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TWO COARSE-GRAINING STUDIES OF STOCHASTIC MODELS IN
MOLECULAR BIOLOGY*
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Abstract. We examine stochastic coarse-graining strategies for two biomolecular systems. First,
we compute the large-scale transport properties of the basic flashing ratchet mathematical model
for (Brownian) molecular motors and consider in this light whether the underlying continuous-space,
continuous-time Markovian model can be coarse-grained as a discrete-state, continuous-time Marko-
vian random walk model. Through careful computation of associated statistical signatures of Marko-
vianity, we find that such a discrete coarse-graining is an excellent approximation over much but not
all of the parameter regime. In particular, for the parameter values associated with the fastest trans-
port by the flashing ratchet, the discretized model displays non-Markovian features such as waiting
times between jumps which are not exponentially distributed. We provide a theoretical framework
for understanding the conditions under which Markovianity is to be expected in the discretized
model and two mechanisms by which the flashing ratchet model coarse-grains to a non-Markovian
discretized model. Next we turn to a basic question of how the dynamics of water molecules near
the surface of a solute can be represented by a simple drift-diffusion stochastic model. This question
is of most interest for the purpose of accelerating molecular dynamics simulations of proteins, but
for simplicity, here we examine the simple case where the solute is a Cgo buckyball, which has a
homogenous, roughly isotropic form. We compare the mathematical drift-diffusion framework with
a statistical quantification of water dynamics near a solute discussed in the biophysical literature.
A key concern is the choice of time interval on which to sample the molecular dynamics data to
generate estimators for the drift and diffusivity. We use a simple mathematical toy model to estab-
lish insight and a strategy, but find for the actual molecular dynamics data that the sampling times
which produce the most faithful drift coefficient and the sampling times which produce the most
faithful diffusion coefficient do not overlap, so that sacrifice of quality in one or the other parameter
appears necessary.
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1. Introduction

In this article, we present two stochastic models for processes in molecular biology
which reflect the spirit of Andy’s influence on my (PRK’s) research. Both are mathe-
matically abstracted and simplified frameworks for which fundamental questions can
be examined in a more transparent manner than more detailed and realistic models.
The first modeling framework to be examined is the flashing ratchet model (section
2) for molecular motors — proteins in the biological cell such as kinesin, myosin, and
dynein which convert chemical and thermal energy into useful mechanical work for
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cell locomotion, polymerization, and muscular contraction. Of course each biolog-
ical molecular motor has its own particular features which govern how it operates
in detail, but unifying mechanisms have been theoretically identified and developed
over the last decade or two [49, 50, 1, 19, 40, 26, 18]. Beyond providing simplified
and abstract descriptions for the operation of molecular motors, these mathematical
modeling frameworks have provided a great deal of stimulus for posing and addressing
theoretical questions in stochastic modeling and nonequilibrium statistical mechan-
ics [48, 35, 43, 49, 11, 10]. Our objective here falls within this purview as, after a
description of the effective transport properties of the flashing ratchet (section 3),
we examine the question of the extent to which flashing ratchet models for molecu-
lar motors can be accurately coarse-grained in terms of Markovian continuous-time
random walks (MCTRW) on a discrete spatial lattice. Such an approximation is
naturally motivated by the spatially periodic structure of the flashing ratchet model
with dichotomous multiplicative noise (presented in section 2) and the Markovianity
of the underlying detailed flashing ratchet model. Moreover, the use of Markovian
continuous-time random walk models for molecular motors is prevalent in the litera-
ture [35, 13, 25], and naturally raises the question as to how such models are related
to the more detailed stochastic differential equation models such as flashing ratchets
(section 4). The work [23] rigorously studied a related approximation of a periodically
(rather than randomly) flashing ratchet model by a discrete-time Markov chain with
epochs marked by a sequence of times with regular deterministic spacing. In [32],
the statistics of a discretized renewal process associated with visits to successive local
minima of a static (non-flashing) periodic potential with applied force (or tilt) were
explored. We find that in fact over a wide parameter regime, the MCTRW models
do provide excellent approximations to the flashing ratchet model, but also identify
regimes in which they do not. Most notably, the parameter regime for which motor
transport is fastest is not well approximated by a MCTRW. A close consideration
suggests that what is needed for a MCTRW model to be appropriate is that the
motor makes many approximately independent attempts to pass the barrier into a
neighboring well of the potential. We identify two different regimes where the MC-
TRW approximation is not valid, and identify different mechanisms for the violation
of the needed condition. In one regime, the motor doesn’t equilibrate within a po-
tential well fast enough before it moves to a neighboring well. In the second regime,
the motor does equilibrate within each well, but typically escapes after only a few
flashing cycles, so only makes an O(1) number of independent attempts to cross into
the neighboring well. These conclusions are developed through a combination of some
elementary probability considerations (section 5), numerical solution of deterministic
equations for statistics of the motor transport (section 5.1), and direct Monte Carlo
simulation of motor trajectories. In the course of the analysis, we identify a subtle
point in the computation of the rates of jumping between wells in terms of exit times,
which has sometimes been overlooked in the literature (Appendix A). Our findings
are summarized in section 6.

We next turn to an initial effort at developing a stochastic dynamical model for
the behavior of water molecules surrounding a solute (section 7). The quest to obtain
simplified statistical description of water molecules is motivated by the desire to cut
down on the substantial computational expense incurred by the need to account for
the presence of solvent (i.,e., water) molecules for accurate molecular dynamics simu-
lations of proteins [51, 36, 55, 2, 33]. The actual dynamics of the water molecules are
of secondary interest, so one would like to represent the effects of the water molecules
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F1a. 1.1. Snapshot of molecular dynamics simulation with 4200 “simple point charge” water
molecules surrounding a Ceo buckyball.

on the protein without resolving the water molecules explicitly. One reason for hope
that this is possible is that the space and time scales characterizing the dynamics of
water molecules (1071% m and 107! — 107® s) are often considerably smaller than
those characterizing conformational changes in the protein molecule (10~ — 1078 m
and 10719 — 1073 s) [22, 36, 12, 17, 51, 38]. When combined with the observation
that the water involves a greater number of degrees of freedom than the protein, one
might try to view the water molecules in statistical mechanical terms as existing at
every moment of time in some sort of local equilibrium determined by the momen-
tary structure of the protein molecule. The relatively slow dynamics of the protein
molecule will be influenced by this locally equilibrated environment, and as the pro-
tein’s conformation changes, the statistics of the surrounding water will move rapidly
(and possibly adiabatically) toward new equilibria. The notion of local equilibrium of
the water molecules is of course dynamical and statistical. The statistical mechanical
viewpoint, however, cannot be applied too literally with confidence. Indeed, while the
space and time scales of the water molecules and protein molecule enjoy some degree
of separation, and while many water molecules are present per degree of freedom of
the protein, the aqueous environment cannot simply be thought of as some thermal
heat bath. This point of view can capture some of the kinetic effects of the water
molecules, but misses the important effects of hydrogen bonding and other chemical
interactions between the water and protein molecules [4, 2, 16]. This suggests de-
veloping a model incorporating dynamical information beyond single-time statistics.
A stochastic approach is strongly suggested because at the small scales of the pro-
tein molecule, the water molecules behave like discrete objects moving irregularly due
to thermal and other effects and the protein molecule is itself undergoing thermal
fluctuations.
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As an initial step, we consider the development of a stochastic dynamical model
for a water molecule near a buckyball, a solute much simpler than any protein, for the
purpose of identifying and addressing some of the foundational issues. The buckyball
(figure 1.1) is an approximately spherical configuration of carbon atoms, and therefore
has the virtue of being both approximately isotropic and chemically homogenous.
Consequently, the statistical behavior of water molecules near such a solute should
depend only on its distance from the center (or surface) of the buckyball. Even in
this vastly simplified setting, a number of interesting questions arise in the choice and
parameterization of a statistical model. The first question is how to quantify the water
dynamics as a function of distance from the solute. The biophysical literature [37, 34]
seems to favor a description in terms of a spatially dependent diffusivity, which is
physically natural, but the definition of the local diffusivity appears awkward (section
7). We adopt the more natural framework of diffusion processes from the theory of
stochastic processes, in which the motion of a water molecule is decomposed into
a spatially dependent drift and diffusivity. Within this framework, we develop the
parameterization based on the definitions of the drift and diffusivity coefficients from
the theory of stochastic processes (section 8). Caution is required though because
the definitions refer to infinitesmal time intervals, and a naive implementation using
the numerical time step instead is numerically inconsistent. Rather, the drift and
diffusivity must be evaluated over time intervals which are short compared to the
dynamics of the position variables, yet large enough that the drift-diffusion model
is an even plausible approximation. The source of the latter restriction is similar to
that in continuum field theory; the spatial and temporal derivatives refer to space and
time differences which are small compared to the macroscale, yet large relative to the
molecular scale. The appropriate time scale for computing drift and diffusivity of the
water molecules is however not nearly as easy to identify as in classical fluid and solid
mechanics — the range of valid choices is relatively restricted, and its upper and lower
limits are not so clear a priori. Similar issues have been investigated mathematically
in related multiscale frameworks [47, 46, 42].

