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A HIGHER ORDER NUMERICAL METHOD FOR 3-D DOUBLY
PERIODIC ELECTROMAGNETIC SCATTERING PROBLEMS∗
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Abstract. We develop a method for 3D doubly periodic electromagnetic scattering. We adapt
the Müller integral equation formulation of Maxwell’s equations to the periodic problem, since it is
a Fredholm equation of the second kind. We use Ewald splitting to efficiently calculate the periodic
Green’s functions. The approach is to regularize the singular Green’s functions and to compute
integrals with a trapezoidal sum. Through asymptotic analysis near the singular point, we are able
to identify the largest part of the smoothing error and to subtract it out. The result is a method
that is third order in the grid spacing size. We present results for various scatterers, including a
test case for which exact solutions are known. The implemented method does indeed converge with
third order accuracy. We present results for which the method successfully resolves Wood’s anomaly
resonances in transmission.
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1. Introduction
We present an accurate numerical method for scattering of 3D electromagnetic

waves by doubly periodic structures. The method is an intuitively simple numerical
scheme based on a boundary integral formulation. This scheme involves smoothing
the singular Green’s functions in the integrands and finding correction terms to the
resulting smooth integrals. The analytical method is based on the singular integral
methods of J. Thomas Beale [4, 6, 5], while the scattering problem is motivated by the
work of Stephanos Venakides, Mansoor Haider, Stephen Shipman, and Andrew Barnes
[31, 17, 27, 26, 28, 3]. Periodic scattering problems are of interest to electrical engi-
neers and physicists who apply them to photonic crystal lattices [11, 24, 14, 18, 29].
The propagation of waves through such lattices is sensitive to the crystals’ geome-
try, their material properties, and on the nature of the incident waves. The recent
numerical and experimental discoveries of resonances in transmission have generated
interest in periodic electromagnetic scattering problems [12, 34, 15]. Much numeri-
cal work investigating these problems and resonances has been done in the 2D case
[31, 17, 27, 26], but less has been done in 3D. The problem was previously solved in 3D
by Barnes [3], who used a boundary element method to approximate solutions with
O (h) accuracy. Our method is more accurate. A higher order method is desirable
in order to investigate resonance peaks in transmission. Boundary integral methods
in periodic scattering problems must deal with two numerical issues: (1) The peri-
odic Green’s function is an infinite series that converges too slowly to be of practical
use, and (2) singularities in the integrals can cause low accuracy in basic numerical
schemes. Ewald summation for the Green’s functions is commonly used to overcome
the first of these obstacles. For us, it also leads to a natural regularization and cor-
rection technique, allowing for higher order approximation of the singular integrals.
Boundary integral methods in scattering problems are usually rather involved and use
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boundary elements [3, 24, 11, 33]. The method developed here is straightforward in
implementation. In solving these problems, we have used the Müller integral equation
formulation [20], since it is a Fredholm integral equation of the second kind and is well
posed. Müller derived his equations for the case of a compact scatterer. We outline
the derivation and adapt it to a periodic scatterer in Sec. 4. The Müller formulation
involves various singular integrals of surface currents. For each of these, we replace
the Green’s functions with regularized, but still periodic, counterparts. A smoothing
parameter δ controls the radius of the smoothing, and we set it to be the order of
the grid spacing h in size. The smoothing has a local effect like replacing a 1/r sin-
gularity with the smooth function erf (r/δ) /r. In Sec. 6, we perform a local analysis
of the singularity in order to identify the largest sources of error introduced by the
smoothing. The derivation involves transforming to principal directions using con-
cepts from differential geometry. The correction terms are necessarily invariant under
this transformation and depend on geometric properties of the scatterer such as the
mean curvature and the differential of the Gauss map. From this analysis, we derive
corrections which, when added to the smoothed integrals, reduce the smoothing error
to O

(
δ3
)
. Estimates exist that show the discretization error in numerically evaluating

these integrals is also small [5]. The scattering problem is exactly solvable for a flat
slab scatterer. This provides a test case for our method. Numerical results showing
excellent agreement for the test case are given in Sec. 8. Sec. 8 includes results on
various curved scatterers as well. In all cases, third order convergence is observed.
We also present results in which certain resonances known as Wood’s anomalies are
resolved very nicely. Wood’s anomalies have been observed experimentally [32, 34, 15]
and are present at certain frequencies at which singularities in the Green’s functions
exist. Our Wood’s anomaly resonances are unique from previously known anomalies
in that they occur near singularities of the interior Green’s function instead of the
exterior Green’s function.

2. Electromagnetic scattering. In a scattering experiment, an object called
the scatterer is introduced to a medium in which traveling electromagnetic waves of
frequency ω are present. The scatterer is a domain Ω in R3 whose electromagnetic
properties differ from those of the outside medium. The goal of the problem is to find
the resulting electric and magnetic fields (E and H, respectively) in all of R3.

The electric permittivity and magnetic permeability of materials are represented
respectively as ε and µ and have different values in Ω than in its complement ΩC .
In Ω we will call these εint and µint. In ΩC they will be εext and µext. The ratio
εint/εext is known as the dielectric contrast of the problem. Materials for which εint
is real-valued are known as lossless materials, and materials for which εint has an
imaginary part are called lossy. In keeping with current research [31, 17, 27], we will
take εext = µext = µint = 1 for the bulk of this paper. The method here presented,
however, is valid for general constants.

We assume t dependence of the form e−iωt in the fields. Then, Maxwell’s equations
reduce to the Helmholtz equation:

∆E + k2 (x) E = 0 ∆H + k2 (x) H = 0 (2.1)

for

k2 (x) =

{
k2
int = ω2εintµint for x ∈ Ω
k2
ext = ω2εextµext for x /∈ Ω

.
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We will distinguish various fields with subscripts. The fields Einc and Hinc are the
incident fields that would exist in the absence of the scatterer. Subscripts int and ext
refer respectively to the fields in and out of Ω. Fields Escatt and Hscatt are scattered
fields and are defined outside of Ω as Escatt = Eext−Einc and Hscatt = Hext−Hinc.

For our numerical method, the surface of the scatterer ∂Ω must be in C3. The
reasons for this will become clear in Sec. 6.

2.1. 3D doubly periodic scatterers. We will work in R3 and will use
scatterers Ω that are 2π periodic in the x and y directions and of finite thickness in
the z direction. Generalization to any period is not difficult.

Our method allows us to do all of our calculations on just one period in both x
and y of the scatterer. From this point on, we will let Ω and ∂Ω refer to just one
periodic block of the scatterer.

2.2. The scattering problem. Our problem is to solve (2.1) in the presence
of the scatterer. We require that boundary conditions of tangential continuity are
satisfied on ∂Ω:

n×Eext = n×Eint n×Hext = n×Hint (2.2)

where n is the outward unit normal to Ω. Our fields must also satisfy radiation con-
ditions, which ensure that the fields propagate and decay properly while maintaining
periodicity. As z → ±∞, we require the scattered fields to have the form

E =
∑
m,n

E±mne
−
√
−λmn|z|ei(m+α)x+i(n+β)y,

H =
∑
m,n

H±mne
−
√
−λmn|z|ei(m+α)x+i(n+β)y.

(2.3)

Throughout this paper, all sums of this form are from −∞ to ∞. Here λmn =
k2 − (m+ α)2 − (n+ β)2, and E±mn and H±mn are constant vectors. The constants α
and β depend on the fields’ angles of incidence and are defined in Sec. 2.4. These
radiation conditions specify large z behavior of the Fourier modes of the fields. The
negative sign in the exponentials ensures that the modes decay whenever Re

(√
−λmn

)
is nonzero. If, however, Re

(√
−λmn

)
= 0, we must choose the negative square root

instead of the principal square root so that the waves propagate in the correct direction
(from negative to positive z). That is, we must choose Im

(√
−λmn

)
< 0. We adopt

the same sign conventions for the modes of the Green’s function that will be introduced
in Sec. 3.

