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THE NON-RELATIVISTIC LIMIT OF THE NORDSTRÖM-VLASOV
SYSTEM∗

SIMONE CALOGERO † AND HAYOUNG LEE ‡

Abstract. The Nordström-Vlasov system provides an interesting relativistic generalization of
the Vlasov-Poisson system in the gravitational case, even though there is no direct physical applica-
tion. The study of this model will probably lead to a better mathematical understanding of the class
of non-linear systems consisting of hyperbolic and transport equations. In this paper it is shown that
solutions of the Nordström-Vlasov system converge to solutions of the Vlasov-Poisson system in a
pointwise sense as the speed of light tends to infinity, providing a further and rigorous justification
of this model as a genuine relativistic generalization of the Vlasov-Poisson system.

1. Introduction
Kinetic models of collisionless matter have many important physical applications.

In astrophysics, for example, the stars of a galaxy are often modelled as a large
ensemble of particles in which collisions are sufficiently rare to be neglected. The
distribution f∞ of particles in the phase-space satisfies the Vlasov-Poisson system:

∂tf∞ + p · ∇xf∞ −∇xU · ∇pf∞ = 0, (1.1)

∆xU = 4πγρ∞, γ = 1, ρ∞ =
∫

R3
f∞ dp. (1.2)

In the previous equations, f∞ = f∞(t, x, p) gives the probability density to find a
particle (star) at time t at position x with momentum p, where t ∈ R, x ∈ R

3, p ∈ R
3.

U = U(t, x) is the mean Newtonian potential generated by the stars.
By replacing γ = −1 in (1.2) one obtains the Vlasov-Poisson system in the plasma

physics case. Here the particles are charges and U is the electrostatic potential which
they create collectively. We consider a single species of particle in both cases. The
applications of these Vlasov-Poisson systems are restricted to the situations where
the relativistic effects are negligible, i.e., low velocities and weak fields. Otherwise the
dynamics has to be described by the relativistic Vlasov-Maxwell system in plasma
physics and by the Einstein-Vlasov system in stellar dynamics.

The two Vlasov-Poisson models are very similar to each other and no substantial
difference arises in the question of global existence of classical solutions, which is by
now well-understood (cf. [17, 19, 20, 26]). As opposed to this, the relativistic models
have very different structure and so far they have been considered separately. In the
gravitational case, global existence of (asymptotically flat) solutions for the Einstein-
Vlasov system is known only for small data with spherical symmetry [22]. For the
relativistic Vlasov-Maxwell system the theory is more developed, cf. [3, 7], [9]–[15],
[21]. However global existence and uniqueness of classical solutions for large data in
three dimensions is still open.

In a recent paper [2], a different relativistic generalization to the Vlasov-Poisson
system in the stellar dynamics case has been considered, in which the Vlasov dynamics
is coupled to a relativistic scalar theory of gravity which goes back, essentially, to
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20 THE NORDSTRÖM-VLASOV SYSTEM

Nordström [18]. More precisely, the gravitational theory considered in [2] corresponds
to a reformulation of Nordström’s theory due to Einstein and Fokker (see [8]). The
resulting system has been called Nordström-Vlasov system and reads

− ∂2
t φ+ c2∆xφ = 4π

∫
f dp√

1 + c−2p2
, (1.3)

∂tf + p̂ · ∇xf − [
S(φ)p+

c2∇xφ√
1 + c−2p2

] · ∇pf = 4S(φ)f, (1.4)

where

p2 = |p|2, p̂ = (1 + c−2p2)−1/2p, S = ∂t + p̂ · ∇x.

Here f = f(t, x, p), φ = φ(t, x) and c denotes the speed of light. A solution (f, φ) of
this system is interpreted as follows. The spacetime is a Lorentzian manifold with a
conformally flat metric which, in the coordinates (ct, x), takes the form

gµν = e2φdiag(−1, 1, 1, 1).

Throughout the paper Greek indices µ, ν and σ run from 0 to 3 and Latin indices a
and b take values 1, 2, 3. The particle distribution f̃ defined on the mass shell in this
metric is given by

f̃(t, x, p) = e−4φf(t, x, eφp).

More details on the derivation of this system are given in the next section. It should
be emphasized that, although this model has no direct physical applications, scalar
fields play a major role in modern theories of classical and quantum gravity. For ex-
ample, the Brans-Dicke gravitational theory [1], which is continuously tested against
general relativity, is a combination of Einstein’s and Nordström’s theory. The Nord-
ström-Vlasov system is also interesting in a pure mathematical sense. A hope is that
by studying this model one may reach a better understanding of a class of systems
consisting of hyperbolic and transport equations.

However in order to justify this model as a genuine relativistic generalization
of the (gravitational) Vlasov-Poisson system, it is necessary to indicate the relation
between the solutions of the two systems. The main goal of this paper is to prove that
in the non-relativistic limit c → ∞ the solutions of (1.3)-(1.4) converge to solutions
of (1.1)-(1.2) in a pointwise sense. The analogous result was proved in [25] for the
relativistic Vlasov-Maxwell system (see [16] for the case of two space dimensions) and
in [23] for the Einstein-Vlasov system with spherical symmetry (in the latter case a
weaker form of convergence holds also in the absence of symmetries, see [24]).