For our purposes, we use an elementary, exactly solvable stochastic differential
system as a tool for clarifying the choice of time scale in the computation of effective
drift and diffusivity (section 9). We are particularly interested in being able to de-
termine this sampling time scale without a priori knowledge about the precise values
of the putative fast and slow time scales in the system. We observe from the toy
model that the best choice of time scale appears to be that for which the computed
coefficient has the largest magnitude (relative to other choices of time scales). This
criterion is simple enough to be employed in a complex system (such as a molecular
dynamics simulation) for which the fast and slow time scales may not be so easily de-
termined a priori (due to complications from interacting with the solute boundary, for
example). Applying this idea to data obtained from molecular dynamics simulations
of water molecules near a buckyball, we find that the window of good time scales for
the drift does not overlap with that for the diffusivity. As using a different time scale
for each coefficient raises concerns of consistency, we choose a time scale for which the
diffusivity appears well modeled, and sacrifice precision in the drift coefficient. This
choice turns out to be quite a bit smaller than typical time values used in molecular
dynamics to compute diffusivities (section 10).

2. Flashing ratchet model

An instructive mathematical abstraction for a class of molecular motors is the
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flashing ratchet model [49, 41]:

dX =Vdt,
mdV = [V — ¢/ (X (1)) F (£)]dt +27ETdW (1),

Here X (t) denotes the position of the motor (here an idealized particle) along the track
as a function of time ¢, and V' (¢) denotes its velocity. Its dynamics are governed by a
superposition of a flashing ratchet potential ¢(z)F(t), a friction force (with coefficient
7v), and thermal fluctuations characterized by Boltzmann’s constant kg, absolute tem-
perature T', and the standard Wiener process W(t), a Gaussian random process with
the following formal stochastic calculus rules (It6 and Stratonovich interpretations
are here equivalent) [15, Ch. 4]:

(dW(t)) =0,
(AW ()W (s)) =8(t — s)dtds.

Angle brackets (-) denote statistical averages. The flashing ratchet potential ¢(x)F(t)
itself is spatially periodic (¢(z+L)=¢(x)) and modulated in amplitude by a
continuous-time Markov chain F(¢). We will content ourselves with the simplest
version in which the Markov chain F'(t) takes values fi; =1, corresponding to an “on”
(static potential) state of the potential, and fo =0, corresponding to an “off” (free
diffusion) state of the potential. The flashing ratchet thereby acts as dichotomous
multiplicative noise. The potential switches from off to on with transition rate koq
and from on to off with transition rate k12; equivalently, the mean lifetime of the off
state is ky," and the mean lifetime of the on state is k7,'. The spatial periodicity of
the potential reflects the typically periodic physical structure of the track along which
the motor moves, while the modulation corresponds to chemically activated changes
(such as ATP hydrolysis) in the interaction between motor and track. As the chemical
processes rely on rare events involving interactions of a small number of molecules,
they are naturally modeled as stochastic.

Because the molecular motor operates at such a small scale where frictional ef-
fects dominate inertia m¢’/(vy2L) < 1, the following overdamped limit (obtained by a
standard Smoluchowski reduction) [15, Sec. 6.4] is generally adequate:

AX(t)=—"1¢/ (X (1)) F(t)dt+ | 2kadW(t). (2.1)

Observe that because the state of the potential F(t) has nontrivial temporal corre-
lations, the motor particle trajectory X (¢) is not itself Markovian. Rather, the joint
process (X (t),F(t)) is Markovian in the sense that conditioning upon the knowledge
of the present state of these variables, the future and past evolution of these variables
become independent [21, Sec. 1.3].

We non-dimensionalize the flashing ratchet model with respect to the spatial
period length L and the time scale L?v/¢, where ¢ is the range of values of the
potential, to obtain

dX (t)=—¢'(X(t))F(t)dt+V20dW (t), (2.2a)

where #=kpT/$ and we are using the same symbols for the non-dimensionalized
functions as we previously did for their dimensional versions. Note that small values of
0 correspond to systems in which the energy of thermal fluctuations is small compared
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FiG. 2.1. Piecewise linear potential for the flashing ratchet.

to the height of the potential barrier; such moderately small values of 6 are of primary
interest in the study of molecular and Brownian motors.

For the subsequent analysis, we will take the simple asymmetric sawtooth poten-
tial shape

r—

for 0<z<a,

pa)=4 (2.2b)

T—a
for a<z<l1,

l—«

repeated periodically with asymmetry parameter « describing the position of the

potential minima (figure 2.1). One motivation for this choice is that we have control
over the degree of asymmetry of the potential, as given by the parameter « (figure 2.1)
specifying the minimum of the potential. We note that the equations for the statistics
(Appendix A) for this potential can be expressed as a coupled system of ordinary
differential equations with constant coefficients, which can formally be solved exactly
up to a set of constants which need to be determined by the boundary conditions.
However, as also noted by [27], the practical computation and use of this formally
exact solution is actually more problematic than direct numerical solution of the
equations.

For sufficiently weak noise 6, the particle spends most of its time near a minimum
z=a (mod Z) of the spatially periodic potential ¢, with occasional wanderings into
a neighboring well (figure 2.2). The intuition [49] behind how the flashing ratchet
model creates directed (useful) motion is that during an “on” period, the particle
settles to the minimum of the valley in which it finds itself and is essentially trapped
there until the potential turns off. Then the particle moves randomly via Brownian
motion, and if it manages to wind up in the domain corresponding to a different
valley of the potential, it will fall there when the potential turns back on. The
asymmetry in the potential makes it easier for the particle to wander past the closer
barrier during the off period, and therefore more likely to move in that direction (to
the right for %<oz< 1). In this way, mean zero thermal fluctuations of the particle
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o(x)

F1G. 2.2. Sample trajectory of a flashing ratchet with dichotomous noise, equation (2.2).

(with nondimensionalized amplitude parameterized by ) are rectified by the random
fluctuations in the flashing potential to produce directed transport. Both the thermal
fluctuations and the fluctuations in the potential are necessary; in the absence of
either, the particle would have no mean motion. This extraction of useful work from
noise is consistent with the second law of thermodynamics because an external energy
input is required to flash the potential on and off and thereby do work on the motor
particle.

3. Macroscopic transport parameters
The transport of the particle on the macroscale is naturally characterized by the
effective drift

Y

7 = i L0

t—oo

and effective diffusivity

b (X (X))

t—o00 2t

As the particle’s motion has short-range correlations, a central limit theorem argument
implies that the probability distribution for its position at long times is approximately
Gaussian, so the effective drift and diffusivity provide a sufficient description for the
large-scale, long-time behavior [9].

The ratio

U
Pe= u,
2D
known as a Peclét number, provides a useful measure of the coherence of the transport.
(Usually a factor of length appears in the numerator, but we have nondimensionalized
the period length to 1). A small Peclét number implies noisy and incoherent transport,
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while a large Peclét number implies that the particle is moving nearly deterministically
in a given direction. The Peclét number is related to a randomness parameter r
sometimes used to characterize the progress of a molecular motor [25, 13, 57] as
Pe=1/r.

In figures 3.1 and 3.2 we plot landscapes for U and Pe as functions of k15 and
ko1. In the landscape for U, we have labeled the common asymptotic regions found
in the literature, such as the static potential limit (k12 —0) and the adiabatic limit
(k12, k21 —0) [49]. The more nontrivial dynamics occur away from these regions. In
particular, both the drift U and Peclét number Pe are maximized at intermediate
values of the transition rates.

In figure 3.3, we show how the values k7, and k3; that maximize the Peclét number
depend on the temperature 6 for three different values of the potential minimum c.
For small temperatures # <1075, we find a clean scaling for these optimal transition
rates:

kiy~ord(1), k3 ~ord(6).

These scalings may be understood theoretically through the intuitive mechanism by
which flashing ratchets operate [1, 49, 23]. Suppose we start observing the particle at
the moment at which it is located near a potential minimum =« (mod Z), where
without loss of generality we will assume 1/2<a <1. When the potential turns off,
the particle would have a decent chance of moving through pure diffusion to the region
corresponding to the valley on the right (past the next integer value) if the potential
remained off for at least a time scaling inversely with the temperature 6. Extending
the off-time of the potential substantially past this value just wastes time so we are
led to suppose that the optimal rate for switching from the off to on state should
behave like

k3, ~ ord (0).

This is the scaling we observe in figure 3.3 for small temperatures. Once the particle
crosses the potential maximum at =1 (mod Z), the potential should turn on and
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remain on for enough time so that the particle can be driven to reach the next mini-
mum at z=(a+1) (mod Z). For small temperature, this time is determined by the
deterministic dynamics and is thus independent of temperature. Again, keeping the
potential on for much longer than this time just inhibits the particle’s motion, so we
are led to suppose that

kT ~ord (1),

which is the scaling we observe in figure 3.3 for kjs.

For reasons we do not understand satisfactorily, the behavior of the transition
rates which optimize the drift (rather than the Peclét number) is qualitatively sim-
ilar but with different scaling behavior than the above theoretical argument would
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indicate. Details will be presented elsewhere; we note here simply that in general the
regions of large drift substantially correspond with the regions of high Peclét num-
ber, but their peaks do not coincide nor scale in the same way with respect to the
governing parameters.

