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ANALYSIS OF OPTIMAL BOUNDARY CONTROL FOR RADIATIVE

HEAT TRANSFER MODELED BY THE SP1-SYSTEM∗

RENÉ PINNAU†

Abstract. We present an analytic study of an optimal boundary control problem for the dif-
fusive SP1-system modeling radiative heat transfer. The cost functional is of tracking-type and the
control problem is considered as a constrained optimization problem, where the constraint is given
by the nonlinear parabolic/elliptic SP1-system. We prove the existence, uniqueness and regularity of
bounded states, which allows for the introduction of the reduced cost functional. Further, we show
the existence of an optimal control, derive the first-order optimality system and analyze the adjoint
system, for which we prove existence, uniqueness and regularity of adjoint states.
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1. Introduction

In many industrial high temperature processes and applications radiative heat
transfer plays a dominant role, e.g., simulation of gas turbine combustion chambers,
combustion in car engines or cooling of a hot glass melt [2]. The appropriate model
is given by the radiative heat transfer equations, which are of high numerical com-
plexity. Hence, during the last decade much research was focused on the derivation
of approximate models allowing for an accurate description of the important physical
phenomena at reasonable numerical costs. Nowadays, a whole hierarchy of approxi-
mating equations is available, ranging from half space moment approximations over
full space moment systems to the diffusive-type SPN -systems [5, 9, 14]. Naturally,
one is not only interested in the correct simulation of the physical system but also
wants to improve processes or operation conditions, which leads directly to optimiza-
tion problems. During the last years the increased computing power in combination
with the usage of the approximate models has allowed for the numerical treatment
of such large-scale optimization problems. In particular, optimal boundary control
problems for the SP1-system yielded encouraging results and were successfully em-
ployed for many applications [20, 12, 15, 11]. Nevertheless, the mathematical analysis
of this optimal boundary control problem is still open. The purpose of this paper is
to provide a mathematically sound basis.

In order to model radiative heat transfer we consider for notational simplicity a
frequency-independent, gray model without scattering. Stated on a bounded spatial
domain Ω⊂R

d, d=1,2, or 3, the scaled equations read [9]:

ε2∂tT =ε2div(k∇T )−

∫

Sd−1

κ(aT 4−I) dω (1.1a)

∀ω∈Sd−1 : εω ·∇I =κ(aT 4−I), (1.1b)

where Sd−1 denotes the unit sphere in R
d. To get a well-posed problem we prescribe

the following boundary conditions: Ingoing radiation is prescribed by transparent
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boundary conditions

I(t,x,ω)=au4, n ·ω <0, x∈∂Ω, (1.1c)

and the temperature is assumed to obey Robin-type boundary conditions representing
Newton’s cooling law

n ·∇T =
h

εk
(u−T ), x∈∂Ω. (1.1d)

At initial time t=0, the temperature is T (0,x)=T0(x). In these equations, I(t,x,ω)
denotes the specific radiation intensity at point x∈Ω traveling in direction ω∈Sd−1

at time t≥0. The outside radiation Ib =au4 is assumed to be known for the ingoing
directions (i.e., n ·ω <0) on the boundary. We denote the outward normal on ∂Ω
by n. Furthermore, T (t,x) denotes the material temperature and u is the exterior
temperature on the boundary, acting as the control variable. The equations contain
the parameters opacity κ, heat conductivity k and convective heat transfer coefficient
h, which are assumed to be positive constants. The scaled optical thickness is denoted
by ε. For notational convenience the constant a is introduced, which is related to the
Stefan-Boltzmann constant via a=σ/π. Note that the total thermal radiation is
B(T )=aT 4 according to Stefan’s law.

Since this model has a high dimensional phase space due to the dependence on
the direction ω∈Sd−1, its numerical complexity is much too high for optimization
purposes, where the nonlinear state system has to be solved several times. Here, we
use instead the diffusion-type SPN -approximations [6, 9] to the radiative heat transfer
equations. These approximations were developed recently and tested extensively for
various radiative transfer problems, where they proved to be sufficiently accurate [16].