This paper proceeds as follows. In section 2 we provide a formal derivation of the
Nordström-Vlasov system and state our main results in full detail. The first of such
results is a local existence theorem of solutions of the Nordström-Vlasov system in an
interval of time independent of the speed of light, which is a necessary step to proceed
further in the study of the non-relativistic limit. The solution of the latter problem is
our second result. Our analysis follows [25] to a large extent and is based on the use
of certain representation formulae for the solutions of the Nordström-Vlasov system
which have been introduced in [4] and which will be adapted to the present case in
section 3. There we shall also prove some estimates needed in the sequel. One of
these estimates states that the distribution function f is uniformly bounded, which
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permits it to improve the conditional global existence result, Theorem 1 in [4]. (The
general Lq estimates on f are proved in [5], where they are used to establish existence
of global weak solutions to the Nordström-Vlasov system). In section 4 we prove our
main results.

2. Derivation of the Nordström-Vlasov system and main results
We shall refer to the Nordström-Vlasov system as the set of equations which

models the kinetic motion of a self-gravitating ensemble of collisionless particles in
accordance to a gravitational theory satisfying the following assumptions:
(1) The gravitational forces are mediated by a scalar field φ and the effect of such

forces is to conformally rescale the metric of the (four dimensional) spacetime
according to the relation

g = A2(φ)η, (2.1)

where η is the Minkowski metric and A is a positive function.
(2) Scale invariance property: There exists a one-parameter symmetry group whose

action consists in rescaling A(φ) by a constant factor.
(3) Postulate of simplicity: The dynamics of the field φ is governed by second order

differential equations.
(4) The matter (by which we mean any non-gravitational field) is universally coupled

to the metric (2.1).
It was observed in [2] (appealing to the more general case of Scalar-Tensor theories
considered in [6]) that the above assumptions single out a unique one-parameter family
of scalar gravitation theories. This parameter appears because of the scale invariance
property, which forces the conformal factor to be of the form A(φ) = exp(κφ), with
κ > 0. Hence in this theory the spacetime is a Lorentzian manifold endowed with the
metric

g = e2κφη. (2.2)

To write down the field equation of this scalar gravitation theory in a simple form,
let us consider a system of Cartesian coordinates {x0 := ct, x1, x2, x3} = {xµ}, c
denoting the vacuum speed of light in Galilean frames. In these coordinates, the
equation for φ takes the form

−c−2∂2
t φ+ ∆xφ = −4π

G∗
c4
κ e4κφT. (2.3)

Here G∗ is a dimensional constant (the bare gravitational constant) and T is the trace
of the stress-energy tensor of the matter with respect to the physical metric g. In
[2] c, G∗ and κ have been set equal to unity and the factor 4π has been removed
for simplicity. As we already mentioned in the introduction, this scalar gravitation
theory corresponds to the one considered in [8, 18].

In the case of the Nordström-Vlasov system, the dynamics of the matter is de-
scribed by a non-negative, real-valued function f̃ which gives the probability density
to find a particle in a given spacetime position xµ and with a given four momentum
pµ. We assume for simplicity that there is only one species of particle and choose units
such that the proper mass of each particle is equal to one. The particle distribution
f̃ is defined on the mass shell of the metric (2.2), which is the subset of the tangent
bundle of spacetime defined by the condition gµνpµpν = −c2, p0 > 0. This implies

p0 =
√
e−2κφc2 + δabpapb. (2.4)



22 THE NORDSTRÖM-VLASOV SYSTEM

Using (xµ, pa) as coordinates on the mass shell and denoting by dp the volume element
dp1dp2dp3, the stress-energy tensor for this matter model is

T µν = −c
∫ √

| det g|p
µpν

p0
f̃ dp,

which implies

T = −c3 e2κφ
∫

f̃

p0
dp. (2.5)

Finally, the coupling between the scalar gravitational field and the matter is completed
by requiring that the distribution f̃ of particles on the mass-shell is constant on the
geodesics of the metric (2.2). This leads to the Vlasov equation:

c−1∂tf̃ +
pa

p0
∂xa f̃ − pµpν

p0
Γaµν∂pa f̃ = 0, (2.6)

where Γσµν = κ(δσν ∂µφ + δσµ∂νφ − ηµν∂
σφ) are the Christoffel symbols of the metric

(2.2).
Our goal is to relate the solutions of the system (2.3)–(2.6) to the solutions of the

Vlasov-Poisson system (1.1)-(1.2) satisfying the condition lim|x|→∞ U = 0 (isolated
solutions). Hence

(
f∞, U

)
solves the system

∂tf∞ + p · ∇xf∞ −∇xU · ∇pf∞ = 0, (2.7)

U = −G
∫
ρ∞(t, y)
|y − x| dy, (2.8)

ρ∞(t, x) =
∫

R3
f∞(t, x, p) dp, (2.9)

where G denotes the Newtonian gravitational constant which had been set equal to
unity in (1.1)-(1.2). In order to get some light on the relation between the two systems,
let us consider a formal expansion of the solutions of the Nordström-Vlasov system
in powers of 1/c:

φ = φ0 + c−1φ1 + c−2φ2 + ...

f = f0 + c−1f1 + c−2f2 + ...