The plots presented above were computed with 1000 grid points for each pa-
rameter using the procedure developed by [59, 58], which involves the solution of
deterministic systems of equations related to the infinitesmal generator of the Markov
process (2.1) governing the flashing ratchet. An alternative and equivalent framework
based on homogenization theory was developed in [45, 28].

4. Continuous-time random walk approximation

The spatially periodic structure of the flashing ratchet model along with the
particle trajectory’s character of hovering near potential minima for most of the time
suggests an intermediate coarse-graining of the flashing ratchet model in terms of a
Markovian continuous—time random walk (MCTRW). The state space for the particle
is condensed to the discrete lattice of potential minima, and its motion characterized
through a sequence of integer indices of successive valleys visited {X,,}52, and the
times at which new potential valleys are visited {T},}52, (figure 4.1):

To=0,
XO = Oa
T —inf{t> Ty : X (1) €a+2, X (£) % X1 +a}, (4.1)

X, =X (T,)—a,
Nt)=X,, for T,, <t <Tp4+1,n=0,1,2,....

Note that repeated visits to the same potential minimum are ignored if they are not
separated by visits to other valleys.

The discretization (4.1) can always be done, but the interesting issue is its statisti-
cal properties. One might intuitively expect that the resulting approximate trajectory
N (t) would have the statistics of a Markovian continuous-time random walk, meaning
that:

e the holding times ©,, =T}, — T}, _1 are independent, identically distributed ran-
dom variables with exponential PDF pg(t) = (©) te=t/(®),

e the jumps =, = X,, — X,,_1 are independent, identically distributed random
variables with probability distribution Prob(Z,=1)=m,, Prob(E,=-1)=
L=y,

o {0,}>2, and {Z,}>2, are independent.

Markovianity of this coarse-grained process N (t) is not guaranteed because the
state F'(t) of the flashing ratchet is not included in the coarse-grained description. Yet
one may still expect on intuitive grounds that the sequence of well visits {X,}52
to remain approximately Markovian. For example, by the strong Markov property,
the sequence {X,,F(T},)}>2, is Markovian, and since the potential may generally be
expected to be on during a new valley visit, the compression of information about
the state of the potential may not be so crucial. This still raises the question of
whether the holding times {0,,}72, should be exponentially distributed as one would
generally expect for a steady potential with weak noise # < 1. Indeed, for simple
diffusion (with no potential), the times beween visits to a new lattice site is not
exponentially distributed [3]. We will find though that over a wide parameter regime,
the MCTRW appears to be a good approximation in describing the particle’s progress.
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Fia. 4.1. Discretization of trajectory of flashing ratchet.

However, we also identify regimes where the MCTRW approximation loses validity
for two different reasons, and the parameter range where motor transport is optimal
falls within one of these regimes.

This can be immediately seen from the plot of the Peclét number with respect
to transition rates in figure 3.2, realizing that for a MCTRW the drift and diffusion
coefficients are given by the following expressions [15, Sec. 7.2]

v="4""- D=,

T 2T

so the Peclét number must satisfy
Pe=|my —m_| <1

This inequality can also be shown to hold if the random walk were allowed to take
steps of length greater than 1. We see the peak in the effective drift in figure 3.1 falls
in a regime where Pe > 1, which is inconsistent with a MCTRW model. On the other
hand, we also see a wide regime where the Peclét number has a plateau Pe~ 1, which
would be consistent with a MCTRW model with strong bias (w4 > m_ or vice versa).
We next examine these regimes in microscopic detail using a combination of accurate
numerical computations and some elementary probabilistic reasoning with an eye to
understanding the mechanisms behind this observed behavior of the Peclét number.

5. Analysis of validity of MCTRW approximation

One way to understand whether the holding time of the particle between visits
to new valleys is exponentially distributed is to conceptualize the transport from one
valley to the next as the following sequence of events:
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e The particle first relaxes to the minimum of the potential within its local
valley. With the thermal noise, this could be said more precisely as the
probability distribution of the particle relaxing to its stationary probability
distribution within the local valley (with the barrier height imagined to be
infinitely high so this stationary probability distribution exists).

e While the flashing ratchet is off, the particle diffuses freely, and may or may
not escape past a neighboring peak location when the potential flashes back
on.

e When the potential has flashed back on, the particle tends to be pushed back
toward the potential minimum.

e After one or more cycles of the potential flashing back on, the particle essen-
tially returns to the potential minimum (if it has not escaped to a neighboring
valley yet) and starts anew.

e Eventually after several or many such escape attempts, the particle succeeds
in passing a barrier location and then falling to a neighboring valley minimum
as the potential flashes back on.

Clearly the particle must relax toward the minimum (or its local stationary dis-
tribution) on a short time scale compared with the time scale of its escape to the next
valley if the jumping process from valley to valley is to have any Markovian character.
Because the noise will generally be assumed small (§ < 1), the relaxation time will be
approximated in our considerations as (") =1/a? (for 1/2 < a < 1), the time for the
particle to proceed by deterministically falling down the gradient from the peak to
the valley (down the shallower slope).

If we assume this relaxation time is short compared to not only the holding time
but also the typical time of a flashing cycle, we can use the above conceptual picture
to represent the holding time as follows:

3 e
o~ el 1+e0, (5.1)

where

e Np is (random) number of flash cycles before escape
° {@§f)} are times between successive flash cycles of the potential,

e O is time taken to escape during the last flash period.

Suppose now that N is large, meaning the particle is making many attempts to
escape its valley during off cycles of the flashing potential before succeeding (figure
5.1). Assuming the particle is also resetting near the potential minimum many times,
we may assume that Np is geometrically distributed (and approximately indepen-

dent of the random times appearing in equation (5.1)). The times {9§f)} between
successive flash cycles are independent and generally not exponentially distributed
(being the sum of two independent exponentially distributed random variables with
different means). We make no strong assumption about the probability distribution
for the escape time ©(®) during the last flash cycle, other than that it is essentially
independent of the durations {@f)} of previous flash cycles.

We claim under these assumptions the holding times should in fact be approxi-
mately exponentially distributed and the MCTRW should be a good approximation.
(Independence of successive valley jump processes is indicated by the loss of memory
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Sample trajectory in MCTRW Regime
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Fic. 5.1. Depiction of trajectory X (t) of motor particle and state F(t) of flashing potential
when MCTRW approzimation works well.

induced by relaxation to local potential minima before escaping). To see this, we
express the characteristic function of the holding time ©

Ng

¢@<k>_<exp<ik@>>—<exp ik(>_ 65 +e) >—GNF<¢@<f><k>>¢@<e><k>

j=1
in terms of the characteristic functions of the component times:
bo0 (k) = (exp(ikOD) ), Do (k) = (exp(ikO)),
and the probability generating function of the number of flash cycles
Gy (s)=(s"T).

Here we have used standard formulas for the sum of a random number of independent
random variables [21, Sec. 1.3]. Now if N is geometrically distributed with mean
]\fF7 then
1
Gnp(8)=—=————
Ne(8) Np(1—s)+1
SO
1

po (k)= Nr(l= o (k))+1¢6(e)(k)'

Now we invoke the assumption that a large number of flash cycles occur between
escapes of the particle: Nz>>1. As the mean of the holding time © will scale with
Np, we need to rescale this random variable accordingly to compute a nontrivial
limiting behavior:
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The characteristic function of this rescaled random variable, ¢g(k) is obtained from
equation (5.1) through

¢6 (k)= e (k/Nr)

so its limiting behavior can be computed as:

: o 1 _
N}JTOO%U“) = g Nr(1—dom (k/Nr))+1 b (k/Nr)

1 1
= 1 — — =
Moo Np(1— (1+1(OD)k/Np)+1  1—ik(00)

which is the characteristic function for an exponentially distributed random variable
with mean (©F)). Here we have used the following Taylor expansion for characteristic
functions of a general random variable Y:

by (k) =1—ik(Y) +O(k?).

The limits of characteristic functions imply limits of the corresponding random vari-
ables, so we note that © (and therefore the unscaled holding time ©) has, for large
N (and the other underlying independence assumptions) a probability distribution
which is approximately exponentially distributed.

Note that the regime of validity for the MCTRW approximation is not simply the
trivial limit in which the potential is turned on most of the time and therefore close
to the case of a steady potential.

5.1. Numerical deterministic calculation of key statistical quantities.
If the times between successive valley visits are not exponentially distributed, then one
of the previous assumptions about the picture must fail. We already pointed out that
if the holding time © is smaller than or comparable to the relaxation time 7(¢) = a2,
then the picture is invalid and we find no reason to expect the holding times {©,}
to be exponentially distributed. This can be quantified through the violation of the
self-consistency of the exponential distribution assumption

Prob{0© <70V} =1 —exp(—70D /(0)) <, (5.2)

where c is a suitably small constant. We also assumed in the above that the relax-
ation time was short relative to the mean time of a flashing cycle. Violation of this
assumption, however, does not appear to destroy Markovianity of the coarse-grained
process, provided the relaxation time is short compared to the total holding time. In
particular, if we take the extreme limit of a flashing cycle which is very short relative
to other time scales, then the motor particle actually feels an effective steady poten-
tial equal to k5 / (k15 4+ kg )V (2), obtained by taking a rapid-fluctuation (annealed)
average. Provided that 6 < kp, /(kly +ky,') (meaning the flashing potential is not
in the off-state for too large a fraction of time), the system behaves effectively like a
weakly noisy particle in a steady potential, for which a MCTRW approximation can
be expected to hold. Consequently, we don’t view the assumption of the relaxation
time being short relative to the flash cycle time as vital, and therefore don’t consider
it further. (The kio>> ko regime where it becomes an issue will be seen to reside
entirely within a regime which can be understood to be non-Markovian through the
simpler mechanism described above).
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The other key assumption above is that the particle makes a large number of
independent escape attempts, meaning the number of flash cycles Nr between jumps
to new valleys are typically large. This condition can be formulated as

©0) g ey o
where the expression for N is an estimate for the typical number of flash cycles per
successful escape of the particle.

