no problem, as predicted by the theory,
to produce examples, where the quotient between
the old running time and the new running time gets
arbitrarily large.
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