Substituting these into (2.3) and comparing the terms of the same order we obtain

∆xφ0 = 0, ∆xφ1 = 0, (2.10)

−∂2
t φ0 + ∆xφ2 = 4πG∗κe7κφ0

∫
f0 dp. (2.11)

Assuming fields vanishing at infinity, (2.10) implies φ0 = φ1 = 0 and so (2.11) reduces
to (2.8) with the identification φ2 ∼ U, f0 ∼ f∞, provided that G∗κ = G. The latter
condition, which is necessary in order to obtain the correct Newtonian limit, shows
that the role of the scale invariance parameter κ is merely the one of fixing the units
of the corresponding theory. We shall henceforth set κ = G∗ = G = 1 for simplicity.

To put the above formal discussion in a more rigorous mathematical context, we
first rewrite the equations (2.3)–(2.6) with the “unphysical” particle density as in the
formulation of [4], namely

f(t, x, p) = e4φf̃(t, x, e−φp).
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In this frame, the unknown (f, φ) satisfies the equations (1.3)-(1.4). We supply this
system with initial data 0 ≤ f(0, x, p) = f in(x, p), φ(0, x) = φin

0 (x), ∂tφ(0, x) = φin
1 (x).

The following notation will be used. Given two functions g and h on R
n we write

g � h if the estimate g ≤ Dh holds for a non-negative constant D independent of
c ≥ 1. The constant D may also depend on the length of some time interval [0, T ], in
which case we write g � h for t ∈ [0, T ]. Furthermore we write

A = B + O(c−δ), δ ≥ 1,

if |A(y) −B(y)| � c−δ, ∀y ∈ R
n. We also set

Pc(t) = sup
0≤s<t

{|p| : (x, p) ∈ supp f(s)} + 1, (2.12)

where supp f(t) means the support of f(t, x, p) on (x, p) ∈ R
6 for each t.

Here are the main results of this paper:

Theorem 2.1. Initial data f in ∈ C1
c (R

6), φin
0 ∈ C3

b (R
3), φin

1 ∈ C2
b (R

3) launch a
unique classical solution (f, φ) ∈ C1([0, Tmax)×R

6)×C2([0, Tmax)×R
3) to the Cauchy

problem for the Nordström-Vlasov system (1.3)-(1.4) in a maximal interval of time
[0, Tmax). If Pc(Tmax) <∞, then Tmax = ∞, i.e., the solution is global.

Note that under the assumptions of Theorem 2.1 the local time of existence may
shrink to zero as the speed of light tends to +∞. To remove this possibility we specify
more restrictive initial data:

Theorem 2.2. Assume f in ∈ C3
c (R6) and φin

0 = c−2g�, φin
1 = c−2h�, where

g�(x) = −
∫∫

f in(y, p)
|y − x| dp dy, h� ∈ C2

c (R
3).

Corresponding to these data there exists a unique solution (f, φ) ∈ C1([0, T ) × R
6) ×

C2([0, T )×R
3) of (1.3)-(1.4) in an interval of time [0, T ) independent of c such that

Pc(T ) � 1.

Finally we give the conditions under which solutions to the Nordström-Vlasov
system converge in a pointwise sense to solutions of the Vlasov-Poisson system in the
non-relativistic limit.

Theorem 2.3. Let the data for the Nordström-Vlasov system be given as in Theorem
2.2 and assume that

(�) There exists a unique solution (f, φ) ∈ C1
(
[0, T ) × R

6
) × C2

(
[0, T ) × R

3
)

of
(1.3)-(1.4) in an interval [0, T ) ⊆ [0,+∞) independent of c and the estimate
Pc(T ′) � 1 holds for all 0 ≤ T ′ < T .

Denote by f∞ ∈ C1([0,∞)×R
6) the global solution of (2.7)–(2.9) with data f in, which

is known to exist by [19]. Then for every T ′ ∈ [0, T ) and t ∈ [0, T ′]:

∂tφ(t) = O(c−1), c2φ(t) = U(t) + O(c−1), c2∇xφ(t) = ∇xU(t) + O(c−1), (2.13)

f(t) = f∞(t) + O(c−1). (2.14)

In the notation of the spaces of functions used above, the subscript c indicates
that functions are compactly supported and b means that all the derivatives up to the
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indicated order are bounded. Theorem 2.1 will be proved as a corollary of Theorem
1 of [4] in the next section and Theorems 2.2 and 2.3 will be proved in Section 4.

To conclude this section, we remark that more general data for the field are allowed
in Theorems 2.2 and 2.3. For instance we may require that φin

0 = c−2g�+c−3g�, where
g� ∈ C3

b (R
3). This modifies our estimates only by terms which are of higher order in

powers of c−1, without affecting the general argument. In order to make the estimates
below more transparent, we take for simplicity g� ≡ 0.

3. Preliminaries and proof of Theorem 2.1
First note that the classical solution of (1.3) is

φ(t, x) = φhom(t, x) − 1
c2

∫
|y−x|≤ct

∫
f(t− c−1|y − x|, y, p)√

1 + c−2p2|y − x| dp dy

:= φhom(t, x) + ψ(t, x), (3.1)

where

φhom(t, x) = ∂t

( t

4π

∫
|ω|=1

φin
0 (x+ ctω) dω

)
+

t

4π

∫
|ω|=1

φin
1 (x+ ctω) dω (3.2)

is the solution of the homogeneous wave equation with data φin
0 and φin

1 and ψ the
solution of (1.3) with trivial data. We start with estimating the homogeneous part of
the field φ.