2.3. The incident wave. We will always take the incident wave to be a plane
wave propagating from the negative z to positive z direction. The direction of the
incident wave is given by the unit vector ~γ = (γ1, γ2, γ3). With azimuthal angle θ and
polar angle from the z-axis φ, ~γ isγ1

γ2

γ3

 =

cos θ sinφ
sin θ sinφ

cosφ

 ,

with 0 ≤ φ < π
2 . For a plane wave, the electric and magnetic fields are contained in

planes perpendicular to the direction of propagation ~γ. The directions of polarization

~uθ =
d~γ
dθ∣∣∣d~γdθ ∣∣∣ =

− sin θ
cos θ

0

 and ~uφ =
d~γ
dφ∣∣∣ d~γdφ ∣∣∣ =

cos θ cosφ
sin θ cosφ
− sinφ


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define these planes. The electric and magnetic fields must be linear combinations of
these two vectors. We call a field θ-polarized or φ-polarized if it is solely in the ~uθ or
~uφ direction, respectively. An incident plane wave satisfies

Einc (x, y, z) = eikext(γ1x+γ2y+γ3z) [a ~uθ + b ~uφ] = eikext~γ·x [a ~uθ + b ~uφ]

for constants a and b. The corresponding magnetic field is

Hinc (x, y, z) = eikext~γ·x [b ~uθ − a ~uφ] .

Often, we are interested in normally incident plane waves. A normally incident φ-
polarized electric field with a θ-polarized magnetic field have the form

E = eikext~γ·x ~uφ =

eikextz0
0

 H = eikext~γ·x ~uθ =

 0
eikextz

0

 . (2.4)

2.4. Pseudoperiodicity of the fields. Our incident fields are not quite
periodic. Since εext = µext = 1, the products kextγ1 and kextγ2 are real valued and
can be written as

kextγ1 = m̂+ α and kextγ2 = n̂+ β

for some integers m̂ and n̂ and some constants α, β ∈
(
− 1

2 ,
1
2

]
. The constants α and

β depend on kext and on the angles of incidence φ and θ. Since ~γ is a unit vector, we
can write γ3 in terms of α and β

γ3 =

√
k2
ext − (m̂+ α)2 − (n̂+ β)2

kext
.

Our electric field becomes

Einc (x, y, z) = ei(αx+βy)eim̂x+in̂y+i
√
k2
ext−(m̂+α)2−(n̂+β)2z

[
a~θ + b~φ

]
.

The function

ei(αx+βy)

is not necessarily 2π periodic in x and y. We will call it a phasor function. The incident
fields therefore are products of a phasor function and a doubly periodic function, and
we call them pseudoperiodic.

For normally incident fields, the constants α and β are both zero, and the fields
are periodic and not merely pseudoperiodic.

2.5. Transmission. A quantity of interest in scattering problems is the
transmission coefficient T . This is a comparison of the energy in the incident fields to
that in the total external fields far from the scatterer. The Poynting vector

S = Ē×H,

with Ē the complex conjugate of E, is a measurement of an electromagnetic field’s
energy flux [16]. For any surface F far from the scatterer Ω and normal to the incident
fields, we define the incident and transmitted energy flows by

Uinc =
∫
F

Re (Sinc (x) · n (x)) dS (x) Utran =
∫
F

Re (Sext (x) · n (x)) dS (x) ,
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where n is an outward unit normal to F . These flows are measures of the energy
passing through the surface F . The transmission coefficient is defined as

T =
√
Utran
Uinc

. (2.5)

In computing T , we take the surface F to be far enough from Ω that the decaying
modes of the field are negligible, so that only the propagating modes contribute to
the integrals.

Of particular interest in scattering problems are frequencies near which the trans-
mission coefficient changes dramatically. A sudden, sharp rise or fall in transmission
is a behavior known to occur near resonant frequencies — frequencies where the linear
system of integral equations is singular. Various resonances have been observed in
photonic crystals, both theoretically and experimentally [11, 14, 12, 18, 29, 26]. Our
periodic scatterers could model such crystals.

3. The Green’s functions

3.1. A pseudoperiodic Green’s function. A pseudoperiodic Green’s func-
tion for this problem must satisfy

∆G (x′ − x) + k2G (x′ − x) =

− δ (z′ − z) ei(α(x′−x)+β(y′−y))∑
µ,ν

δ (x′ − x+ 2πµ) δ (y′ − y + 2πν) (3.1)

where the sums over µ and ν are from −∞ to ∞ (we will use µ and ν for physical
periodic reflections and m and n for Fourier modes). The values of x and y may fall
within one period (0 ≤ x, y < 2π). The Green’s function can be written as a Fourier
series:

G (x′ − x) =
1

8π2

∑
m,n

e−
√
−λmn|z′−z|
√
−λmn

Pmn (3.2)

where Pmn = ei[(m+α)(x′−x)+(n+β)(y′−y)] and λmn = k2 − (m+ α)2 − (n+ β)2.

3.2. Properties of the Green’s function. Although it is not clear from its
appearance, this periodic Green’s function has the same 1/4πr singularity as the free
space Helmholtz Green’s function. The singularity in this function will be explored
more in Sec. 6.

The constant λmn = k2 − (m+ α)2 − (n+ β)2 is important and determines the
nature of each Fourier mode in the Green’s function. In general, k2 = ω2εµ is a
complex number with positive imaginary part. For z away from 0, each mode of the
Green’s function (3.2) is analytic in λmn for all λmn in the upper half complex plane
except for λmn = 0. Since λmn never has a negative imaginary part, we can take
the negative real axis as a branch cut for the square root function. We must use the
same sign conventions with

√
−λmn as in Sec. 2.2 in order to ensure proper decay

and propagation of the modes.
Much of the physical interest in scattering deals with lossless media where the

λmn are real-valued. In this case, there are a finite number of modes (including
m = n = 0) for which

√
−λmn is purely imaginary. These modes are known as

oscillating or propagating modes [31]. They occur for the finite number of integers
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m and n such that m2 + n2 < k2. The infinite number of other modes all decay as
z → ±∞ and are known as decaying modes.

At certain frequencies, it is possible that λmn = 0 for one mode, in which case
there is a singularity in the Green’s function (3.2). At such modes, the m,n term of
the summation takes another form with a linear term. Wood’s anomalies are a class
of transmission resonances that occur near these singular frequencies.

4. The Integral equations
The scattering problem can be rewritten as a system of integral equations on the

boundary ∂Ω, known as the Müller integral equations. These are a set of electromag-
netic integral equations which are Fredholm of the 2nd kind.

Müller derives the equations in [20] for a compact scatterer with the free-space
Helmholtz Green’s function. Since the singularities in the free-space and the periodic
Green’s functions are of the same nature, most of this derivation holds for our periodic
scatterer. We outline the derivation here, supplying the details wherever they differ
from the free-space case of [20].

Throughout this section, we will assume E and H are C1. Whenever E or H
appears without an argument in a surface integral, it will go unstated that the field
is evaluated at x. Whenever G appears without an argument, it will go unstated that
G is evaluated at (x′ − x).

4.1. Representation theorems. We begin with two representation theo-
rems. These were originally derived for a free-space Green’s function and a compact
scatterer in [30], and the proofs can be found there and in [20]. In these theorems, x′

is not on the boundary ∂Ω, and there are therefore no singularities in the integrals.

Theorem 4.1 (Interior Representation Theorem). Suppose E and H are pseu-
doperiodic solutions of Maxwell’s equations in the interior of our scatterer Ω. Then
for x′ in the interior of Ω

E (x′) =
∫
∂Ω

[−iωµ (n×H)G− (n×E)×∇G− (n ·E)∇G] dS (x) ,

H (x′) =
∫
∂Ω

[iωε (n×E)G− (n×H)×∇G− (n ·H)∇G] dS (x) .

Here n is the outward unit normal vector at x. For x′ in the exterior of Ω, both
integrals above are 0.