We now explore how the deviation from the exponential distribution relates to
the behavior of the Peclét number for various values of the governing parameters of
the flashing ratchet model by computing the coefficient of variation C,, of the holding
time O:

5 var®
Cv - <@>2 ’

which would equal 1 for an exponential distribution. This statistic was analyzed
extensively in the context of a static tilted periodic potential by [32]. Another sta-
tistical quantity by which we can assess the validity of the MCTRW approximation
is through the correlation coefficient of the holding time © and the change in the
particle’s position = during a given visit between valleys,

- _ E[E0]-An(0)
p=.6 V1= Ar2V/var®’

where Am=my —m_; this correlation coefficient should vanish for a Markovian
continuous-time random walk. Both of these statistical quantities can be computed ac-
curately as solutions of deterministic differential equations arising from the backward-
Kolmogorov equation associated to (2.2), as described in Appendix A. We remark
here only that the proper calculation does require an auxiliary calculation for the
probability distribution of the state of the flashing ratchet at the random moments
at which the particle visits a valley; this is not simply the stationary distribution for
the flashing ratchet [56, 8]. Moreover these deterministic calculations generate much
more accurate results than Monte Carlo simulations, which suffer both from generally
slowly decaying sampling error and the need to run simulations for very long times
since the transitions between potential minima are relatively rare.

Checking that C, =1 and pe = ~0 is not strictly sufficient to guarantee the valid-
ity of the MCTRW approximation, but are fundamental indicators that are generally
violated for processes which are not Markovian continuous-time random walks. Of
course we should also check that successive steps are independent; this is not au-
tomatic as sometimes assumed [56, 8] because the motor particle trajectory X (¢)
is not itself Markovian; only the joint process {X (¢),F(¢)} is Markovian. Through
selected Monte Carlo simulations, we have found that the correlations between suc-
cessive steps are generally small. In fact, the correlation coefficients for both holding
times © and jump directions = in successive steps were found in all but one simu-
lation to be 0.01 or smaller (within sampling error). The only exception we found
was for k1o =10"1° and kg; =107°7, the holding times © had correlation coefficient
—0.1+0.04, but these parameter values fall in the C, > 1 regime which would already
be ruled as non-Markovian. We note that computing these correlations accurately is
computationally difficult because have not found a good way to compute these cor-
relations through deterministic equations, as we have done for the statistics C, and




496 STOCHASTIC MODELS IN MOLECULAR BIOLOGY

0 " 1
Log 12

F1a. 5.2. Level curves of Pe as a function of k12 and ka1. Black line: level curves corresponding
to C2=0.99 and C2=1.01. §=10"1-3, a=0.85.

pe.=, and must therefore resort to Monte Carlo simulations over long enough times
to see hundreds to thousands of transitions in order to get even one significant digit
of accuracy [27].

In figure 5.2 we have plotted the level curves of the Peclét number as a function
of k12 and ko1, as well as the level curves corresponding to C2=0.99 and CZ=1.01,
for #=10"15. We note the presence of an extensive region where 0.99 <C? < 1.01
where the coefficient of variation may be understood to be consistent with that of
an exponential distribution. In figure 5.3 we also present p= g, which is seen to
be relatively small for all parameter values, particularly those corresponding to the
Cy =1 region in figure 5.2. Taken together with figure 5.2, these figures support
our hypothesis that the plateau region in figure 3.2 where Pe~1 corresponds to a
region where the continuous dynamics of the flashing ratchet can be approximated by
a MCTRW with strong bias. Where the system presents a strong coherence in the
transport, characterized by Pe > 1, non-Markovian effects take place (C% <1).

5.2. Comparison with theoretical criteria.  As previously discussed, the
validity of the MCTRW approximation should only be expected when the escape pro-
cess behaves as a large number of failed independent attempts to escape the potential
well before a successful transition. We formulated this condition in terms of the cri-
terion (5.2) that the particle has a small probability to escape a well before relaxing
and the criterion (5.3) that the typical number of flashing cycles per successful escape
is large. We observe now how these theoretical criteria relate to the numerical results
presented above.

In figure 5.4 we have plotted the level curves of C? together with curves delimiting
the parameter regions where the theoretical criteria are valid. In so doing, we need
to make the inequalities P(© <7(*D) < ¢ and Ng>>1 more precise; this is done by
noting that specific values for the right hand sides can be found so that the curves so
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FiG. 5.3. Level curves of p= e as a function of k12 and ko1. #=10"15, a=0.85.

defined align well with the curves delimiting regimes where the coefficient of variation
of the holding time is not close to 1. Note that in each case, we are trying to match
a nontrivial curve through one adjustable parameter. We see that the region C, =1
is very well approximated by the region where Prob(© < 7)) <0.0035 and N > 5.
The role of the N > 1 condition appears somewhat peripheral here, so we also present
in figure 5.5 analogous results for a case with higher temperature § =1071! (which
features a less prominent peak in the Peclét number plot (figure 3.2)).

We further note that the region where C, <1 appears to correspond to where
the particle has a substantial probability of escaping before relaxing to the bottom
of the valley of the potential. The Pe>1 peak in figure 3.2 falls in this regime. A
coefficient of variation C, <1 corresponds to a process which behaves, in a sense,
more deterministically than exponential. One well-known mechanism in molecular
motor modeling for generating transition times with coefficients of variation below
1 is to introduce several “rate-limiting” steps to the transition process, each with
comparable time scales. The resulting time to proceed through such a m-step cycle
then approximately obeys a Gamma distribution with shape parameter m, which has
coeffiicent of variation C, =1/m. Moreover, the Peclét number for such a molecular
motor would satisfy Peam (often expressed in terms of an equivalent randomness
parameter r=1/Pe [25, 13, 57]. However, here the Peclét number is not close to an
integer, so this well-known mechanism is not a good explanation for our observations.
However, we might imagine that transitions where the particle does not have time
to relax before escaping are governed by some sort of “instanton” process or path
of least action [31] which may have a more deterministic character than that corre-
sponding to a large number of independent escape attempts. Indeed, some Monte
Carlo simulations of escape time histograms (not shown) indicate that in the C, <1
regime, the probability distribution for the escape time has a higher probability for
a very fast escape relative to the mean than an exponential distribution. Finally,
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we mention a very interesting self-induced stochastic resonance mechanism described
recently [6, 30, 7] for how attaching a massive cargo to a motor can produce nearly
deterministic jump times for the motor between potential minima [53]. The coefficient
of variation of the jump times C,, in these motor-cargo models is tied to a small pa-
rameter characterizing the mobility of the cargo relative to that of the motor [30]. No
such asymptotic regime appears relevant in describing the relatively modest reduction
in Cy in the simple flashing ratchet models considered here.

Part of the region where the coefficient of variation satisfies C\, > 1 appears to
be explained by the number of flashing cycles per escape attempt being too small,
even though the particle has enough time to relax to the potential minimum between
transitions. The time to escape is then governed by the detailed interaction of the
particle dynamics and the flashing dynamics; the compounding of the randomness in
each of these component processes might explain why the resulting time to escape is
more random than an exponential distribution. Monte Carlo simulations of escape
time histograms (not shown here) suggest that the time for a fast escape relative
to the mean is somewhat suppressed relative to an exponential distribution for the
C, <1 regime.

For parameter values in the lower right of figures 5.4 and 5.5, where both theo-
retical criteria fail, the resulting coefficient of variation is presumably determined by
some suitably weighted superposition of the tendencies for one non-Markovian mech-
anism to increase the randomness in the escape time and for the other to suppress
it.

6. Conclusions regarding MCTRW approximation in flashing ratchet
model

We have examined the drift and diffusion characteristics of a classical flashing
ratchet model and demonstrated at low temperatures that the Peclét number (mea-
suring the coherence, or relative strength of the drift relative to the diffusion) exhibits
two noteworthy features as a function of the transition rates of the flashing ratchet.
First of all, the Peclét number is approximately one over a wide range of parameters.
Secondly, the Peclét number exceeds one over a more limited region, but overlapping
the region in which the drift (and therefore utility) of the molecular motor is maxi-
mized. We used a Markovian continuous-time random walk (MCTRW) framework in
an attempt to understand these observations, together with deterministic equations to
compute accurately various statistical quantities which would have required a much
greater deal of effort through direct Monte Carlo simulations. We thereby showed
that the parameter regime where the Peclét number exhibits a plateau Pe~1 appears
to be well modeled by a continuous-time random walk with strong bias. On the other
hand, the Pe>1 region cannot be described by a MCTRW model. We identified
two mechanisms by which the MCTRW approximation can be invalidated: the motor
particle may escape on a time scale faster than it takes to relax to the minimum
of a potential, or the number of flashing cycles per transition of the motor particle
from one valley to the next is not large. We showed that the predictions of MCTRW
validity by these theoretical criteria are consistent with the numerically computed
results. While both mechanisms breaking the MCTRW approximation appear to be
operational over parts of the parameter regime, the regime in which drift is optimized
seems also to have the property that the motor particle has a substantial probability
to escape before it relaxes to the potential minimum.