Lemma 3.1. Let the initial data for the field be given as in Theorems 2.2 and 2.3.
Then we have

‖φhom(t)‖∞ � c−1(1 + t).

Proof: By means of (3.2) and the assumptions on the data φin
0 and φin

1 we have

φhom(c−1t, x) =
1
c2

[
∂t

( t

4π

∫
|ω|=1

g�(x+ tω) dω
)

+
c−1t

4π

∫
|ω|=1

h�(x+ tω) dω

]
.

(3.3)
The term in the square brackets in (3.3) is estimated by D(1 + t) where

D := ‖g�‖∞ + ‖∇xg
�‖∞ + ‖h�‖∞.

Hence ‖φhom(c−1t)‖∞ � c−2(1 + t), which implies ‖φhom(t)‖∞ � c−1(1 + t). �

The following estimate is crucial for extending the argument of [25] to the Nord-
ström-Vlasov system.

Proposition 3.2. The distribution function f satisfies the estimate

‖f(t)‖∞ ≤ ‖f in‖∞ exp
[
4
(‖φhom(t)‖∞ + ‖φin

0 ‖∞
)]
.

In particular, for data as in Theorems 2.2 and 2.3, we have ‖f(t)‖∞ � e4Dt for all
t ∈ R.

Proof : Let (X,P )(s, t, x, p) denote the characteristics of (1.4) which satisfy the con-
dition (X,P )(t, t, x, p) = (x, p). In short, we use X(s) := X(s, t, x, p) and P (s) :=
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P (s, t, x, p) instead. Note that the function e−4φf is constant along these curves.
Hence the solution of (1.4) is given by

f(t, x, p) = f in(X(0), P (0)) exp
[
4φ(t, x) − 4φin(X(0))

]
= f in(X(0), P (0)) exp

[−4φin(X(0))
]
exp [4φhom(t, x)] exp [4ψ(t, x)] . (3.4)

Since ψ ≤ 0, then e4ψ ≤ 1 and the claim follows. �

Combining this result with the one in [4] we obtain the following.
Proof of Theorem 2.1: It is enough to prove the theorem for c = 1. For given a
solution (f, φ) of (1.3)-(1.4), then the solution obtained by the rescaling cf(c−1t, x, cp),
φ(c−1t, x) solves the system with c = 1. The claim has been proved in [4] under the
additional condition that Q(Tmax) <∞, where

Q(t) = sup
0≤s<t

{|φ(t, x)| : (x, p) ∈ suppf(s)}.

Now, assuming compact support in p for the distribution function, i.e., P1(Tmax) <∞,
it follows by Proposition 3.2 that the right hand side of (3.1) is bounded in L∞. Hence
φ itself is bounded and thus the condition Q(Tmax) <∞ is satisfied. The claim follows
by Theorem 1 of [4]. �

Next we derive the representation formulae for the first order derivatives of the
field as in [4], but for arbitrary values of c and also with all data terms specified.

One can see by the Vlasov equation (1.4) that

Sf = {(∂tφ)p+ c2(1 + c−2p2)−1/2∇xφ} · ∇pf + 4(Sφ)f.

From (3.1) we have

∂tφ(t, x) = ∂tφhom(t, x) − c−2t−1

∫
|y−x|=ct

∫
f in(y, p)√
1 + c−2p2

dp dSy

− c−2

∫
|y−x|≤ct

∫
∂tf(t− c−1|y − x|, y, p)√

1 + c−2p2|y − x| dp dy.

Now using the identity

∂tg(t− c−1|y − x|, y, p) = (1 + c−1ω · p̂)−1
{
(Sg)(t− c−1|y − x|, y, p)

− p̂ · ∇y[g(t− c−1|y − x|, y, p)]}
and integration by parts we achieve the following representation for ∂tφ.
Proposition 3.3.

∂tφ(t, x) = ∂tφhom(t, x)

− c−2t−1

∫
|y−x|=ct

∫
f in(y, p)

(1 + c−1ω · p̂)
√

1 + c−2p2
dp dSy

− c−2

∫
|y−x|≤ct

∫
aφt(ω, p)f(t− c−1|y − x|, y, p) dp dy

|y − x|2

− c−2

∫
|y−x|≤ct

∫
bφt(ω, p)(Sφ)f(t− c−1|y − x|, y, p) dp dy

|y − x|
− c−1

∫
|y−x|≤ct

∫
cφt(ω, p)(∇xφ)f(t− c−1|y − x|, y, p) dp dy

|y − x| ,
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where the kernels are

aφt(ω, p) = − p̂ · (ω + c−1p̂)

(1 + c−1ω · p̂)2
√

1 + c−2p2
,

bφt(ω, p) =
(ω + c−1p̂)2

(1 + c−1ω · p̂)2
√

1 + c−2p2
,

cφt(ω, p) =
ω + c−1p̂

(1 + c−1ω · p̂)2(1 + c−2p2)3/2

and ω = (y − x)/|y − x|.
The process to obtain the representation for ∇xφ is similar to the way for ∂tφ,

but now with the following identity:

∂yig(t− c−1|y − x|, y, p) = c−1ωi(1 + c−1ω · p̂)−1(Sg)(t− c−1|y − x|, y, p)

+
(
δik − c−1ωip̂k

1 + c−1ω · p̂
)
∂yk

[g(t− c−1|y − x|, y, p)], i = 1, 2, 3.