The adaptation of the proof of this theorem to our periodic geometry is straight-
forward, since the singularities in the Green’s function are the same. It is provided in
[3].

We will now state and prove an exterior analogue to the interior representation
theorem. The proof of this theorem differs from that of the non-periodic scatterer,
and it merits inclusion. It was first proved in [21].

Theorem 4.2 (Exterior Representation Theorem). Suppose E and H are pseu-
doperiodic solutions of Maxwell’s equations in the exterior of our scatterer Ω. Suppose
also that the radiation conditions (2.3) hold. Then for x′ in the exterior of Ω

E (x′) =
∫
∂Ω

[iωµ (n×H)G+ (n×E)×∇G+ (n ·E)∇G] dS (x) ,

H (x′) =
∫
∂Ω

[−iωε (n×E)G+ (n×H)×∇G+ (n ·H)∇G] dS (x) .
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For x′ in the interior of Ω, both integrals above equal 0.

Proof. We let x′ = (x′, y′, z′). Let S be the square cylinder given by one periodic
block of space, S = {x : 0 ≤ x, y ≤ 2π}. Choose M large enough that the planes
z = ±M bound Ω and |z′| < M . Let ΩM be the set of points in the exterior of Ω
such that |z| ≤M . This region is bounded by ∂Ω, |z| = M , and ∂S. Now, apply the
Interior Representation Thm. 4.1 to the region ΩM . We have, if x′ ∈ ΩM ,

E (x′) =
∫
∂ΩM

[−iωµ (ñ×H)G− (ñ×E)×∇G− (ñ ·E)∇G] dS (x) ,

H (x′) =
∫
∂ΩM

[iωε (ñ×E)G− (ñ×H)×∇G− (ñ ·H)∇G] dS (x) .
(4.1)

The vector ñ is the outward unit normal to ∂ΩM . If x′ ∈ Ω, by Thm. 4.1 both
integrals in (4.1) are zero. We will break the integrals (4.1) into three boundary
integrals. We will proceed here only with the E integral. The proof for the H integral
is identical.

E (x′) =
∫
∂Ω

[iωµ (n×H)G+ (n×E)×∇G+ (n ·E)∇G] dS (x)

+
∫
∂S∩∂ΩM

[−iωµ (ñ×H)G− (ñ×E)×∇G− (ñ ·E)∇G] dS (x)

+
∫
|z|=M

[−iωµ (ñ×H)G− (ñ×E)×∇G− (ñ ·E)∇G] dS (x) . (4.2)

We use n to denote the outward unit normal on ∂Ω, which is opposite in direction
to the outward normal ñ of ∂ΩM . This accounts for the change in sign in the ∂Ω
integral above.

We will show that the second of these integrals (4.2) is zero. The pseudoperi-
odic part of E is eiαx+iβy, while that of the Green’s function (or its derivatives) is
eiα(x′−x)+iβ(y′−y). In a product of E with G (or a derivative of G), the x and y
dependence of these phasors will cancel out. The integrand is therefore periodic. On
opposite sides of ∂S, the ∂S ∩ ∂ΩM integrals cancel due to this periodicity and the
fact that the normal vectors on opposite sides of ∂S point in opposite directions. The
second integral of (4.2) is therefore zero.

We will show that the integral over z = M of (4.2) approaches 0 as M → ∞.
The z = −M integral can be shown to approach 0 using the same reasoning. In the
integrand, we substitute iωµ (ñ×H) = ñ× (∇×E) from Maxwell’s equations:∫

z=M

[−ñ× (∇×E)G− (ñ×E)×∇G− (ñ ·E)∇G] dS (x) .

Here ñ = (0, 0, 1), and we expand the integrand:GE1,z − E1Gz −GE3,x − E3Gx
GE2,z − E2Gz −GE3,y − E3Gy

E1Gx + E2Gy − E3Gz

 (4.3)

where E1, E2, and E3 denote the x, y, and z components of E, respectively. We will
first deal with the term (GE1,z − E1Gz). As M →∞, we can represent the fields by
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the radiation conditions (2.3). With (3.2) for G, we can write∫
z=M

(G (x′ − x)E1,z (x)− E1 (x)Gz (x′ − x)) dS (x)

=
1

8π2

∫ 2π

0

∫ 2π

0

(∑
m,n

ei(m+α)(x′−x)+i(n+β)(y′−y) e
−
√
−λmn|z′−M|
√
−λmn

)

×

∑
m′,n′

E+
1,m′n′e

i(m′+α)x+i(n′+β)y√−λm′n′e−√−λm′n′M
 dxdy

− 1
8π2

∫ 2π

0

∫ 2π

0

(∑
m,n

ei(m+α)(x′−x)+i(n+β)(y′−y)e−
√
−λmn|z′−M|

)

×

∑
m′,n′

E+
1,m′n′e

i(m′+α)x+i(n′+β)ye−
√
−λm′n′M

 dxdy. (4.4)

Each term in either integrand of (4.4) is of the form∫ 2π

0

∫ 2π

0

Cei(m+α)(x′−x)+i(n+β)(y′−y)ei(m
′+α)x+i(n′+β)ydxdy

for some constant C. Rearranging and canceling α and β, we see that most of these
terms are 0: ∫ 2π

0

∫ 2π

0

Cei(m+α)x′+i(n+β)y′ei(m
′−m)x+i(n′−n)ydxdy

= 4π2Cei(m+α)x′+i(n+β)y′δm−m′δn−n′ .

The non-zero terms of the integrands in (4.4) are those for which m′ = m and n′ = n,
and (4.4) reduces to∫

z=M

(G (x′ − x)E1,z (x)− E1 (x)Gz (x′ − x)) dS (x)

=
ei(m+α)x′+i(n+β)y′

8π2

∫ 2π

0

∫ 2π

0

(∑
m,n

e−
√
−λmn|z′−M|
√
−λmn

E+
1,mn

√
−λmne−

√
−λmnM

)
dxdy

−e
i(m+α)x′+i(n+β)y′

8π2

∫ 2π

0

∫ 2π

0

(∑
m,n

e−
√
−λmn|z′−M|E+

1,mne
−
√
−λmnM

)
dxdy. (4.5)

which clearly sums to 0.
The terms GE2,z −E2Gz, −GE3,x −E3Gx , and −GE3,y −E3Gy in (4.3) can all

be shown in the same way to integrate to 0 as M →∞. There is a sign change from
the derivative of the Green’s function that makes this possible. We are left with the
term E1Gx + E2Gy − E3Gz, which we first integrate by parts:∫

z=M

E1Gx + E2Gy − E3Gzdxdy =
∫
z=M

−E1,xG− E2,yG+ E3Gzdxdy. (4.6)

The boundary from the integration by parts is zero due to the periodicity of the
integrand. Now, since E is divergence free, −E1,xG − E2,yG = −E3,zG, and (4.6)
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becomes ∫
z=M

E3Gz − E3,zGdxdy.

This integral can be shown to approach 0 in the same way that the integral (4.4) does.
The other surface integrals of (4.2) have been shown to be zero as M →∞, and

we are left with our result for E

E (x′) =
∫
∂Ω

[iωµ (n×H)G+ (n×E)×∇G+ (n ·E)∇G] dS (x) .

As stated, the proof for H follows the same steps.

4.2. Surface currents and charges. We do not work directly with E
and H on the surface ∂Ω. The integral equations are instead in terms of tangential
components of the fields known as surface currents j and j′:

j = −n×H j′ = n×E. (4.7)

These surface currents are also known as the traces of the fields on ∂Ω. We also define
the surface charges ρ and ρ′.

iωρ = ∇s · j iωρ′ = ∇s · j′.