One central observation, then, is that the simple characterization of a molecular
motor’s progress as a Markovian continuous-time random walk between valleys is
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not necessarily appropriate for the regime in which the molecular motor generates the
fastest transport. One can of course turn to generalized random walk models in which
the time between transitions has a general (not necessarily exponential) probability
distribution, but each transition proceeds independently of other transitions. That is,
the flashing ratchet model might be accurately coarse-grained as a renewal process [21,
Ch. 5] where memory is lost only at the special (random) moments when a new
valley is visited, rather than the fully Markovian classical continuous-time random
walk models which at any time carries no memory other than its current state (and
therefore must have an exponential distribution between visits to successive states [21,
Sec. 4.2]).

7. Parameterization of dynamics of water molecules near solute

We next turn to our second molecular biology model, which concerns the statis-
tical parameterization of the dynamics of water molecules near a solute. Though our
eventual interest is the behavior of water near proteins, here we use a very simpli-
fied setting to gain insight into some of the mathematical issues in play. We choose a
Ceo buckyball consisting of 60 carbon atoms distributed approximately symmetrically
about a sphere. The chemical homogeneity and approximate isotropy imply that the
behavior of water molecules should be purely a function of distance from the center
of the buckyball. In figure 1.1 we show a snapshot of a molecular dynamics simula-
tion [54, 14], conducted by Shekhar Garde’s research group, of a buckyball with 4200
“simple point charge” surrounding water molecules. The computational details for
the simulation are similar to those used in [20] for hydrated carbon nanotube simula-
tions. Our main interest will be to obtain a useful statistical parameterization of the
dynamics of the water molecules in this detailed molecular dynamics simulation.

The first question to be addressed is the framework in which the statistical dy-
namics of the water molecules are to be quantified. One measure which can be found
in the biophysical literature is the following generalization of a diffusion tensor, which
we will call the “biophysical diffusivity” [37, 34]:

DB(T)< |X(t+276)T—X(t)| |X(t+76)T—X(t)|

X(t)r>. (7.1)

Here the angle brackets (:|-) denote a conditional statistical average of the quantity
to the left of the bar, given the condition to the right of the bar. In practice, such a
statistical average is obtained by dividing space into bins (which for the present case
would typically be spherical shells), running a long molecular dynamics simulation,
sorting the data about the increments X (t+27)— X (¢t) and X (t+7)— X (t) based
on the location X (t) of the water molecule at the beginning of the time increment,
and then taking the conditional statistical average (7.1) over the data over all water
molecules and time instants ¢ for which X (¢) fell within the bin under consideration.
The time increment 7 is supposed to be long compared to the momentum relaxation
time of the water molecule, but short enough so that the water molecule does not move
far from the shell in which it started at the beginning of the time interval [¢,t+ 27]
of interest. In practice, a value of 7=1 ps (= 10712 s) is typically chosen. Note
that the diffusivity Dpg(r) is assumed not to depend on ¢ because data is understood
to be taken only once the system has adequately achieved thermal equilibrium; this
is what allows data from different moments of time to be pooled in the numerical
computation of the statistical average (and thereby to have any hope of achieving
adequate statistics).
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The details of the expression (7.1) may be a bit difficult to parse, but one may
observe that in a bulk water environment away from any solute or disturbance which
creates a bias or spatial dependence on the statistical dynamics of the water molecules,
the expression (7.1) agrees with the traditional measure of diffusivity,

DO:<|X(t+TgT—X(t)|2>’

where 7 is any time increment large compared to the momentum relaxation time of the
water molecule, so that over the time increment [¢,t+ 7] the water molecule behaves
diffusively rather than inertially [44]. Note in particular that the bulk diffusivity
should be approximately independent of 7 once this condition is met.

The diffusivity measure (7.1) does show interesting variations from the bulk dif-
fusivity value as the location r of the water molecule approaches the solute [37, 34],
but yet one may ask how informative this measure is. One might argue as well that
the dynamics of water molecules may behave differently in the direction approach-
ing the solute surface as compared to the directions parallel to the solute’s nearest
surface. Such anisotropy in the statistics of the water molecule dynamics has indeed
been adequately appreciated in the literature, and the definition (7.1) for the local
difffusivity has been generalized in these terms [37]. Of greater concern to the present
discussion, the quantity (7.1) (as well as its anisotropic generalizations) seems to mix
together both bias in the dynamics of water molecules as well as changes in the ran-
dom component of its mobility. The mathematical theory of diffusion processes [24,
Sec. 1.7] offers what appears to be a more natural decomposition of the local behavior
of water molecules near a solute in terms of a deterministic bias and a random motion.
Specifically, we define a drift coefficient

Lmnfy—<thki_)“”yxa)r> (7.2a)
to capture the deterministic bias and the diffusion tensor
D(r.7) E< (X(t+T)—X(t)—U(T)T);S;(X(t—FT)—X(t)—U(T‘)T) X(t)=r
(7.2b)

to quantify the strength of the unpredictable component of the water molecules along

various directions, as observed over a time scale 7. For theoretical purposes, the 7 —0
limit is taken, but in working with practical data we must keep 7 finite. We note that
the terms U (r)7 are usually omitted in the definition of the diffusion tensor in the
mathematical theory of diffusion processes [24, Sec. 1.7] but it makes no change in
the 7 — 0 limit and clarifies the intended decomposition for practical implementation
with finite 7.

For the case of a spherically symmetric solute (a property satisfied approximately
by the Cgo buckyball), the drift vector and diffusion tensor in fact can be represented
in terms of three scalar functions as follows:

o U(r,7)=U(|r|,T)7,
o D(r,7)=D|(Ir|,)r@7+DL(|r|,7)(I-7®7),
where 77 =r/|r| and | is the identity matrix. That is, the drift can only be directed

toward or away from the solute, with magnitude and sign depending only on the
distance from the center of the solute:

Oy = <X(t+7-)—X(t)

T

-7

X(t):r>.
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The random component of the motion is expressed in terms of a longitudinal diffusivity
(X({t+7)=X(@)-7=Uy(r)r
Dy(Irl,7)= <’ S X () =),

27
which describes the vigor of the random motion toward and away from the solute,
and the lateral diffusivity

}2

Dulrl.r) =( X (E40) X (0)- 0= 707

X(t)r>,

which describes the vigor of the random motion parallel to the nearest solute surface
(which here means along the angular directions with respect to the center of the
solute).

One useful property of the drift and diffusion coefficients described above is that
models or estimations for these quantities immediately can be used to define a com-
plete stochastic model for the dynamics of the center of mass of a water molecule
through the following stochastic differential equation

AX =U(X(t),7)dt+ (X (t),7) AW (t), (7.3)

where dW (t) is a stochastic increment of Brownian motion (or the Wiener process),
which formally may be treated as a mean zero Gaussian random vector with covariance
(AW (t)dW;(t))?) = 6;;dt (with &;; =1 for i=j and vanishes otherwise), and stochas-
tic increments at different times are independent [15, Ch. 4]. X(r,7) is obtained
through a matrix square-root of the positive definite diffusion tensor:

D(r,7)= %Z(’I’,T)ZT(T‘,T).

Y (r,7) is not uniquely defined by this relationship, but any solution can be shown to
generate a stochastic model equivalent to any other choice. In the isotropic case, the
noise coefficient can be simply expressed as

S (r,7)=1/2D(r,7)# ®F + /2D (r,7)(1—F @ 7).

Particle trajectories generated by the drift-diffusion model (7.3) using an Euler-
Marayama discretization [24, Sec. 9.1] with time step At =7 would self-consistently
produce drift and diffusion coefficients (7.2) equal to those used in defining the model,
but the stochastic differential Equ. (7.3) also makes sense as a continuous-time model
(which could be simulated with time steps At 7).

8. Parameterization of drift-diffusion model

We now examine the mathematical definitions of drift and diffusivity (7.2) as a
basis for parameterizing these coefficients directly from a molecular dynamics simula-
tion. As elaborated in [47, 46, 42], such a parameterization of coarse-scale coefficients
in a multiscale system is not entirely straightforward. The essential question of in-
terest to us here is the choice of time increment 7 used to evaluate the drift and
diffusion coefficients in (7.2). Once 7 has been chosen, the calculation of the statis-
tical estimates for these coefficients can be achieved through collecting data from a
suitably long time series of a simulation with many water molecules and evaluating
the conditional average through sorting the data of the time increments into spatial
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bins (here spherical shells) as described after equation (7.1) above. Now, the mathe-
matical definitions (7.2) indicate that the limit 7|0 is desired, which might suggest
that 7 be chosen equal to the time step At used in the molecular dynamics simula-
tions. However, as is well recognized in the literature, the diffusion coefficient will not
be correctly estimated unless the time increment 7 is chosen to be long compared to
the momentum relaxation time Ty of the water molecules. Indeed, the description of
the motion of a water molecule in bulk as thermal Brownian motion (that is through
a stochastic differential equation (7.3) with U =0 and ¥ =+/2Dpl) is valid only over
such relatively coarse time scales 7> Ty ; on shorter time scales something like a
Langevin equation explicitly involving the velocity variable of the water molecule is
required [5]. In practice, then, diffusivities of water molecules in molecular dynamics
simulations are calculated through statistics of displacements over time increments
720.2 ps (=0.2x 10712 5) [51].