The SP1-approximation to the radiative heat transfer equations is given by the
system

∂tT =k∆T +
1

3κ
∆ρ, (1.2a)

0=−ε2 1

3κ
∆ρ+κρ−κ4πa|T |

3
T, (1.2b)

with boundary conditions

n ·∇T =
h

εk
(u−T ), (1.2c)

n ·∇ρ=
3κ

2ε
(4πa|u|

3
u−ρ), (1.2d)

and supplemented with an initial condition T (0,x)=T0(x) for the temperature. Here,
ρ is the radiative flux, and the prescribed temperature at the boundary is denoted by
u.

Remark 1.1. Note that the radiative flux for the full model (1.1b) is given by ρ=
∫

Sd−1 I dω. Further, we replaced for mathematical reasons the nonlinear function z4

by |z|
3
z to ensure its monotonicity also for negative data. For positive data they

clearly coincide.

In [12] an optimal boundary control problem is introduced and studied numer-
ically. There, cost functionals of tracking-type for different norms are considered,
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e.g.

J(T,u)=
1

2
‖T −Td‖

2
L2(0,1;L2(Ω)) +

δ

2
‖u−ud‖

2
H1(0,1;R) , (1.3)

where (T,ρ) solves (1.2). Here, Td =Td(t,x) is a specified temperature profile and
ud =ud(t) is a given control of the ambient temperature, which shall be improved.
Furthermore, the positive constant δ allows to adjust the weight of the penalty term.
The main subject of the analysis in this paper is the following boundary control
problem

min J(T,u) w.r.t. (T,ρ,u), (1.4)

subject to system (1.2).

This optimal control problem can be considered as a constrained optimization
problem and the adjoint variables can be used for the construction of a suitable
numerical algorithm [12]. In this paper we provide the analysis for this approach. We
prove the existence of an optimal control u and show the unique solvability of the
state system, which is essential for the introduction of the reduced cost functional.
Then, the unique solvability of the linearized state system is shown and the adjoint
equations are identified.

The paper is organized as follows. In Section 2 we study the state system, prove
its unique solvability and derive a priori estimates. The existence of an optimal control
is shown in Section 3. Further, Section 4 is devoted to the linearized state system.
We prove its unique solvability and some regularity estimates. Finally, we investigate
the adjoint equations in Section 5 and give concluding remarks in Section 6.

1.1. Notation and auxiliary results. We use the standard notation
for Sobolev spaces (see [1]), denoting the norm of Wm,p(Ω) (m∈N,p∈ [1,∞]) by
‖·‖W m,p(Ω). In the special case p=2 we use Hm(Ω) instead of Wm,2(Ω). Further,

let Hm
0 (Ω) be the closure of C∞

0 (Ω) with respect to the Hm(Ω)-norm. Its dual space
(Hm

0 (Ω))
∗

is denoted by H−m(Ω). The duality pairing of a Banach space X with
its dual space X∗ is given by 〈·,·〉X∗,X . For a Hilbert space H the inner product is

denoted by (·,·)H ; if H =L2(0,1;L2(Ω)) we just write (·,·). Moreover, for any Banach
space B we define the space Lp(0,1;B) with p∈ [1,∞] consisting of all measurable
functions ϕ : (0,1)→B for which the norm

‖ϕ‖Lp(0,1;B)
def
=

(∫ 1

0

‖ϕ(t)‖
p
B dt

)1/p

, p∈ [1,∞),

‖ϕ‖L∞(0,1;B)
def
= sup

t∈(0,1)

‖ϕ(t)‖B , p=∞,

is finite. If the time interval is clear we write shortly ‖·‖Lp(B).

Remark 1.2. Clearly, one can define these spaces on arbitrary time intervals. But
due to scaling we assume that the equations are posed on the unit time interval.

For notational convenience we define

Q
def
= (0,1)×Ω, Σ

def
= (0,1)×∂Ω,

V
def
= L2(0,1;H1(Ω)), U

def
= H1(0,1;R),

W
def
= {φ∈V :φt ∈V ∗} , X

def
= W ×V, Z

def
= V ×V ×L2(Ω).
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Then, we define X∞
def
= X∩ [L∞(Q)]2 as the space of states x

def
= (T,ρ), and U is the

space of controls. Finally, we set α= h
εk , γ = 3κ

2ε .