Proposition 3.4. The representation of ∂xiφ is

∂xiφ(t, x) = ∂xiφhom(t, x)

− c−3t−1

∫
|y−x|=ct

∫
ωi

(1 + c−1ω · p̂)
√

1 + c−2p2
f in(y, p) dp dSy

− c−3

∫
|y−x|≤ct

∫
aφxi (ω, p)f(t− c−1|y − x|, y, p) dp dy

|y − x|2

− c−3

∫
|y−x|≤ct

∫
bφxi (ω, p)(Sφ)f(t− c−1|y − x|, y, p) dp dy

|y − x|

− c−2

∫
|y−x|≤ct

∫
cφxi (ω, p)(∇xφ)f(t − c−1|y − x|, y, p) dp dy

|y − x| ,

where the kernels are

aφxi (ω, p) =
c(ω + c−1p̂)i − c−1(p̂ ∧ (ω ∧ p̂))i

(1 + c−1ω · p̂)2
√

1 + c−2p2
,

bφxi (ω, p) = ωib
φt ,

cφxi (ω, p) = ωic
φt .

4. Proof of Theorems 2.2 and 2.3
In this section we prove our main results. We shall frequently use Lemmas 1 and

2 of [25], which we state below for future reference.

Lemma 4.1. For all g ∈ C0
c (R3), we have

ξ

∫
|ω|=1

|g(x+ ξω)| dω � 1,

for ξ ≥ 0.



SIMONE CALOGERO AND HAYOUNG LEE 27

Lemma 4.2. Let h ∈ C2(R3) such that ∆h ∈ C0
c (R

3). Then for c > 0 and t ≥ 0,

∂t

(
t

∫
|ω|=1

h(x+ ctω) dω
)

= −
∫
|y−x|>ct

∆h(y)
|y − x| dy.

The next Lemma contains two simple estimates which are often used in the sequel.

Lemma 4.3.

(i) (1 + c−1ω · p̂)−1 � Pc(t)2, for (x, p) ∈ supp f(t)
(ii) f(t, x, p) = 0, for |x| ≥ R + Pc(t)t, where R := sup{|x| : (x, p) ∈ supp f in}.

Proof: By |p| ≤ Pc(t),

1 + c−1ω · p̂ ≥ 1 − |p|√
c2 + p2

=
c2√

c2 + p2
(√

c2 + p2 + |p|) ≥ c2

2
(
c2 + Pc(t)2

) ,
by which (i) follows. The property (ii) on the support of f follows by (3.4) and the
definition of characteristics. �

Proof of Theorem 2.2: From Proposition 3.4, we have

∂xiφ(t, x) = ∂xiφhom(t, x)

− c−3t−1

∫
|y−x|=ct

∫
ωi

(1 + c−1ω · p̂)
√

1 + c−2p2
f in(y, p) dp dSy

+ Ixi + IIxi + IIIxi , (4.1)

where

∂xiφhom(t, x) = c−2∂t

( t

4π

∫
|ω|=1

∂xig
�(x+ ctω) dω

)
+ c−2 t

4π

∫
|ω|=1

∂xih
�(x+ ctω) dω.

(4.2)
By the assumption h� ∈ C2

c (R
3), Lemma 4.1 gives∣∣∣∣∣c−2t

4π

∫
|ω|=1

∂xih
�(x+ ctω) dω

∣∣∣∣∣ � c−3.

For the first term in (4.2), using Lemma 4.2 and the identity ∆g� = 4π
∫
f in dp we

get

∂t

( t

4π

∫
|ω|=1

∂xig
�(x+ ctω) dω

)
= −∂xi

∫
|y−x|>ct

∫
f in(y, p)
|y − x| dp dy

= (ct)−1

∫
|y−x|=ct

∫
ωif

in(y, p) dp dSy

−
∫
|y−x|>ct

∫
ωif

in(y, p)
|y − x|2 dp dy.

The surface integral will be combined with the second term in (4.1). First note that,
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using (i) in Lemma 4.3 and |p̂| ≤ Pc(t),
∣∣∣∣∣1 − 1

(1 + c−1ω · p̂)
√

1 + c−2p2

∣∣∣∣∣
≤

∣∣∣∣∣1 − 1√
1 + c−2p2

∣∣∣∣∣ +

∣∣∣∣∣ 1√
1 + c−2p2

− 1

(1 + c−1ω · p̂)
√

1 + c−2p2

∣∣∣∣∣
� c−2Pc(t)2 +

1√
1 + c−2p2

[
c−1|ω · p̂|

(1 + c−1ω · p̂)
]

� c−1Pc(t)3. (4.3)

So we get

∣∣∣∣∣c−3t−1

∫
|y−x|=ct

∫
ωif

in(y, p) dp dSy

−c−3t−1

∫
|y−x|=ct

∫
ωif

in(y, p) dp dSy
(1 + c−1ω · p̂)

√
1 + c−2p2

∣∣∣∣∣
� c−3t−1

∫
|y−x|=ct

∫
c−1Pc(t)3|ωi|f in(y, p) dp dSy

� c−3Pc(t)3
(
ct

∫
|ω|=1

∫
f in(x+ ctω, p) dp dω

)
� c−3Pc(t)3.