One might simply proceed to use this same value of 7 for our drift-diffusive pa-
rameterization near a solute, but a few complicating factors raise some concerns. First
of all, the inhomogeneity induced by the solute may affect the momentum relaxation
time scale Ty, significantly. More importantly, an inhomogenous environment imposes
upper limits Tx on 7 so that the particle is not wandering far from the bin associated
to its value X (t) at the beginning of the time interval [¢,7]. Otherwise, the statistics
collected for the drift coefficient U () and diffusion coefficient D(7) do not really de-
scribe the local behavior at the position . In bulk, the upper limit on 7 is much more
generous — the particles essentially should not move a distance comparable to the size
of the domain (periodic or confining) over a time interval of length 7. One may be
concerned that the value 72 0.2 ps chosen for calculating water diffusivity in bulk may
not be an optimal or even appropriate choice to describe water molecule dynamics
near the surface of a solute, where we seek Ty < 7K Tx, where the momentum and
position time scales Ty and Tx may themselves depend significantly on position [52].

To illustrate and gain insight into this issue, we first examine it in the context
of a greatly simplified, exactly solvable model, and the consider what lessons from
the exactly solvable model might be transferable to the parameterization of the more
complex buckyball system in which we are interested.

9. Toy model for drift-diffusion parameterization

Consider the following simple Ornstein-Uhlenbeck model for the dynamics of a
particle:

dX =Vdt,
mdV =—yVdt—aX dt++/2kgTydW (t). (9.1

Here X denotes the particle position, V' the particle velocity, m the particle mass,
and 7 the friction coefficient of the particle. These equations describe dynamics
according to Newton’s law with a friction force —yV and harmonic potential Sa|r|?.
The conceptual simplifications of this simple model relative to the true equations
of motion for a water molecule in the molecular dynamics simulations is that the
complicated effective potential acting on a water molecule through the combination
of the solute and other water molecules is replaced by a harmonic potential, and
the interactions with other water molecules are replaced by standard Langevin-type
friction and noise terms. We nondimensionalize the equations (9.1) with respect to
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spatial scale \/kpT /o and time scale Tx =/« to obtain

dX =Vdt,
dV =—aVdt—aX dt+adW (t), (9.2)

where a=+?%/(ma) is the ratio of the position time scale Tx to the momentum time
scale Ty =m/~. Now, in the limit ¢ — oo this system of equations can be shown
through standard Smoluchowski reduction [15, Sec. 6.4] to be well approximated by
the reduced system

dX =X dt+dW (1), (9.3)

which we see is of drift-diffusion type for the variable X with drift U(r)=—7r and
diffusion tensor D(r)=1I.

Now suppose that (as will be the case in practical systems) we do not know how to
derive this analytical reduction, but rather need to estimate U(r) and D(r) through
collecting data from trajectories simulated by the full system (9.2) for some large but
finite value of a and computing conditional averages (7.2) with some choice of time
increment 7. The question we will pose is what choice of 7 gives the best agreement
with the exact asymptotic results (9.2).

We will put aside questions of spatial binning and statistical sampling by using
the exact solution to (9.2):

a2e—(¥1t_ale—0t2t e—l)élt_e—azt

X ()= X0)+——V(0
(=" =0 X0+ v ()
t
[e54e %) / (e—al(tfs) _efozz(tfs)> dW(S)
Qg —aq Jo
where o = ¢=¥4-—24 V‘§2_4a and qg = 2tva~—da “52_4“. This allows all the conditional averages in

(7.2) to be calculated exactly for arbitrary values of 7.
We obtain in this way

{ — (g™ T —ane” *27) — 1}
U”(T,T): az—aq r,

T

Dy(r,7)=Dy(r,T)

:( 10 )2;[1(1620417)0‘1_%&2 (1,ef(a1+a2)r)+ﬁ(17672Q2T)
2T )

Qg —Qq

These formulas are most usefully interpreted through their graphs in figure 9.1.

We observe that indeed the values of 7 which produce effective drift and diffusion
coeflicients close to the desired values fall in an intermediate range of times. In fact,
the values of 7 which give closest agreement to the rigorous asymptotic value can be
shown to scale as the geometric mean of the position time scale T'x ~ 1 and momentum
relaxation time scale Ty ~1/a and therefore in particular satisfy Ty <7< Tx for
large a. We also see that the effective drift and diffusivity never actually achieve the
a= oo asymptotic value for any value of 7, but this simply reflects the fact that a is
large but finite. (The drift and diffusivity values chosen at the optimal value of T at
finite a depart from the a = oo asymptotics (9.3) by terms proportional to a~'/2). So
we are more precisely looking for a way of choosing values of 7 such that as a — oo,
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F1G. 9.1. Longitudinal drift (left) and longitudinal diffusivity (right) for the Ornstein-Uhlenbeck
model (9.2) as computed with different sampling time intervals 7. The lateral diffusivity equals the
longitudinal diffusivity in this model.

the drift and diffusivities computed by the conditional averages (7.2) converge to the
asymptotic results corresponding to the rigorous coarse-graining.

Now in the more complex setting of water molecules near a solute, we cannot
really expect to transfer the details of these results because they are probably not
robust under the change in potential and we cannot really estimate Ty and Tx so
precisely. But a softer observation does seem to have promise of useful generalization:
the best values of 7 for estimating the drift and diffusivity appear to be those for
which those values are most pronounced (relative to those obtained from other values
of 7). Choosing 7 too large or too small seems to wash out the computed conditional
averages (7.2). This can be understood as follows: For small 7 (particularly 7 <1/a),
the dynamics of the particle velocity are being resolved enough that V(¢) does not
behave like approximate white noise superposed on an offset depending on X (as must
be the case if equation (9.3) is to approximate equation (9.2)). Indeed, for 7 < 1/a, we
can write X (t47) — X (t) ~V (t)7+O0(a®/?7?), in which case U (r,7)~ (V (t)| X (t) =
r)+0(at)=0(ar) (where we have noted that the O(a®/?7) part of the error has
mean zero) and D(r,7) ~ 2(V(t)@ V()| X (t) =7)7+ O(a’*r?) = “T1+ O(a??). That
is, both the computed drift and diffusivity vanish with a7. On the other hand, for
721, the particle is moving by an O(1) amount during the time interval [t,¢+7] and
is therefore not really sampling local dynamical behavior near a particular position
r. Indeed, for 7>>1, the conditional averages would approximate the global drift and
diffusion coefficient (describing the long time asymptotics of the particle displacement)
which here are both zero because of the confining potential.

We hypothesize that this general property of the best value of 7 being that which
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gives a most pronounced conditional average (7.2) for the drift and diffusivity car-
ries over to more realistic systems such as the buckyball under consideration. One
distinction that may call this into question is that the real potential of interaction be-
tween the water molecule and solute will be multiwelled and decaying toward zero at
large distances (figure 9.2), rather than having a simple harmonic form. This doesn’t
greatly affect the conclusions about small 7 but may affect those concerning large 7
which appealed to the global drift and diffusivity of the simple system (9.2) being
zero. The global drift can also be expected to be zero in the buckyball system as a
consequence of thermal equilibrium, but the global diffusivity should be expected to
be a finite nonzero constant, somewhat altered from the bulk diffusivity value by the
trapping and repelling effects of the buckyball.