Remark 1.3. The space W is a Banach space if supplied with the norm ‖φ‖W =
‖φ‖V +‖φt‖V ∗ . Note that in one-dimensional space we have X∞ =X. Later, we
identify the dual Z∗ of Z with V ∗×V ∗×L2(Ω).

For the subsequent considerations we impose the following assumptions:

A.1 Let Ω⊂R
d, d=1,2, or 3, be a bounded domain with Lipschitz boundary.

A.2 There exists a constant K =K(Ω)∈ (0,∞) such that for all f ∈L2(Ω) we have
a solution Ψ∈H2(Ω) of

−
ε2

3κ
∆Ψ+κΨ=f in Ω,

n ·∇Ψ+γΨ=0 on ∂Ω,

such that

‖Ψ‖H2(Ω)≤K ‖f‖L2(Ω) .

Remark 1.4. Assumption A.2 is essentially a requirement on the smoothness of ∂Ω,
which is e.g. fulfilled for ∂Ω∈C1,δ for some δ∈ (0,1) (see [21]).

1.2. The optimal control problem. In this subsection we give the
precise mathematical statement of the optimal control problem (1.4). We define

the state/control pair (x,u)∈X∞×U and the nonlinear operator e
def
= (e1,e2,e3) :

X∞×U →Z∗ via

〈e1(x,u),φ〉V ∗,V
def
= 〈∂tT,φ〉V ∗,V +k(∇T,∇φ)L2(Q) +

1

3κ
(∇ρ,∇φ)L2(Q)

+kα(T −u,φ)L2(Σ) +
1

3κ
γ(ρ−4πa|u|

3
u,φ)L2(Σ) (1.5a)

and

〈e2(x,u),φ〉V ∗,V
def
=

ε2

3κ
(∇ρ,∇φ)L2(Q) +κ(ρ−4πκa |T |

3
T,φ)L2(Q)

+
ε2

3κ
γ(ρ−4πa|u|

3
u,φ)L2(Σ) (1.5b)

for all φ∈V . Further, we define e3(x,u)
def
= T (0)−T0.

Remark 1.5. Note that for d≤2 it is in fact possible to use X itself as the state
space, but for d=3 we cannot guarantee that e2 is well defined due to the fourth-order
nonlinearity in T (compare [7]).

Then, the minimization problem (1.4) can be shortly written as

minJ(x,u) over (x,u)∈X∞×U, (1.6)

subject to e(x,u)=0 in Z∗.

We require standard regularity properties of the cost functional J :
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A.3 Let J :X×U →R denote a cost functional which is assumed to be twice
continuously Fréchet differentiable with locally Lipschitz continuous second
derivatives. Further, let J be of separated type, i.e. J(x,u)=J1(x)+J2(u)
and radially unbounded w.r.t. u for every x∈X, bounded from below and
weakly lower semi-continuous.

Remark 1.6. Clearly, the cost functional (1.3) fits into this setting.

The existence of an optimal control as well as the introduction of the reduced
cost functional depend crucially on the existence, uniqueness, regularity and bounds
for the state system, which are studied in the next section.

2. The state system

Now we give a detailed analysis of the state system (1.2) which is essential for
the following investigations. Similar results considering the stationary system with a
different set of boundary conditions can be found in [3].

2.1. Existence of uniformly bounded states. The solvability of the state
system for every control u∈U and the boundedness of the solution is the content of
the following result, which is proved by compactness arguments employing the fixed
point theorem of Leray-Schauder [4]. The uniform bounds in L∞(Q) are derived by
Stampacchia’s truncation method [18].

Theorem 2.1. Assume A.1 and let u∈U and T0∈L∞(Ω) be given. Then, the SP1

system e(x,u)=0, where e is defined by (1.5), has at least one solution (T,ρ)∈X∞,
and there exists a constant c>0 such that the following energy estimate holds:

‖T‖W +‖ρ‖V ≤ c
{

‖T0‖
4
L∞(Ω) +‖u‖

4
U

}

. (2.1)

Further, the solution is uniformly bounded, i.e. (T,ρ)∈ [L∞(Q)]
2
, and we have

T ≤T ≤T , ρ≤ρ≤ρ, (2.2)

where

T =min

(

inf
t∈(0,1)

u(t), inf
x∈Ω

T0(x)

)

and T =max

(

sup
t∈(0,1)

u(t),sup
x∈Ω

T0(x)

)

,

as well as ρ=4πa |T |
3
T and ρ=4πa

∣
∣T
∣
∣
3
T .