Split the kernel in Ixi according to

ãφxi (ω, p) :=
p̂i − c−1

(
p̂ ∧ (ω ∧ p̂))

i

(1 + c−1ω · p̂)2
√

1 + c−2p2
= aφxi (ω, p) − c ωi

(1 + c−1ω · p̂)2
√

1 + c−2p2
.

By (i) in Lemma 4.3 one can see that |ãφxi | � Pc(t)5. Using Proposition 3.2 and (ii)
of Lemma 4.3 we obtain∣∣∣∣∣−c−3

∫
|y−x|≤ct

∫
ãφxi (ω, p)f(t− c−1|y − x|, y, p) dp dy

|y − x|2
∣∣∣∣∣

≤ c−3

∫
|y|≤R+Pc(t)t

∫
|p|≤Pc(t)

|ãφxi (ω, p)|f(t− c−1|y − x|, y, p) dp dy

|y − x|2

� c−3 sup
0≤τ≤t

‖f(τ)‖∞Pc(t)5
∫
|y|≤R+tPc(t)

∫
|p|≤Pc(t)

dp
dy

|y − x|2
� c−3Pc(t)9(1 + t) e4Dt.

A computation similar to (4.3) shows that

∣∣∣∣∣1 − 1
(1 + c−1ω · p̂)2

√
1 + c−2p2

∣∣∣∣∣ � c−1Pc(t)5.
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Hence∣∣∣∣∣c−2

∫
|y−x|≤ct

∫
ωif(t− c−1|y − x|, y, p) dp dy

|y − x|2

−c−2

∫
|y−x|≤ct

∫
ωi

(1 + c−1ω · p̂)2
√

1 + c−2p2
f(t− c−1|y − x|, y, p) dp dy

|y − x|2
∣∣∣∣∣

� c−2

∫
|y|≤R+Pc(t)t

∫
|p|≤Pc(t)

c−1Pc(t)5|ωi|f(t− c−1|y − x|, y, p) dp dy

|y − x|2
� c−3Pc(t)9(1 + t) e4Dt.

Combining the estimates obtained thus far we get∣∣∣∣∣∂xiφhom(t, x) − c−3t−1

∫
|y−x|=ct

∫
ωi

(1 + c−1ω · p̂)
√

1 + c−2p2
f in(y, p) dp dSy + Ixi

∣∣∣∣∣
�

∣∣∣∣−c−2

∫∫
ωif(max{0, t− c−1|y − x|}, y, p) dp dy

|y − x|2
∣∣∣∣ + c−3Pc(t)9e4Dt

� c−2Pc(t)3 sup
[0,t]

‖f(s)‖∞
∫
|y|≤R+Pc(t)t

dy

|y|2 + c−3Pc(t)9e4Dt

� c−2Pc(t)9(1 + t)e4Dt. (4.4)

Now we estimate IIxi and IIIxi . Again by (i) of Lemma 4.3 we obtain the bounds

|bφxi (ω, p)| � Pc(t)4, |cφxi (ω, p)| � Pc(t)4.

Let us define

Kc(t) = sup{c|∂tφ(t, x)| + c2|∇xφ(t, x)|, x ∈ R
3}.

Hence, using c|S(φ)| ≤ Kc(t), we get

|IIxi | � c−3Pc(t)4
∫ t

0

∫
|y−x|=c(t−τ)

∫
|p|≤Pc(τ)

f(τ, y, p)|y − x|−1Kc(τ) dp dSy dτ

� c−2Pc(t)7te4Dt
∫ t

0

Kc(τ)dτ.

IIIxi satisfies an identical estimate, since c2|∇xφ| ≤ Kc(t). Collecting the various
bounds we obtain

|∇xφ(t, x)| � c−2Pc(t)9(1 + t)e4Dt
(
1 +

∫ t

0

Kc(τ)dτ
)
. (4.5)

Now the estimate on the time derivative of the field. From Proposition 3.3 we
have

∂tφ(t, x) = ∂tφhom(t, x) − c−2t−1

∫
|y−x|=ct

∫
f in(y, p)

(1 + c−1ω · p̂)
√

1 + c−2p2
dp dSy

+ It + IIt + IIIt, (4.6)
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where

∂tφhom(t, x) =
1
c

[
∂t

(c−1t

4π

∫
|ω|=1

h�(x+ ctω) dω
)

+
ct

4π

∫
|ω|=1

∆g�(x+ ctω) dω

]
.

A direct application of Lemma 4.1 now gives ‖∂tφhom(t)‖∞ � c−1(1 + t). For the
second term of (4.6) we have

c−2t−1

∫
|y−x|=ct

∫
f in(y, p)

(1 + c−1ω · p̂)
√

1 + c−2p2
dp dSy

� c−1Pc(0)2
[
ct

∫
|ω|=1

∫
|p|≤Pc(0)

f in(x+ ctω, p)dp dω

]
� c−1.