Here ∇s· is the surface divergence as defined in [20, page 157].
We will restate Thms. 4.1 and 4.2 in terms of j and j′. To do this, we need the

relations

n ·E = −ρ/ε n ·H = −ρ′/ε

which are proved in [20, page 159].
The integrals of the interior representation theorem become:

E (x′) =
∫
∂Ω

[
iωµj (x)G− j′ (x)×∇G+

ρ (x)
ε
∇G

]
dS (x) ,

H (x′) =
∫
∂Ω

[
iωεj′ (x)G+ j (x)×∇G+

ρ′ (x)
µ
∇G

]
dS (x) ,

(4.8)

and the integrals of the exterior representation theorem are

E (x′) =
∫
∂Ω

[
−iωµj (x)G+ j′ (x)×∇G− ρ (x)

ε
∇G

]
dS (x) ,

H (x′) =
∫
∂Ω

[
−iωεj′ (x)G− j (x)×∇G− ρ′ (x)

µ
∇G

]
dS (x) .

(4.9)

4.3. Jump conditions. We will investigate the limits of various integrals
as x′ approaches ∂Ω from the interior and exterior along a normal direction. The
results of this section depend heavily on the singularity of the Green’s function. Since
the singularities in the periodic problem are the same as those in the non-periodic
problem, we will not include the proofs here and will instead refer the reader to the
proofs in [20, pages 202-205].
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Proposition 4.3. For a tangential surface vector j continuous on ∂Ω, the integral∫
∂Ω

j (x)G (x′ − x) dS (x)

is continuous for all x′.

We will adopt the notation of [20] and define∫
int→∂Ω

G (x′ − x) dS (x) = lim
y→x′

∫
∂Ω

G (y − x) dS (x)

where the limit on the right hand side is taken as y → x′ for y in the interior of Ω
along a direction normal to ∂Ω at x′ ∈ ∂Ω. We define

∫
ext→∂Ω

similarly for y along
an exterior normal.

Proposition 4.4. For our surface charges ρ as defined, and for all x′ ∈ ∂Ω, the
integral ∫

∂Ω

n (x′)× ρ (x)∇G (x′ − x) dS (x) (4.10)

is well-defined as a principal value integral, and

n (x′)×
∫
int→∂Ω

ρ (x)∇G (x′ − x) dS (x) = n (x′)×
∫
ext→∂Ω

ρ (x)∇G (x′ − x) dS (x) .

(4.11)

We will use the integral (4.10) to denote either of the limits of (4.11).
Proposition 4.5. For x′ ∈ ∂Ω and j a continuous surface vector field on ∂Ω, the
integral ∫

∂Ω

n (x′)× [j (x)×∇G] dS (x)

is absolutely integrable, and

n (x′)×
∫
int→∂Ω

j (x)×∇GdS (x) = −1
2
j (x′) +

∫
∂Ω

n (x′)× [j (x)×∇G] dS (x) ,

n (x′)×
∫
ext→∂Ω

j (x)×∇GdS (x) = +
1
2
j (x′) +

∫
∂Ω

n (x′)× [j (x)×∇G] dS (x) .

4.4. The field equations. We will apply the results of Sec. 4.3 to the
interior and exterior representation theorems for the interior fields Eint and Hint, the
scattered fields Escatt and Hscatt, and the incident fields Einc and Hinc.

4.4.1. Interior fields. Let y lie in the interior of Ω, and let x′ ∈ ∂Ω. We take
the cross product of n (x′) with each side of the equations of the interior representation
Thm. (4.8). We then take the limit as y→ x′ along the interior normal. Then, using
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all of the propositions of Sec. 4.3 and combining the j (x′) terms, we have

1
2
j′int (x′) =

∫
∂Ω

iωµint [n (x′)× jint (x)]GintdS (x)

−
∫
∂Ω

n (x′)×
[
j′int (x)×∇Gint

]
dS (x)

+
1
εint

∫
∂Ω

n (x′)× ρint (x)∇GintdS (x) ,

−1
2
jint (x′) =

∫
∂Ω

iωεint [n (x′)× j′int (x)]GintdS (x)

+
∫
∂Ω

n (x′)×
[
jint (x)×∇Gint

]
dS (x)

+
1
µint

∫
∂Ω

n (x′)× ρ′int (x)∇GintdS (x) . (4.12)

4.4.2. Scattered fields. Let y lie in the exterior of Ω, and let x′ ∈ ∂Ω.
We take the cross product of n (x′) with each side of the equations of the exterior
representation Thm. (4.9) for the scattered fields. We then take the limit as y → x′

along the exterior normal. Then, the propositions of Sec. 4.3 give us

1
2
j′scatt (x′) = −

∫
∂Ω

iωµext [n (x′)× jscatt (x)]GextdS (x)

+
∫
∂Ω

n (x′)×
[
j′scatt (x)×∇Gext

]
dS (x)

− 1
εext

∫
∂Ω

n (x′)× ρscatt (x)∇GextdS (x) ,

−1
2
jscatt (x′) = −

∫
∂Ω

iωεext [n (x′)× j′scatt (x)]GextdS (x)

−
∫
∂Ω

n (x′)×
[
jscatt (x)×∇Gext

]
dS (x)

− 1
µext

∫
∂Ω

n (x′)× ρ′scatt (x)∇GextdS (x) . (4.13)

4.4.3. Incident fields. The incident fields are, by definition, the fields that
would exist in the absence of the scatterer. In other words, they are the fields that
would exist if ε = εext and µ = µext everywhere. The interior representation formulas
(4.8) are valid for the incident fields with these constants and with the Green’s function
Gext. We do not use the exterior representation theorem for the incident fields because
this theorem depends on the radiation conditions, and the incident fields do not
necessarily satisfy these conditions.

Let y lie in the interior of Ω, and let x′ ∈ ∂Ω. Apply the interior representation
Thm. (4.8) to the incident fields (but with the exterior constants and Green’s func-
tion). We take the cross product of n (x′) with each side of the resulting equations.
We then take the limit as y → x′ along the interior normal. Then, the propositions
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of Sec. 4.3 give us

1
2
j′inc (x′) =

∫
∂Ω

iωµext [n (x′)× jinc (x)]GextdS (x)

−
∫
∂Ω

n (x′)×
[
j′inc (x)×∇Gext

]
dS (x)

+
1
εext

∫
∂Ω

n (x′)× ρinc (x)∇GextdS (x) ,

−1
2
jinc (x′) =

∫
∂Ω

iωεext [n (x′)× j′inc (x)]GextdS (x)

+
∫
∂Ω

n (x′)×
[
jinc (x)×∇Gext

]
dS (x)

+
1
µext

∫
∂Ω

n (x′)× ρ′inc (x)∇GextdS (x) . (4.14)

4.4.4. Matching conditions. In terms of the surface currents, the boundary
conditions of tangential continuity at ∂Ω are:

jscatt = jint − jinc and j′scatt = j′int − j′inc.

We add Equ. (4.12) to (4.13) and substitute these boundary conditions for the scat-
tered currents on both sides. Some of the resulting integrals (those involving jinc) are
the same as the integrals in the incident Equs. (4.14). We can substitute the left hand
side of (4.14) for these integrals, and we get the Müller equations. Before stating the
equations, we make one change. Two of the integrals involve the surface divergence
of a surface current. In order to make these integrals more manageable, we replace
them as in the following proposition, which is proved in [20, page 300]:

Proposition 4.6. With all quantities as previously defined∫
∂Ω

n (x′)× ρ (x)∇
(
Gext −Gint

)
dS (x)

=
∫
∂Ω

n (x′)×
[
(j (x) · ∇)∇

(
Gext −Gint

)]
dS (x) .