Proof. For the proof we employ the fixed point theorem of Leray-Schauder [4,
Theorem 11.6, page 286]. Let w∈L2(L2(Ω)) and σ∈ [0,1] be given. Consider the
auxiliary problem: Find (T,ρ)∈X with T (0,x)=σT0 in L2(Ω) such that

∂tT =k∆T +
σ

3κ
∆ρ, (2.3a)

−ε2 1

3κ
∆ρ+κρ=κ4πa

∣
∣
∣[w]T ,T

∣
∣
∣

3

[w]T ,T , (2.3b)

with boundary conditions

αT +n ·∇T =σαu, (2.3c)

γρ+n ·∇ρ=γ4πa|u|
3
u, (2.3d)
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is fulfilled in the weak sense. Here, the cut-off operator [·]T ,T :L2(Q)→L2(Q) is
defined as

[w]T ,T =







T , w≥T ,

w, T ≥w≥T ,

T , w≤T .

Note, that the two equations decouple. For given w∈L2(Q), there exists a unique
ρ∈L∞(H1(Ω)) using the Lax-Milgram theorem [4, Theorem 5.8, page 83]. Further,
it holds that ∆ρ∈V ∗, which implies directly the existence of a unique T ∈W [13,
Theorem 10.3, page 379]. Thus, the fixed point mapping

G :L2(Q)× [0,1]→L2(Q),

(w,σ) 7→G(w,σ)=T

is well defined.
Now, let T ∈W be given with G(T,σ)=T . First, we exhibit uniform L∞(Q)-

bounds for the solution. Testing the second equation in (2.3) with φ=(ρ−ρ)+, where

(·)+
def
= max(0,·), for ρ>0 yields

ε2

3κ

∥
∥∇(ρ−ρ)+(t)

∥
∥

2

L2(Ω)
+κ
∥
∥(ρ−ρ)+(t)

∥
∥

2

L2(Ω)

=−κ

∫

Ω

(

ρ−4πa
∣
∣
∣[T ]T ,T

∣
∣
∣

3

[T ]T ,T

)

(ρ−ρ)+(t)dx

+
ε

2

∫

∂Ω

(4πa|u|
3
u−ρ)(ρ−ρ)+(t)ds

≤−κ

∫

Ω

(

ρ−4πa
∣
∣T
∣
∣
3
T
)

(ρ−ρ)+(t)dx

+
ε

2

∫

∂Ω

(4πa
∣
∣T
∣
∣
3
T −ρ)(ρ−ρ)+(t)ds

≤0, for all t∈ (0,1),

if we choose especially ρ=4πa
∣
∣T
∣
∣
3
T with T =max

(

supt∈(0,1)u(t),supx∈ΩT0(x)
)

. We

deduce (ρ−ρ)+≡0 a.e. in Q, i.e. ρ≤ρ. One proves the lower bound ρ≥ρ analogously.
To get the upper bound for the temperature T we eliminate the Laplacian of ρ

in the first equation of system (2.3) and test with φ=(T −T )+, which yields

1

2
∂t

∥
∥(T −T )+(t)

∥
∥

2

L2(Ω)
+k
∥
∥∇(T −T )+(t)

∥
∥

2

L2(Ω)

=σ
κ

ε2

∫

Ω

(

ρ−4πa
∣
∣
∣[T ]T ,T

∣
∣
∣

3

[T ]T ,T

)

(T −T )+(t)dx+
h

ε

∫

∂Ω

(σu−T )(T −T )+(t)ds

≤σ
κ

ε2

∫

Ω

(

ρ−4πa
∣
∣T
∣
∣
3
T
)

(T −T )+(t)dx+
h

ε

∫

∂Ω

(σT −T )(T −T )+(t)
︸ ︷︷ ︸

≤0

ds

≤0.