In order to estimate the remaining terms in (4.6) we use the bounds

|aφt(ω, p)| � Pc(t)5, |bφt(ω, p)| � Pc(t)4, |cφt(ω, p)| � Pc(t)4.

The estimate for It follows:

|It| � c−2Pc(t)5
∫
|y−x|≤ct

∫
|p|≤Pc(t)

f(t− c−1|y − x|, y, p) dp dy

|y − x|2

� c−2Pc(t)8 sup
[0,t]

‖f(s)‖∞
∫
|y|≤R+Pc(t)t

dy

|y|2 � c−2Pc(t)9(1 + t)e4Dt.

Also

|IIt| � c−2Pc(t)4
∫ t

0

∫
|y−x|=c(t−τ)

∫
|p|≤Pc(τ)

f(τ, y, p)|y − x|−1Kc(τ) dp dSy dτ

� c−1Pc(t)7te4Dt
∫ t

0

Kc(τ)dτ.

IIIt satisfies an identical estimate, since c2|∇xφ| ≤ Kc(t). Collecting the various
bounds we obtain

|∂tφ(t, x)| � c−1Pc(t)9(1 + t)e4Dt
(
1 +

∫ t

0

Kc(τ) dτ
)
. (4.7)

Combining (4.7) and (4.5) entails

Kc(t) � Pc(t)9(1 + t)e4Dt
(
1 +

∫ t

0

Kc(τ)dτ
)
.

Hence by Gronwall’s inequality,

Kc(t) � Pc(t)9(1 + t)e4Dt exp
(
Pc(t)9(1 + t)2e4Dt

)
. (4.8)

Note that the characteristics (X,P )(s) of (1.4) with (X,P )(t) = (x, p) satisfies

dP

ds
= −(Sφ)(s,X)P − c2∇xφ(s,X)√

1 + P 2
.
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So

|p| � |P (0)| +
∫ t

0

Kc(τ)Pc(τ)dτ � Pc(0) − 1 +
∫ t

0

Kc(τ)Pc(τ)dτ. (4.9)

Therefore by (4.8) and the definition of Pc(t), (4.9) becomes

Pc(t) � 1 +
∫ t

0

(1 + τ)Pc(τ)10e4Dτ exp
(
Pc(τ)9(1 + τ)2e4Dτ

)
dτ. (4.10)

By Gronwall’s inequality, there exists an interval [0, T ) independent of c where Pc(t)
remains finite for all c ≥ 1, i.e., Pc(t) � 1. Using this estimate we can complete the
proof of Theorem 2.2. Let T cmax denote the maximal time of existence of a solution
of (1.3)-(1.4) and assume T cmax < T for some c ≥ 1. Since Pc(t) is an increasing
function of time, this implies Pc(T cmax) < ∞ and so, by Theorem 2.1, T cmax = ∞, a
contradiction. Hence, the solution is defined on the interval [0, T ) for all c ≥ 1.

Proof of Theorem 2.3: For brevity we omit stating that the estimates below are
valid for t ∈ [0, T ′]. The claim on ∂tφ follows directly by (4.7) and the assumption
Pc(t) � 1. Note also that, by (4.5), ∇xφ = O(c−2). We start with estimating φ. By
the assumption we made on φin

1 and Lemma 4.1, the second term in (3.2) becomes

t

4π

∫
|ω|=1

φin
1 (x+ ctω) dω = O(c−3). (4.11)

For the first term in (3.2), with the assumption on φin
0 , Lemma 4.2 and the fact that

∆g� = 4π
∫
f in dp, we get

∂t

( t

4π

∫
|ω|=1

φin
0 (x+ ctω) dω

)
= −(4π)−1c−2

∫
|y−x|>ct

∆g�(y)
|y − x| dy

= −c−2

∫
|y−x|>ct

∫
f in(y, p)
|y − x| dp dy. (4.12)

For ψ(t, x) in (3.1), first consider∣∣∣∣∣c−2

∫
|y−x|≤ct

∫
f(t− c−1|y − x|, y, p)

|y − x| − f(t− c−1|y − x|, y, p)√
1 + c−2p2|y − x| dp dy

∣∣∣∣∣
� c−2

∫
|y|≤R+Pc(t)t

∫
|p|≤Pc(t)

c−2f(t− c−1|y − x|, y, p) dp dy

|y − x| � c−4.

Then ψ becomes

ψ(t, x) = −c−2

∫
|y−x|≤ct

∫
f(t− c−1|y − x|, y, p) dp dy

|y − x| + O(c−4). (4.13)

So collecting (4.11), (4.12) and (4.13), we get

φ(t, x) = −c−2

∫
|y−x|≤ct

∫
f(t− c−1|y − x|, y, p) dp dy

|y − x|

− c−2

∫
|y−x|>ct

∫
f in(y, p)
|y − x| dp dy + O(c−3)

= −c−2

∫∫
f(max{0, t− c−1|y − x|}, y, p) dp dy

|y − x| + O(c−3). (4.14)



32 THE NORDSTRÖM-VLASOV SYSTEM

So using (2.8) and (4.14), now we estimate

|c2φ(t, x) − U(t, x)| =
∣∣∣∣O(c−1) +

∫∫
f∞(t, y, p) dp

dy

|y − x|
−

∫∫
f(max{0, t− c−1|y − x|}, y, p) dp dy

|y − x|
∣∣∣∣

�
∫∫ ∣∣∣f∞(max{0, t− c−1|y − x|}, y, p) − f∞(t, y, p)

∣∣∣ dp dy

|y − x|
+

∫∫ ∣∣∣f(max{0, t− c−1|y − x|}, y, p)

− f∞(max{0, t− c−1|y − x|}, y, p)
∣∣∣ dp dy

|y − x| + c−1.