4.5. The Müller integral equations. We rearrange a few constants and
make the substitutions of Prop. 4.6 to obtain the Müller equations in their final form
[20, page 319]:

jinc (x′) =
µint + µext

2µext
jint (x′)

− 1
µext

∫
∂Ω

n (x′)×
[
jint (x)×∇

(
µextG

ext − µintGint
)]
dS (x)

− i

µextω

∫
∂Ω

[n (x′)× j′int (x)]
(
k2
extG

ext − k2
intG

int
)
dS (x)

− i

µextω

∫
∂Ω

n (x′)×
[
(j′int (x) · ∇)∇

(
Gext −Gint

)]
dS (x) ,

j′inc (x′) =
εint + εext

2εext
j′int (x′)
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− 1
εext

∫
∂Ω

n (x′)×
[
j′int (x)×∇

(
εextG

ext − εintGint
)]
dS (x)

− i

εextω

∫
∂Ω

[n (x′)× jint (x)]
(
k2
extG

ext − k2
intG

int
)
dS (x)

− i

εextω

∫
∂Ω

n (x′)×
[
(jint (x) · ∇)∇

(
Gext −Gint

)]
dS (x) . (4.15)

The Müller equations are a coupled system of integral equations. The incident currents
jinc and j′inc are known. This system of integral equations can be solved for the interior
surface currents jint and j′int.

Once we have the interior surface currents, we can use the interior and exterior
representation theorems to find the scattered and the interior electric and magnetic
fields:

Eint
`
x′
´

=

Z
∂Ω

»
iωµintjint (x)Gint − j′int (x)×∇Gint +

1

εint
(j (x) · ∇)∇Gint

–
dS (x)

Hint

`
x′
´

=

Z
∂Ω

»
iωεintj

′
int (x)Gint + jint (x)×∇Gint +

1

µint

`
j′ (x) · ∇

´
∇Gint

–
dS (x)

Escatt
`
x′
´

= −
Z
∂Ω

»
iωµextjint (x)Gext − j′int (x)×∇Gext +

1

εext
(j (x) · ∇)∇Gext

–
dS (x)

Hscatt

`
x′
´

= −
Z
∂Ω

»
iωεextj

′
int (x)Gext + jint (x)×∇Gext +

1

µext

`
j′ (x) · ∇

´
∇Gext

–
dS (x) .

(4.16)

4.6. Singularities in the integral equations. Since the Green’s functions
have singularities at x = 0, the Müller equations include some convergent improper
integrals. The integrals:∫

∂Ω

[n (x′)× j (x)]
(
k2
extG

ext − k2
intG

int
)
dS (x) (4.17)

and ∫
∂Ω

n (x′)×
[
j (x)×∇

(
εextG

ext − εintGint
)]
dS (x) (4.18)

are both singular integrals. The first of these, (4.17), is a single layer potential. The
second, (4.18), contains something like a double layer potential as well as another
type of singular integral. These will be investigated more in Sec. 6. The other
integrals that appear in the Müller equations are not singular, as the singularities are
subtracted out in the difference Gext −Gint.

5. Ewald splitting
The numerical solution of the Müller Equs (4.15) will require many evaluations

of the Green’s function and its derivatives. There are two numerical difficulties asso-
ciated with the Green’s function (3.2). First, this function converges so slowly when
z is small that it unusable computationally. Second, the singularity in the Green’s
function is difficult to analyze and to work with. We will deal with the first problem
in this section and with the second in Sec. 6.

We use Ewald summation to accelerate computations of the Green’s function.
The method splits the Green’s function into two parts which each converge more
quickly than the Fourier series (3.2) representation. This method was first presented
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in [13]. Our 3D use of the technique mirrors the 2D approach of [17] and [23]. We
write the Green’s function in two parts:

G (x′ − x) = G1 (x′ − x) +G2 (x′ − x) ,

with

G1 (x′ − x) =
1

8π3/2

∑
µ,ν

e−2πi(αµ+βν)
∞∑
`=0

k2`E2`−1

`!
ExpInt`+1/2

(
R2
µν

4E2

)
,

G2 (x′ − x) =
1

8π5/2

∑
m,n

Pmn

∞∑
`=0

(−1)` (z′ − z)2`

4``!E2`−1
ExpInt`+1/2

(
−λmnE2

)
,

(5.1)

where E is a parameter that we are free to choose, known as the Ewald splitting
parameter. Here, ExpIntn are exponential integral equations of order n (see Appendix
A), R2

µν = (x′ − x− 2πµ)2 + (y′ − y − 2πν)2 + (z − z′)2, and Pmn and λmn are as
previously defined. Note that G1 consists of sums of periodic reflections while the G2
sums are over Fourier modes. The singularity is entirely contained in G1, and G2 is
smooth. If E is chosen well, the sums in G1 and G2 have much better convergence
properties than those in (3.2), since exponential integral functions of any order decay
exponentially. Convergence in both G1 and G2 is better for small k.

There is a trade off in the selection of the splitting parameter E. If E is large,
G2 converges quickly, but G1 converges slowly. If E is small, the opposite occurs. We
have found it easy to experimentally determine a choice for E. More information can
be found in [8] and [9].

Recall that in order to satisfy the radiation conditions (2.3), we choose the neg-
ative square root in (3.2) whenever Re

√
−λmn = 0. When evaluating G2 we do this

by choosing the negative square root in the evaluation of the exponential integral
functions (see A).

6. Smoothing and correction
Two types of integrals that appear in the integral Equs. (4.15) are singular

integrals. The singularities introduce errors in basic numerical integration techniques
that are on the order of the step size. The other integrals in Müller’s equations are
smooth and pose no problems numerically. Our method for dealing with the singular
integrals involves smoothing the integrand and then adding a correction term to the
resulting integral. These types of methods were first developed by Beale in [4] for
problems in periodic water waves. They have been furthered in [5] and [6].

The analysis of this section is for a general C3 surface ∂Ω. This condition allows
us to take the necessary Taylor expansions of functions on the surface.

It is not immediately clear how to regularize the pseudoperiodic Green’s function

(3.2). Multiplying by a smoothing function 1 − e−
r2

δ2 as in [4, 5, 6] may remove the
singularity, but it also destroys periodicity. It is not clear how to pick a smoothing
function for this G that is also periodic.

The Ewald formulation of the Green’s function fortunately provides a clear way
to achieve smoothing. The singularity in G is entirely contained in the G1 summation
(5.1) Rµν → 0. We use a slightly different representation of G1, however, to develop
a straightforward smoothing of the Green’s function. Written in this way,

G1 (x′ − x) =
1

8π3/2

∑
µ,ν

e−2πi(αµ+βν)

∫ E2

0

ek
2t−

R2
µν
4t

t3/2
dt,
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we can see that the singularity is located at the zero endpoint of integration of the dt
integral as r = |x′ − x| → 0. If we just cut this singularity out by integrating from
some small function of δ instead of from zero, we obtain a G1δ that is smooth:

G1δ (x′ − x) =
1

8π3/2

∑
µ,ν

e−2πi(αµ+βν)

∫ E2

δ2

ek
2t−

R2
µν
4t

t3/2
dt. (6.1)

This smoothed Green’s function is not singular at r = 0, and it quickly approaches
G1 as r increases (see Fig. 6.1). It is also still periodic. Our strategy is therefore
to replace G with Gδ in any of the singular integrals that appear in the Müller in-
tegral equations (introducing a smoothing error), to evaluate these integrals using
a trapezoid method (accurately, since the integrands are now smooth), and to add
correction terms to compensate for the smoothing error introduced. The error intro-
duced through discretization of the smoothed integrals will be discussed at the end of
this section (see Sec. 6.1).

G
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Fig. 6.1. G1 and G1δ on the same axes. The left plot is with δ = 0.01. On the right, δ = .001.
Both are for normally incident light. E = 0.5 and k = 0.3.

The Müller integral equations contain two types of singular integrals (see Sec.
4.6). One is a vector-valued single layer potential, and the other contains a double
layer potential and another singular integral. We will state smoothing and correction
results for each of these.

Proposition 6.1. With G, Gδ, and ∂Ω as defined, and with x′ ∈ ∂Ω,∫
∂Ω

[n (x′)× f (x)]G (x′ − x) dS (x) =
∫
∂Ω

[n (x′)× f (x)]Gδ (x′ − x) dS (x)

+
n (x′)× f (x′)√

π
δ +O

(
δ3
)
.