Now, Gronwall’s lemma implies the estimate
∫

Ω

∣
∣(T −T )+(t)

∣
∣
2

dx≤

∫

Ω

∣
∣(T −T )+(0)

∣
∣
2

dx=

∫

Ω

∣
∣(σT0−T )+

∣
∣
2

dx=0 for all t∈ (0,1),
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and hence (T −T )+≡0 a.e. in Q, i.e. T ≤T . In analogy one proves the lower bound
T ≥T .

From these estimates we deduce that every fixed point of G(·,1) is in fact also a
solution of (1.5).

Next, we derive an energy estimate which is sufficient to show the compactness
of G. Testing the second equation of system (2.3) with ρ we get

ε2

3κ
‖∇ρ‖

2
L2(Q) +κ‖ρ‖

2
L2(Q) =κ4πa

(

|T |
3
T,ρ
)

L2(Q)
+

ε

2
(4πa|u|

3
u−ρ,ρ)L2(Σ)

≤ c1

{

‖T‖
4
L∞(Q)‖ρ‖L2(Q) +‖u‖

4
L∞(Σ)‖ρ‖L2(Σ)

}

,

where c1 >0 depends only on the physical parameters and on the domain, and is
especially independent of σ. This implies directly that

‖ρ‖V ≤ c2‖T‖
4
L∞(Q) ,

for some constant c2 >0 independent of σ. Further, eliminating the Laplacian of ρ
and testing the first equation of system (2.3) with T yields

1

2
∂t‖T (t)‖

2
L2(Ω) +k‖∇T (t)‖

2
L2(Ω) +kα‖T (t)‖

2
L2(∂Ω)

≤kα‖T (t)‖L2(∂Ω)‖u(t)‖L2(∂Ω) +
κ

ε2
‖ρ(t)‖L2(Ω)‖T (t)‖L2(Ω) .

The estimates derived so far ensure that

‖T‖V ≤ c3‖T‖
4
L∞(Q) ,

where the constant c3 >0 is again independent of σ.
To prove the estimate on the time derivative ∂tT we supply H−1(Ω) with the norm

∥
∥∇∆−1·

∥
∥

L2(Ω)
, where ∆−1 :H−1(Ω)→H1

0 (Ω) is the inverse Laplacian [19]. Using

φ=−∆−1∂tT as a test function for the first equation in system (2.3) and integrating
by parts yields

∥
∥∇∆−1∂tT

∥
∥

2

L2(Q)
=k
(
∇T,∇(∆−1∂tT )

)

L2(Q)
+

σ

3κ

(
∇ρ,∇(∆−1∂tT )

)

L2(Q)

≤

[

k‖∇T‖L2(Q) +
1

3κ
‖∇ρ‖L2(Q)

]
∥
∥∇(∆−1∂tT )

∥
∥

L2(Q)
.

Hence, the estimates derived so far ensure

‖∂tT‖V ∗ ≤ c4,

with c4 >0 again independent of σ.
Finally, we deduce that there exists a constant c5 >0, independent of T and σ,

such that each T with G(T,σ)=T fulfills

‖T‖W ≤ c5.

It is easy to verify that the operator G is continuous. From Aubin’s Lemma [17] we
deduce the compactness of the embedding W →֒L2(Q), which implies the compactness
of the fixed point operator G. Furthermore, G(w,0)=0 for all w∈L2(Q). Now the
existence of at least one solution follows from Leray-Schauder’s fixed point theorem.
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2.2. Uniqueness of the state. We prove the uniqueness of the state, which
will allow finally for the introduction of the reduced cost functional.

Theorem 2.2. Assume A.1 and let u∈U and T0∈L∞(Ω) be given. Then, the
solution (T,ρ)∈X∞ to the SP1-system (1.5) is unique.