This motivates the following scheme for choosing the value of 7 for computing the
conditional averages in the buckyball system. We first seek a rough estimate based on
a crude transferral of results from the Ornstein-Uhlenbeck system (9.1). To do so, we
need to relate parameters of the Ornstein-Uhlenbeck system to that of the molecular
dynamics simulation. The parameter « defining the harmonic potential in the toy
model will require the most explanation. We begin by introducing the notion of the
potential of mean force ¢(r), defined in terms of the concentration ¢(r) of the water
molecules in thermal equilibrium

¢(r) =—kpTn(c(r)/co),

where kp is Boltzmann’s constant and cg is the average concentration of water
molecules (total number divided by total volume of system). This choice produces a
Boltzmann-type distribution for the water molecule concentration:

c(r) xe~®(r)/(ksT)

The idea is that the mean motion of the water molecule is like overdamped motion in
an effective potential. The potential of mean force is like a free energy in that it takes
into account not only the forces between the solute and the water molecule under
consideration, which are well specified because each are at known locations, but also
all the forces induced by the presence of other water molecules, with locations not ex-
plicitly specified and therefore effectively averaged over in a self-consistent statistical
sense. Because this statistical averaging over all the other water molecules requires an
accurate representation of joint multiparticle statistics, it is extremely difficult to com-
pute theoretically (see [39] for some techniques involving analytical approximations).
We therefore will extract data from molecular dynamics simulations to estimate ¢(r);
this is a routine task of simply binning up space (in the current isotropic case into
radial shells) and counting at each time step how many water molecules are in each
bin, and then averaging over time (once thermal equilibrium is achieved.) The binned
results are smoothed using a 7-hat filter, meaning that each binned value is replaced
by its average over a centered window of width equal to 7 bins. The resulting potential
of mean force (which here is radial ¢ =¢(r)) and its derivative are shown in figure
9.2. The oscillations arise entirely from collective effects of the water molecules —
the direct interaction between the carbon atoms of the buckyball and a given water
molecule is of a simple Lennard-Jones form [14] with a repulsive core and attractive
tail. The oscillations reflect the tendency for the water molecules to be located in hy-
dration shells of roughly multiples of 0.2-0.3 nm from the surface of the solute [29]).
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F1c. 9.3. Quadratic fit to the first hydration shell of the buckyball potential

With the potential of mean force now playing the role of the effective potential felt
by a water molecule, we associate to it a value a=1500 mo{‘gmz by fitting a parabola
to the first hydration shell (figure 9.3). Of course this is not to say the potential of
mean force is approximately harmonic, but simply that for the purposes of estimating
the time scale on which the position of a water molecule is induced to fluctuate, we
take this value of « to characterize the order of magnitude of the curvature of the
potential.

The other parameters in the associated Ornstein-Uhlenbeck model can be more
straightforwardly quantified by basic physical considerations. We take the mass
m=18.2x 10724 g of a water molecule, and set v=6.8 x 1071° g/s by using the Ein-
stein relation Do = £2L kpT = 2.3mk—i1 for a physiological system, and Dy = 0.0056“—“;2
from the MD simulations. This yields a momentum relaxation time scale Ty =27fs =
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Fi1G. 9.4. Longitudinal drift and diffusivity plots obtained from MD data for the buckyball for
various choices of sampling time interval T.

0.027ps for the water molecule. Note how the usual choice of 0.2 ps as the time scale
for computing the diffusivity of water molecules (in bulk) is a few multiples of this
time scale. Next, we estimate the value of the nondimensional parameter a describing
the ratio of the time scales of the position and the velocity of the water molecule

using the formula a= %72 and obtain a =10, a reasonably but not enormously large
value. This indicates the need for some care in finding time increments 7 satisfying
the desired conditions Ty <7< Tx (see figure 9.1).

We take as a rough initial guess 7~ Ty a'/? =85 fs as suggested by the harmonic
model. But more importantly, we vary 7 around this value and look to find where
the conditional averages (7.2) are most pronounced. The results are displayed in fig-
ure 9.4; these graphs are of course more complicated than those appearing in figure
9.1 because the spatial dependence is now nontrivial. The numerical observations
appear to confirm the hypotheses inferred from the Ornstein-Uhlenbeck model. The
conditional averages for the drift give a more pronounced result as 7 increases from
20 to 80 fs, and then washes out as 7 is increased further. On the other hand, we
see that the conditional averages defining the effective diffusivity increase significantly
with 7 until 7~ 200 fs, after which the conditional averages seem to saturate approx-
imately. We could continue to even larger values of 7 to see if the structure of the
diffusivity coefficient degrades, but there is not much point in doing so because 200
fs is already quite a bit larger than the value of 80 fs for which the drift coefficient
was most pronounced. Apparently, the best values of 7 for representing the drift and
the best values of 7 for representing the diffusivity do not really overlap, as they did
for the simple Ornstein-Uhlenbeck model. A similar phenomenon in simultaneuous
parameter estimation through sampling of time series was found in related mathe-
matical multiscale models [47, 46, 42]. This can perhaps be understood as follows:
as discussed above the diffusivity can only be estimated properly, even in bulk, by
considering the statistics of increments over time intervals sufficiently long relative to
the momentum decorrelation time Ty ~ 27 fs. From figure 9.4, this constraint appears
to be 72200 fs, which is consistent with the commonly used criterion in molecular
dynamics [51]. On the other hand, the time scale of the position of the water molecule
is naturally affected by the potential of mean force, and one constraint for example
should be that the water molecule cannot move from the bottom of the potential in
the first hydration shell over the barrier to the second hydration shell over a time
7. This time scale may be estimated as the position time scale Tx ~270 fs — so the
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desired condition Ty <7< Tx may not be realizable in a strong sense in practice
(given that Tx /Ty =a=10 is not that large).

The idea of using different values of 7 to estimate the drift and diffusion coefficient
is numerically inconsistent because then equation (7.3) would refer to coarse-grained
coefficients over two different time scales. One can see the problem by starting with
a stochastic differential equation of the form (7.3) and coarse-graining it by leaving
the drift or diffusion coefficient fixed (corresponding to a coarse-graining over a very
small time scale 7) while replacing the other coefficient by a coarse-grained condi-
tional average (7.2) obtained from trajectories of the original system. The resulting
stochastic differential equation which retains one coefficient from the original system
but has replaced the other by some “coarse-grained” value does not approximate the
original stochastic differential equation in any meaningful way. At least choosing a
common value of 7 to coarse-grain both the drift and diffusion coefficient ensures that
when the coarse-grained stochastic model (7.3) is integrated using an Euler-Marayama
scheme [24, Sec. 9.1] with time step 7, then the conditional averages (7.2) obtained
from the coarse-grained model (for this selected value of 7) will agree with those
obtained from the full molecular dynamics simulation.

For these reasons, we choose 7=200 fs to parameterize the drift and diffusion
coefficients by the conditional averages (7.2). The reason is that 200 fs seems to
be a minimal value to obtain a reasonable behavior for the diffusivity coefficient.
Particularly the bulk value (at large r) is an essential transport property which must
be represented properly in the coarse-grained model. On the other hand the best
value of 7 for computing the drift coefficient appears to be approximately 80 fs, and
degrades for larger values of 7. The value of 200 fs approximately meets the requisites
for satisfactory estimation of the diffusivity coefficient, and is as close as possible to
the optimal values of 7 for estimating the drift.

The drift and diffusivity coefficients obtained with 7=200 fs are presented in
figure 9.5. The deterministic component (effective drift) of the motion might be
expected to be essentially proportional to the mean force in figure 9.2 because the
water molecule dynamics are overdamped, and we see this to be at least qualitatively
the case. We observe similar oscillations reflecting the hydration shell structure in
the longitudinal diffusivity, but not in the lateral diffusivity. Both the longitudinal
and lateral diffusivity are suppressed near the buckyball surface (approximately 0.6
nm from the center).

10. Conclusions regarding drift-diffusion parameterization model for
water molecule dynamics

We have sought to model the drift and diffusion coefficients in the stochastic
model (7.3) in the most accurate manner possible — the extraction of statistics from
data obtained from detailed molecular dynamics simulations. This may raise the ques-
tion of the purpose of this exercise, since the coarse-grained model (7.3) is supposed
to permit simulation of the water molecule dynamics without requiring expensive de-
tailed simulations. One way in which such a data-driven parameterization can be
useful in predictive modeling is that the detailed molecular dynamics data is obtained
from some studies in some representative simplified settings (near solutes of particular
topologies and chemistries) and these results then assembled into predictive stochastic
models for the water molecules near new solutes and proteins composed of structures
similar to those from which the detailed molecular dynamics simulations were con-
ducted. In some sense, this is conceptually like the parameterization of atomic force
fields in the molecular dynamics simulation codes themselves, which are obtained from
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F1G. 9.5. Parameterization of longitudinal drift (top), longitudinal diffusivity (left), and lateral
diffusivity (right) from MD data with sampling time interval =200 fs.

detailed studies of certain systems involving the interacting atoms of interest and then
assumed to generalize in the codes when they are in a general, more complex molecular
environment.

We did find here that the data-driven drift-diffusion model provided a means for
separating features pertaining to the mean and random motion of the water molecule
dynamics. One of the key limitations in the drift-diffusion modeling framework seems
to be an incompatibility between the time scales over which the predictable (bias) and
unpredictable (random) components of the water molecule dynamics exhibit a clean
coarse-grained behavior. This forced us to choose a time scale for coarse-graining
that resolved the random diffusive component well, but not the drift component.
This suggests that perhaps a somewhat richer stochastic model could provide some
improvement in its capacity for statistically modeling the dynamics of water molecules
near a solute.

We remark that without the insight generated by the preliminary study of the
toy mathematical model, we might have simply chosen a sampling time 7 somewhat
large compared to the momentum relaxation time scale 27 fs (as is typically done for
studies of water in bulk) under the supposition that the time scale of the positional
dynamics would be considerably larger. Typical choices for the sampling time scale in
the literature range from 7 ~ 200 — 1000 fs [51, 37]. Our preliminary analysis indicated
that in fact the best choice of sampling time to capture the statistics of the water
dynamics would be to choose 7 closer to lower end of the range 200 fs, rather than a
larger value such as 1 ps =1000 fs, as advocated for the biophysical diffusivity (7.1)
in [37].
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Appendix A. Deterministic computations for statistics of transition
properties in flashing ratchet model.