(6.2)

Proposition 6.2. With G, Gδ, and ∂Ω as defined, with x′ ∈ ∂Ω, with H the mean
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curvature of the surface ∂Ω, and with DN the differential of the Gauss map of ∂Ω,∫
∂Ω

n (x′)× [f (x)×∇G (x′ − x)] dS (x)

=
∫
∂Ω

n (x′)× [f (x)×∇Gδ (x′ − x)] dS (x)

−H (x′) +DNx′√
π

f (x′) δ +O
(
δ3
)
. (6.3)

Appendix B outlines the proof of these two propositions.

6.1. Discretization error. Since the integrands are periodic, we evaluate
our integrals numerically with the trapezoid rule. This discretization of the integrals
introduces another error. In [5], it is shown that an analogous discretization error is
small as long as δ is larger than the grid spacing h = 2π

N and the geometry is well
represented by the grid. We therefore have reason to believe that the discretization
error is small, a belief that is consistent with our results (see Sec. 8).

6.2. The corrected Müller integral equations. We present in summary
the correction results of this section as they appear in the integral Equs. (4.15):

jinc (x′) =
µint + µext

2µext
jint (x′)

− 1
µext

∫
∂Ω

n (x′)×
[
jint (x)×∇

(
µextG

ext
δ − µintGintδ

)]
dS (x)

+
(µext − µint)
µext
√
π

(H (x′) +DNx′) jint (x′) δ

− i

µextω

∫
∂Ω

[n (x′)× j′int (x)]
(
k2
extG

ext
δ − k2

intG
int
δ

)
dS (x)

−
i
(
k2
ext − k2

int

)
µextω

√
π

(n (x′)× j′int (x′)) δ

− i

µextω

∫
∂Ω

n (x′)×
[
(j′int (x) · ∇)∇

(
Gext −Gint

)]
dS (x)

+O
(
δ3
)
,

j′inc (x′) =
εint + εext

2εext
j′int (x′)

− 1
εext

∫
∂Ω

n (x′)×
[
j′int (x)×∇

(
εextG

ext
δ − εintGintδ

)]
dS (x)

+
(εext − εint)
εext
√
π

(H (x′) +DNx′) j′int (x′) δ

− i

εextω

∫
∂Ω

[n (x′)× jint (x)]
(
k2
extG

ext
δ − k2

intG
int
δ

)
dS (x)

−
i
(
k2
ext − k2

int

)
εextω

√
π

(n (x′)× jint (x′)) δ

− i

εextω

∫
∂Ω

n (x′)×
[
(jint (x) · ∇)∇

(
Gext −Gint

)]
dS (x)

+O
(
δ3
)
.

(6.4)
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The constantH (x′) and the matrix vector productDNx′j can be evaluated as outlined
in [10].

7. Implementation
For numerical ease, we have only implemented the method of this section on

surfaces that are graphs - surfaces where z is a function of x and y. We have also only
implemented the method with normally incident light.

There are some details in the numerical implementation of our solution to the
scattering problem that need to be mentioned.

7.1. Special functions. Computing the Green’s functions requires the evalu-
ation of many exponential integrals. These can be evaluated according to the iterative
relationships described in Appendix A. Thus, computation of the exponential integral
of any order will require evaluation of the complex complementary error function erfc.
We have implemented the algorithm of [25] for this purpose.

7.2. Evaluating the smoothed Green’s functions. The smoothed Green’s
function introduced in Sec. 6 must be written in in terms of exponential integral
functions for implementation:

G1δ (x′ − x) =
1

8π3/2

∑
µ,ν

e−2πi(αµ+βν)

×
∞∑
`=0

k2`

`!

(
E2`−1 ExpInt`+1/2

(
R2
µν

4E2

)
− δ2`−1 ExpInt`+1/2

(
R2
µν

4δ2

))
.

(7.1)

We can thus compute Gδ and can similarly compute all of the needed derivatives of
the Green’s function.

We must be able to evaluate Gδ at the point x′ − x = 0. This is, of course,
straightforward for the smooth G2 part of the Green’s function. The G1δ, however,
requires some work. We cannot evaluate (7.1) at x′ − x = 0 since ExpInt 1

2
(0) is not

defined. Only the µ = ν = 0 term is problematic, and we can find this term exactly
using the representation of (6.1) and integrating:

1
8π3/2

∫ E2

δ2

ek
2t

t3/2
dt =

1
4π3/2

(
ek

2δ2

δ
− ek

2E2

E

)
+
ki

4π
[erfc (iEk)− erfc (iδk)] .

The remaining terms (those for µ and ν other than µ = ν = 0) can be computed as in
(7.1). For most of the needed derivatives of Gδ, the µ = ν = 0 term in the summation
will be 0 when evaluated at x′ − x = 0. However, in the second derivatives Gδxx ,
Gδyy , and Gδzz , there is a nonzero contribution. We will illustrate with an integral
that appears in Gδxx (0), which we can again integrate exactly:

− 1
16π3/2

∫ E2

δ2

ek
2t

t5/2
dt = − 1

24π3/2

((
1 + 2k2δ2

)
ek

2δ2

δ3
−
(
1 + 2k2E2

)
ek

2E2

E3

)

+− k
3i

12π
[erfc (iEk)− erfc (iδk)] .

This integral also appears in Gδyy (0) and Gδzz (0). The other terms in these second
derivatives can be computed through exponential integral functions as in (7.1).
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7.3. Size. The drawback to using integral equations methods in scattering is
that they lead to large, dense linear systems. Although our system is well-posed, it
can become too large for practical computing purposes. With our scatterer described
by an N × N grid in x and y, we must solve a complex-valued 12N2 × 12N2 linear
system.

7.4. Acceleration techniques. There are various ways in which we can
improve the speed of the numerical approximations. For surfaces defined by z =
f(x, y), the G2 sums over m and n can be computed with FTTs and stored. This leads
to considerable savings, and it allows us to use a smaller Ewald splitting parameter E
to also accelerate the G1 sums (see Sec. 5). We precompute and store many quantities
from the Green’s functions that are used repeatedly, and this also is a valuable time
saver. There is, of course, a natural symmetry in the Green’s functions that can
be exploited since G (x− x′) = G (x′ − x). Finally, we have employed cubic-spline
interpolation to approximate values of the exponential integral functions ExpIntn (x).
This interpolation requires little storage, and it leads to a less expensive evaluation
of ExpIntn (x). We have found it to be worthwhile.

7.5. GMRES. We have implemented the generalized minimal residual method
(GMRES) since it does not require storage of the full 144N4 entry matrix. We have
found that the number of iterations required is influenced by both the geometry of
the scatterer and the presence or absence of resonances in the scatterer (see Sec. 8
for details). Still, in worst cases, seldom are more than 100 iterations needed for
convergence within our tolerance of 10−4 using the convergence criteria of [19].

We have implemented a restarted GMRES, but the restarts tended to slow conver-
gence dramatically. Standard preconditioning matrices are known to be unsuccessful
in electromagnetic scattering problems in general, and preconditioning is considered
an open problem in this field [22]. Most preconditioning strategies that have been
implemented are to be used in conjunction with fast summation methods [7].

Following [2], we know that the linear system is well-conditioned except possibly
near frequencies that are eigenvalues. From the 2D work of [26] and [27], we have
reason to believe that the eigenvalues of the system have small imaginary parts. The
resonances that we observe and discuss in Chapter 8 are believed to occur for real
frequencies near these complex eigenvalues. We would therefore expect the linear
system to have higher condition numbers near the resonances. This is precisely what
has been observed (see Fig. 8.3), as the system requires more GMRES iterations at
frequencies near resonances.

8. Results
We have implemented the numerical scattering problem as described with various

geometries and under various conditions. Here we outline some of the results. In all
cases, we have observed convergence that appears to be third order in the grid size
h = 2π

N .