(4.15)

Define

DF (t) := sup{|f(τ, x, p) − f∞(τ, x, p)| : τ ∈ [0, t], x ∈ R
3 and p ∈ R

3}.
Also define P∞(t) as the following

P∞(t) = sup
0≤s<t

{|p| : (x, p) ∈ supp f∞(s)} + 1.

Since (f∞, U) is a C1 solution of (2.7)–(2.9) and the initial data f∞ has compact
support, P∞ is well defined for all t ≥ 0. Note that ∂tf∞ is bounded on R

6 × [0, T ′].
Also let P(t) := Pc(t) + P∞(t). Then (4.15) becomes

|c2φ(t, x) − U(t, x)|

�
∫
|y|≤R+P(t)t

∫
|p|≤P(t)

∫ t

max{0,t−c−1|y−x|}
|∂tf∞(s, y, p)| ds dp dy

|y − x|
+

∫
|y|≤R+P(t)t

∫
|p|≤P(t)

DF (max{0, t− c−1|y − x|}) dp dy

|y − x| + c−1.

� DF (t) + c−1. (4.16)

Before estimating DF (t), let us look at ∇xφ. In the process of proving Theorem
2.2 we have also shown that

∂xiφhom − c−3t−1

∫
|y−x|=ct

∫
ωi

(1 + c−1ω · p̂)
√

1 + c−2p2
f in(y, p) dp dSy + Ixi

= −c−2

∫∫
ωif(max{0, t− c−1|y − x|}, y, p) dp dy

|y − x|2 + O(c−3), (4.17)

cf. (4.4). For IIxi in (4.1) we use S(φ) = O(c−1) and |bφxi | � Pc(t)4. Therefore

|IIxi | � c−3

∫
|y|≤R+Pc(t)t

∫
|p|≤Pc(t)

c−1f(t− c−1|y − x|, y, p) dp dy

|y − x| � c−4. (4.18)

The estimation of IIIxi is similar to the one of IIxi . Recall that |cφxi | � Pc(t)4
and ∇xφ = O(c−2). So we get

|IIIxi | � c−4. (4.19)
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Now collecting (4.17)–(4.19) we obtain

∂xiφ = −c−2

∫∫
(yi − xi)f(max{0, t− c−1|y − x|}, y, p) dp dy

|y − x|3 + O(c−3). (4.20)

By the similar argument in (4.16), with (2.8) and (4.20), we estimate

|c2∇xφ(t, x) −∇xU(t, x)|

=
∣∣∣∣O(c−1) +

∫∫
(y − x)f∞(t, y, p) dp

dy

|y − x|3

−
∫∫

(y − x)f(max{0, t− c−1|y − x|}, y, p) dp dy

|y − x|3
∣∣∣∣

�
∫
|y|≤R+P(t)t

∫
|p|≤P(t)

∫ t

max{0,t−c−1|y−x|}
|∂tf∞(s, y, p)| ds dp dy

|y − x|2

+
∫
|y|≤R+P(t)t

∫
|p|≤P(t)

DF (max{0, t− c−1|y − x|}) dp dy

|y − x|2 + c−1.

� DF (t) + c−1. (4.21)

To estimate DF (t), let us define Df := f − f∞. Then using the two Vlasov equations
(1.4) and (2.7), we obtain

∂tDf + p̂ · ∇xDf −
[
S(φ)p+

c2∇xφ√
1 + c−2p2

] · ∇pDf (4.22)

= (p− p̂) · ∇xf∞ +
[
S(φ)p+

c2∇xφ√
1 + c−2p2

−∇xU
] · ∇pf∞ + 4S(φ)(f∞ +Df ).

Note that |p− p̂| ≤ c−2Pc(t)3. Also note that ∇xf∞, ∇pf∞ and f∞ are bounded on
R

6 × [0, T ′]. Then with (4.21), (4.22) becomes∣∣∣∂tDf + p̂ · ∇xDf −
[
S(φ)p+

c2∇xφ√
1 + c−2p2

] · ∇pDf

∣∣∣
� c−1 + |c2∇xφ−∇xU | + c−1|Df | � DF (t) + c−1. (4.23)

Using the characteristics (X,P )(s) of (1.4) with (X,P )(t) = (x, p), compute∣∣∣ d
ds
Df(s,X(s), P (s))

∣∣∣ � DF (s) + c−1.

Note that Df(0, X(0), P (0)) = 0. Therefore integrating (4.23) we get

DF (t) �
∫ t

0

DF (s) ds+ c−1. (4.24)

So Gronwall’s inequality implies DF (t) � c−1, which gives (2.14). The proof of (2.13)
is completed by (4.16) and (4.21). This concludes the proof of Theorem 2.3.
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