The computation of the coefficient of variation ), and the correlation between
transition time and direction pg = requires consideration of the exit problem associ-
ated with the equation

AX (t)=—¢' (X (t))F(t)dt+V26dW (), (A1)

on a domain [a,b] with a=k+a and b=k+2+a, for some integer k, denoting the
locations of the neighboring potential minima. Here ¢(x) is the sawtooth potential
(2.2b) and F'(t) is governed by a continuous-time Markov chain on the states f; =1
and fo =0 with transition rates k12 and ko;. We will find it useful to denote dynamics
of the Markov process (X (t),F(t)) corresponding to initial conditions X (0) =z and
F(0)=f; as (X4,i(t),Fy i(t)). Then we define the exit time

Tz,i = 1nf{t >0, X:z:,z(t) S {a,b}}

from the domain [a,b] for a particle starting at position 2 with the flashing potential in
state i. The time © between visits to successive valley visits is statistically equivalent
to Ty,; where = (a+b)/2, the location of the potential minimum which the particle
has just visited. We also define the absorption probability

myi(z) =Prob (X, ,:(Ty:) =)

corresponding to the probability for the particle to visit the potential valley to the
right before the potential valley to the left; of course

F,i(x) =Prob (Xw,i(Tz,i) = a) =1 —7T+i($).

The absorption probabilities and statistics of exit times can be computed through the
solution of systems of differential equations defined by the infinitesmal generator of
the governing Markov vector process (X (t), F(t)) [15]:

L=—¢ (z) |:(1) 8:| 02+ 0104+ Ly,

where Ly is the transition rate matrix
—k12 k12
L=
( ko1 —ka1

corresponding to the flashing dynamics of F'(t).
Writing our desired statistics as two-dimensional vectors

m(2)= [7T+1($)a7f+2(90)]T7
T(2)=E[T, 1, 2],
S(x)=E[T?,,T7,]",
prz(z)=E Ty (I{XI,I(T:L”I) =b}— I(XI,I(TIJ) =a})

Tw,2({I{Xw,2(TaJ,2) = b} - I(Xw,2 (Tm,2) = a)} ’

(where I{B} denotes the indicator function of the event B), the equations to solve
are as follows. For the absorption probabilities we have

Lr(z)=0, wi(a)=0,74(b)=1. (A.2a)
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For the mean exit time, we have
LT(z)=-1, T(a)=T(b)=0. (A.2b)
For the second moment of the exit time, we have
LS(x)=-T(z), S(a)=8(b)=0. (A.2c)

For the basic coupling between the exit time with the escape direction (note
ET,iI{Xe:(Tp1)=b}=E[T, ()| Xs,i(Te:) =0)| P(Xy,:(Ty,:) =b)), we have

Lprz(x)=m_(z)—m(x), prz(a)=pr=(b)=0. (A.2d)

Boldface numbers represent two-dimensional vectors with both entries equal to the
indicated number.
These equations are solved numerically as follows. We write the operator £ as

M(z) B 8} L=60, (M(2)d,) +M(z) L (A.3)

with

by setting up a regular grid on the interval [a,b] with interval spacing Az =(b—a)/N,
defining z, =a+nAz, g,=g(x,), and h,~h(z,), and then using the following
finite-volume discretization for the equation (A.3),

OM~ (2, )M (2111 /2) OM~ (2 )M (2,1 /2)
(AiL’)Z + (gn+1 _gn) - (Al’)Q

(gn _gn—l) +£fgn :hn’

for 1<n<N -1, with the appropriate boundary conditions applied at n=0 and
n=N. We then use MATLAB for solving the resulting linear system for the vector

T
9=(91,92,---.9n-1) " -

With the solutions to (A.2) in hand, to compute the statistics desired in subsec-
tion 5.1 we realize that we want to choose z=x.=(a+b)/2 and assign F(¢) some

appropriate initial probability distribution p;ﬂo’i =P(F(0)=1%). Applying the law of
total expectation we then have

0 0
T =Dy T (2) + PyTaa(ae),

EO =p{) T1 (z.) +piy Ta(xc),
EO? =p\) 51 (z.) + oy Sa (),
var® =E6? — (EO)?, (A.4)

E[=6]=p) pr.za(ze) +pihorza(ae).
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One might be tempted to specify the probability distribution for the initial
flashing state as the stationary distribution p;?)l =ko1/ (ka1 + k12), p§9)2:k12/(k21+
k12) [56, 8], but actually this is not appropriaté here! While this prof)ability distri-
bution correctly describes the statistical state of the flashing ratchet potential at an
arbitrary deterministic time ¢, it does not necessarily agree with the probability dis-
tribution for the state of the flashing ratchet at the random time at which the motor
particle visits new valleys. In particular this random time is in principle correlated
with the state of the flashing ratchet because of course whether the potential is on
or off will affect the likelihood of the motor particle reaching the potential minimum.
Consequently, we must calculate this probability distribution with some care.

To do so, we assume the motor particle behaves in an essentially ergodic manner
regarding its transitions between valleys of the potential. That is, we assume the joint
process (X (t),F(t)) converges to a (unique) statistically stationary process at long
time, where the reduced process X (t) =X (t)—| X (t)| simply records, at each time,
the fractional part of X(t), meaning its position relative to the nearest potential
minimum [49]. Such a supposition is natural for an overdamped physical system
driven in a statistically stationary way. Now, once we have waited long enough for the
motor particle dynamics to be close to that described by this statistically stationary
state, we can dissect its trajectory into a succession of statistically identical segments
connecting the visit of one potential minimum to the next. Now each visit to a
potential minimum is a terminating endpoint of one segment and a beginning endpoint
of the next. Consequently, the probability distribution for the state of the system,
including the state of the flashing ratchet, should be the same when the motor particle
visits the next potential minimum as it was when the motor particle started from the
previous potential minimum. That is, the probability distribution for F'(¢) must be
the same at the end of the exit problem under consideration as it is set at the initial
time. We therefore set up a self-consistent calculation using absorption probability
techniques [15, Sec. 5.4].

We begin by defining ; ;(z) =Prob(F(T, ;)= f;) for 4,j € {1,2} and solving the
system of equations

— ¢ (2)0pm1,i(x) + 003272 i () — k1271, () + k1272 i ()

=0
00,ma,i(x) +kormy () — kayma,i(2) =0

with 7; j(a) =m; ;(b) =¢; ; using a finite volume method as described above. Equating
pg)D the initialized probability for the flashing ratchet to be on when the motor
particle leaves the previous valley, to the calculated probability (from the law of total
expectation) for the flashing ratchet to be on at the visit to the next new valley, we
obtain

0 0 0 0 0
va,)l :7T171P%,)1 +7T1,2p§w,)z :Wl,lp(p,)l +m1,2(1 71)5‘7,)1)7

and therefore
0
P%)l =m12/(1—=m11+712).

In figure A.1, we plot this probability for two choices of 6 and various transition
rates ko1 = k12 =v; it is clearly different from the value of 0.5 corresponding to the
stationary distribution of F'(¢t) at a deterministic time ¢. For these calculations, we are
taking the flashing states as f; =1 and f; = —1 to provide more direct comparison with

the results of [8]. We also show that our deterministic calculation for the mean exit
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Probability distribution of flashing state at valleys

Mean Exit Time Computations
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Fic. A.1. (left) Computation ofp;?)l through deterministic approach and Monte Carlo simula-
tions for 0=1/7 (solid line) and 0=1/9 (dashed line). (right) Computation of mean exit time (©)

through deterministic approach with pg))l computed self-consistently (blue) and with pg‘))l computed

using stationary distribution pg?)l =1/2 as in [8] (red). Again, the solid lines correspond to 0=1/7
and the dashed lines to 0=1/9. The results of Monte Carlo simulations are plotted with error bars

corresponding to one sample standard deviation. In these figures, ka1 = k12 =v and the states of the
flashing ratchet are f1 =1 and fo=—1.

TABLE A.1. Comparison for exit time problems between theoretical values and Monte Carlo
sampling (“MC”). 0=10"11. The reported uncertainties correspond to one standard deviation.

(klg,kgl) <6> <@>(MC) V&I‘@ V&I’@(MC)

(10-%7,10%) | 183 183 +1 | 3.8x10* | (3.840.8) x 10*

(10712/10%4) | 114.3 | 114.6 + 0.8 | 8.4x 10® | (1.3£0.3) x 10*

(10-°7,10°%) | 80.0 | 79.3 £ 0.6 | 6.2x 10% | (6.1£0.1) x 10 |

(k12,k21) T —n_ | mp—7m_(MC)

(10-+7,10°) 0.623 0.626 £+ 0.006

(10712,10°4) | 0.841 | 0.851 =+ 0.004

(107°7,10°%) | 0.952 | 0.947 + 0.002

time produces excellent agreement with Monte Carlo simulations, though interestingly
simply using the stationary distribution value for pgg)l does not seem to create too

much of an error.

As another validation of our computation of statistics, we display in Table A.1
some comparison between our theoretical computations and Monte Carlo simulations.
Sample points are presented from each of the regions C,>1, C,~1, and C, <1.
Again, the Monte Carlo simulations are much more expensive and less accurate than
our deterministic computations.
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