8.1. Integrals on curved surfaces. A large part of this paper is the method
of smoothing and correcting singular integrals developed in Sec. 6. In order to test
our method independent of the integral equation and the scattering problem, we have
evaluated all of Müller’s integrals on the surface defined by

F1 (x, y) = C cos2
(x

2

)
sin2

(y
2

)
and F2 (x, y) = L− C cos2

(x
2

)
sin2

(y
2

)
.

(8.1)
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point (x′, y′) slp ratio R dlp ratio R
(0, 0) 8.05 7.63
(π, π) 7.99 7.89(
π
2 ,

π
2

)
7.94 7.60(

π
8 ,

π
4

)
8.22 7.40(

5π
8 ,

7π
4

)
7.97 7.82(

π
2 ,

3π
4

)
7.79 7.90

Table 8.1. Table of Results for Single and Double Layer Potentials on a Smooth Dimpled Surface.

The results presented here are for L = 2 and C = 1
5 . We call this surface the smoothed,

dimpled scatterer.
We perform the smoothing and correction method for both a single and a double

layer potential with the density function φ (x) = cos (x) cos (y). We have evaluated
each at various points x′ over the surface (8.1). The smoothed Green’s functions were
integrated, and the correction terms were added to the sums. The integrals were
evaluated with the Trapezoid Rule with N = 64, N = 128, and N = 256. A sample
of typical results are reported here in Table 8.1. The values reported are the ratios

R =
I (4h)− I (2h)
I (2h)− I (h)

.

A ratio close to 8 would be consistent with third-order convergence. The results in
the table are a small sample of typical results for wave numbers k in the range k = 0.8
to k = 1.8 and smoothing parameters δ in the range δ = h to δ = 3h.

We have found similar convergence results for all of the integrals needed in
Müller’s integral equations. Without correction terms, the ratios for the singular
integrals are very close to 2, indicating first order convergence. We have found similar
convergence results for each of the other scatterers described below.

8.2. A flat slab scattering problem. We can use a flat slab geometry with
normally incident fields as a test case, since an exact analytical solution is known.
For this problem, with Einc = (eikz, 0, 0), the transmission coefficient is

T (ω) = 4θ

√
1

(1 + θ)4 + (1− θ)4 − 2 (1− θ2)2 cos
(

2ωL
θ

)
where θ =

√
1/εint. See [21] for a derivation of this result.

8.3. Results in the flat slab test case. We have implemented the numerical
scattering experiment for the flat slab scatterer with various physical and numerical
parameters. In all cases, the agreement is excellent. We present the results for
εint = 5 and N = 32 in Fig. 8.1, where we see extremely good agreement. Fig. 8.1
also includes results for the scattering experiment when the correction terms in the
integral equations are omitted. The difference is striking and illustrates the effect of
the corrections. We have done approximations with N as low as 16, and even such a
coarse grid gives very good results for the test case.

Fig. 8.2 gives results for εint = 15. This is a more difficult case, since the frequency
is higher and convergence of the Green’s functions is therefore slower. The results
are still very good. We have also approximated transmission coefficients for lossy
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Fig. 8.1. The flat slab test case. On the left are the numerical approximations with corrections.
On the right, the corrections have been omitted. N=32. ε = 5. δ = h.

scatterers - scatterers where εint has an imaginary part. The results for εint = 15+0.5i
are also in Fig. 8.2.

Fig. 8.2. Two more results for the flat slab test case. On the left are results for a higher
dielectric contrast ε = 15. On the right are results for a lossy scatterer ε = 15 + 0.5i. For each,
N = 32. δ = h.

8.4. Smooth dimpled scatterer. Results for the smooth, dimpled scatterer
(8.1) with L = π are in Fig. 8.3. We note interesting behavior at some frequencies,
most notably a sharp dip in transmission around ω = 0.57. In general for our results,
the interesting features in transmission occur at frequencies for which a λmn mode of
the Green’s function is close to zero. This behavior is not unexpected and is related to
the Wood’s anomaly (see Sec. 3.2). Fig. 8.3 shows the number of GMRES iterations
required to solve the linear system at each frequency. It is clear that iterations increase
with frequency, and it appears that more iterations are required for frequencies near
resonances (see Sec. 7.5). We observe third order convergence in these results.

8.5. Corrugated roof surface. The most interesting surface that we have
experimented with thus far is the corrugated roof surface:

F1 (x, y) = C sin2
(x

2

)
and F2 (x, y) = L− C sin2

(x
2

)
. (8.2)

This is basically a 2D dimple, as the surface has no y dependence. The results for
C = 1

5 and L = π are seen in Fig. 8.4, where we see the interesting behavior of the
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Fig. 8.3. On the left are transmission coefficients for the smooth dimpled scatterer. On the
right are the number of GMRES iterations required for each frequency. ε = 15. N = 32. δ = h.

corrugated roof scatterer. There are two clear resonances in our evaluated frequency
range. One is centered near ω = 0.37 and the other near ω = 0.58. Once again
these resonances are examples of Wood’s anomaly (3.2). Wood’s anomalies have been
observed in scattering experiments where λextmn is near 0 [34, 15]. Here, we observe it
for frequencies where λintmn is near 0. Such an internal Wood’s anomaly has previously
been unknown. The resonance centered at ω = 0.37 is particularly interesting, since
there is a transmission spike up to full transmission.

Fig. 8.4. Transmission coefficients for the corrugated roof scatterer. On the right we have
zoomed in for a closer look at the ω = 0.37 resonance. ε = 15. N = 32. δ = h.

8.6. Discussion of results. The results are promising. We see very good
agreement with an exact test case, and we see third order convergence for most fre-
quencies on curved surfaces. We have seen also that the method is capable of re-
solving such interesting physical phenomena as transmission resonances. Comparing
with results from a first order method [3], we can see the advantage of being able to
approximate with O

(
h3
)

accuracy.

Appendix A. Exponential integral functions.
The exponential integral of order n is defined as

ExpIntn (x) =
∫ ∞

1

e−xt

tn
dt (A.1)
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for Re (x) > 0. The exponential integral functions that appear in our Green’s functions
are all of half integer orders of at least − 1

2 . The following facts allow us to compute
all needed exponential integral functions:

ExpInt 1
2

(x) =
√
π

x
erfc

(√
x
)

ExpInt− 1
2

(x) =
1
x

[
ExpInt 1

2
(x) + e−x

]
ExpIntn+1 (x) =

1
n

[
e−x − xExpIntn (x)

]
d

dx
[ExpIntn (x)] = −ExpIntn−1 (x) .

(A.2)

We see that all of the exponential integral functions we need are related to the com-
plementary error function erfc and to square root functions.

For order n ≤ 1, exponential integral functions are singular as x→ 0. For n > 1,
ExpIntn (x) is finite at x = 0. By looking at (A.2), we can see the exact nature of the
singularities that we will encounter.

ExpInt 1
2

(x)→
√
π

x
as x→ 0

ExpInt− 1
2

(x)→
√
π

x3/2
as x→ 0.

The exponential integral function of any order decays quickly as Re (()x) in-
creases. This decay ensures quick convergence of the Green’s function terms after
Ewald splitting (see Sec. 5). For x > 1 and for any half integer n ≥ − 1

2 , we have

ExpIntn (x) ≤ 2e−x

x
.

Appendix B. Derivation of correction terms. We will derive the correction
term for a smoothed double layer potential. The other corrections of Sec. 6 can be
found in a similar manner. We are interested in investigating the error ε introduced
by replacing the Green’s function G with the regularized Green’s function Gδ in a
double layer potential when the reference variable x′ is on the surface. We are able
to identify and quantify the largest part of this error and use it as a correction to the
smoothed integral. These derivations first appeared in [21].

The derivation of the correction term involves some ideas from classical differential
geometry. In particular, certain changes of variables are used to simplify various
expressions. The corrections can be derived without such simplifications, and such a
derivation is outlined in [21].

Proposition B.1 (The Double Layer Potential). With G, Gδ, and ∂Ω as defined,
with x′ ∈ ∂Ω, and with H the mean curvature of the surface ∂Ω,∫

∂Ω

[n (x) · ∇G (x′ − x)] f (x) dS (x) =
∫
∂Ω

[n (x) · ∇Gδ (x′ − x)] f (x) dS (x)

+
f (x′)H (x′)√

π
δ +O

(
δ3
)
.
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Proof. The error is the difference between the two integrals

ε =
∫
∂Ω

n (x) · [∇ (G (x′ − x)−Gδ (x′ − x))] f (x) dS (x) .

Without loss of generality, we take x′ = 0. The error becomes:

ε =
1

8π3/2

∫
∂Ω

∑
µ,ν

∫ δ2

0

n (x) · ∇

ek2t−
R2
µν
4t

t3/2

 dt

 f (x) dS (x) .

The error decays very quickly as Rµν increases. For this reason, we need only include
the µ = ν = 0 term in the double sum. We are left with

ε = − 1
16π3/2

∫ δ2

0

ek
2t

t5/2

(∫
∂Ω

[n (x) · x] e−
r2
4t f (x) dS (x)

)
dt.

Again, the error is highly concentrated around the singular point r = |x| = 0. The
contribution to the error away from the singularity is negligible. We can perform the
surface integral on only a small set of ∂Ω including r = 0 and still find the leading
order term of the error. We let D be an open set in R2 with coordinates α = (α1, α2)
such that α can be smoothly (at least C3) mapped from D onto an open set in ∂Ω.
Then x ∈ ∂Ω becomes x (α). We choose this coordinate patch so that x (0) = 0. The
error can now be written as an integral in α over D, which we extend (without adding
meaningful error) to an integral over all of R2:

ε = − 1
16π3/2

∫ δ2

0

ek
2t

t5/2

(∫
R2

[n (α) · x (α)] e−
r(α)2

4t f (α)
∣∣∣∣ ∂x
∂α1

× ∂x
∂α2

∣∣∣∣ dα) dt.
As outlined in [1] and [5], we can choose (rotating and translating as necessary)
coordinates α so that the Christoffel symbols are zero at x = 0. We then make
a linear change of variables so that the tangential vectors Tj = ∂x

∂αj
point in the

directions of principal curvature of the surface and the metric tensor is the identity at
x = 0. We call these vectors the principal directions. We then have an orthonormal
coordinate system (T1 (0) ,T2 (0) ,n0). The error integral becomes:

ε = − 1
16π3/2

∫ δ2

0

ek
2t

t5/2

(∫
R2

[n (α) · x (α)] e−
r(α)2

4t f (α) |T1 ×T2| dα
)
dt.

Following [1] and [5], we expand x (α) and n (α) in Taylor series around α = 0. What
makes the new coordinate system nice is that there is no α1α2 term among the second
order terms:

x (α) = T1(0)α1 + T2(0)α2 +
1
2
κ1n0α

2
1 +

1
2
κ2n0α

2
2 +O

(
|α|3

)
n (α) = n0 − κ1T1α1 − κ2T2α2 +O

(
|α|2

)
,

where κ1 and κ2 are the principal curvatures at x′ = 0. Then

r2 = x (α) · x (α) = |α|2 +O
(
|α|4

)
(B.1)

and

x (α) · n (α) = −1
2
κ1α

2
1 −

1
2
κ2α

2
2 +O

(
|α|3

)
. (B.2)
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Here (and throughout this section), we make use of the inequality α2
j ≤ |α|

2.
We now perform a change of variables α → ξ such that |ξ|2 = r2 and ξi/|ξ| =

αi/|α|. This change is essential to our analysis. Without it, there are quickly changing
high order terms in the exponential as t→ 0. The substitution eliminates these terms
from the exponential while allowing ξ to have the same direction as α. From (B.1)

|ξ|2 = |α|2 +O
(
|α|4

)
and thus

|ξ| = |α|
√

1 +O (|α|2) = |α|+O
(
|α|3

)
.

Since O
(
|α|3

)
= O

(
|ξ|3
)

we have

|α| = |ξ|+O
(
|ξ|3
)

and then

αi = ξi +O
(
|ξ|3
)
. (B.3)

The error is now

ε = − 1
16π3/2

∫ δ2

0

ek
2t

t5/2

(∫
R2

[n (ξ) · x (ξ)] e−
|ξ|2
4t f (ξ) det (∂α/∂ξ) |T1 ×T2| dξ

)
dt.

The dot product in the integrand above becomes

x · n (x) = −1
2
κ1ξ

2
1 −

1
2
κ2ξ

2
2 +O

(
|ξ|3
)
. (B.4)

We expand f (ξ):

f (ξ) = f (0) + fj (0) ξj + fij (0) ξiξj +O
(
|ξ|3
)

with the terms being summed over i and j. Using (B.3), we see that:

det (∂α/∂ξ) = 1 +O
(
|ξ|2
)
.

Since Tj (α) = ∂x
∂αj

, we have

|T1 ×T2| = 1 +O(|ξ|2).

The integrand of the dξ integral becomes:

e−
|ξ|2
4t

(
−1

2
κ1ξ

2
1f (0)− 1

2
κ2ξ

2
2f (0) +R (ξ)

)
,

where, by the Taylor series remainder theorem, the remainder function R (ξ) has the
form

R (ξ) = C1ξ
3
1 + C2ξ

3
2 + C3ξ

2
1ξ2 + C4ξ1ξ

2
2

for constants C1, C2, C3, and C4. Each of these terms, however, is odd and will
integrate to zero. The remainder function must really be O

(
|ξ|4
)

R (ξ) = C1ξ
4
1 + C2ξ

4
2 + C3ξ

3
1ξ2 + C4ξ1ξ

3
2 + C5ξ

2
1ξ

2
2 .
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The C3ξ
3
1ξ2 and C4ξ1ξ

3
2 terms are odd in ξi and will also integrate to zero, and

we drop them. We make the change of variables ξ = δζ. We write the remainder
function as R (ξ) = δ4

(
C1ζ

4
1 + C2ζ

4
2 + C5ζ

2
1ζ

2
2

)
= δ4R̃ (ζ). The error is now

ε =
δ4

16π3/2

∫ δ2

0

ek
2t

t5/2

(∫
R2
e−

δ2|ζ|2
4t

(
1
2
κ1ζ

2
1f (0) +

1
2
κ2ζ

2
2f (0) + δ2R̃ (ζ)

)
dζ

)
dt

=
f (0) δ4

32π3/2

∫ δ2

0

ek
2t

t5/2

(∫
R2

(
κ1ζ

2
1 + κ2ζ

2
2

)
e−

δ2|ζ|2
4t dζ

)
dt+ IR̃.

We will change to polar coordinates. Let |ζ| = s, ζ1 = s cos θ, and ζ2 = s sin θ:

ε =
f (0) (κ1 + κ2) δ4

32π1/2

∫ δ2

0

ek
2t

t5/2

(∫ ∞
0

s3e−
δ2s2
4t ds

)
dt+ IR̃

=
f (0) (κ1 + κ2)

4π1/2

∫ δ2

0

ek
2t

t1/2
dt+ IR̃

=
f (0)H (0)

π1/2
δ +O

(
δ3
)

+ IR̃

where H = κ1+κ2
2 is the mean curvature of the surface.

We examine the R̃ integral, IR̃, in the same way and obtain:

IR̃ = − δ6

16π3/2

∫ δ2

0

ek
2t

t5/2

(∫
R2

(
C1ζ

4
1 + C2ζ

4
2 + C5ζ

2
1ζ

2
2

)
e−

δ2|ζ|2
4t dζ

)
dt = O

(
δ3
)
.

(B.5)
We now have the result

ε =
f (0)H (0)

π1/2
δ +O

(
δ3
)
.
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