Proof. The uniqueness of the solution is shown by contradiction. Assume that

there exist two solutions (Ti,ρi)∈X∞, i=1,2. Then the difference (T̂ , ρ̂)
def
= (T1−

T2,ρ1−ρ2) solves

∂t T̂ =k∆T̂ +
1

3κ
∆ ρ̂, (2.4a)

−ε2 1

3κ
∆ ρ̂+κρ̂=κ4πa(|T1|

3
T1−|T2|

3
T2), (2.4b)

with homogeneous Robin data

αT̂ +n ·∇T̂ =0, (2.4c)

γ ρ̂+n ·∇ρ̂=0, (2.4d)

and homogeneous initial data T̂ (0)=0. Testing the second equation of system (2.4)
with ρ̂ yields after integration by parts

ε2

3κ
‖∇ρ̂‖

2
L2(Q) +κ‖ρ̂‖

2
L2(Q)≤κ4πa(ρ̂,|T1|

3
T1−|T2|

3
T2)L2(Q),

from which we get

‖ρ̂‖V ≤ c1‖T‖
3
L∞(Q)

∥
∥
∥T̂
∥
∥
∥

L2(Q)

for some constant c1 >0. Now we eliminate the Laplacian of ρ̂ in the first equation of
(2.4) and use T̂ as a test function. Employing the monotonicity of the nonlinearity
we deduce for all t∈ (0,1) that it holds that

1

2
∂t

∥
∥
∥T̂ (t)

∥
∥
∥

2

L2(Ω)
+k
∥
∥
∥∇T̂ (t)

∥
∥
∥

2

L2(Ω)
≤

κ

ε2

∫

Ω

(ρ̂(t)−4πa(|T1|
3
T1−|T2|

3
T2)(t))T̂ (t)dx

≤ c2‖ρ̂(t)‖L2(Ω)

∥
∥
∥T̂ (t)

∥
∥
∥

L2(Ω)

≤ c3

∥
∥
∥T̂ (t)

∥
∥
∥

2

L2(Ω)

for some positive constants c2,c3. Making use of Gronwall’s Lemma, the homogeneous
initial condition implies that

∥
∥
∥T̂ (t)

∥
∥
∥

L2(Ω)
=0 for all t∈ (0,1),

which directly yields T̂ =0 a.e. in Q as well as ρ̂=0 a.e. in Q. Hence, the solution is
unique.

Remark 2.3. Note that due to Theorem 2.1 we know that the unique solution in fact
fulfills the desired a priori bounds, i.e., for positive boundary data u and initial data
T0 we can deduce that the temperature is always positive.
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Remark 2.4. Due to Theorem 2.1 and Theorem 2.2 we can rewrite the minimization
problem (1.6) equivalently introducing the reduced cost functional Ĵ(u)

def
= J(x(u),u)

as

min Ĵ(u) over u∈U, (2.5)

where x(u)∈X∞ satisfies e(x(u),u)=0.

3. Existence of an optimal control

In this section we establish the existence of a solution to the optimal control
problem (1.6).

Theorem 3.1. Assume A.1 and A.3. Then, there exists a minimizer (x∗,u∗)∈
X∞×U of the constrained minimization problem (1.6).

Proof. By A.3 we have J0
def
= infX∞×U J(x,u)>−∞. We choose a minimizing

sequence (xk,uk)k∈N ∈X∞×U . Then, the radial unboundedness of J with respect
to u implies that (uk)k∈N is bounded in U . Hence, there exists a weakly convergent
subsequence, again denoted by (uk)k∈N such that

uk ⇀u∗ weakly in U

for k→∞. From Sobolev’s embedding theorem [1] we deduce that up to a subsequence
we also have uk →u∗ strongly in C0(0,1;R) for k→∞. Now, the bounds stated in
Theorem 2.1 imply the boundedness of (‖xk‖X)k∈N. Hence, there exist subsequences
such that

Tk ⇀T ∗ weakly in V,

∂tTk ⇀∂tT
∗ weakly in V ∗,

ρk ⇀ρ∗ weakly in V,

for k→∞, i.e. xk =(Tk,ρk)⇀ (T ∗,ρ∗)=x∗ weakly in W ×V . The weak lower semi-
continuity of J implies

J(x∗,u∗)=J0.

Finally, we have to show the constraint e(x∗,u∗)=0. Aubin’s Lemma [17] implies the
strong convergence of (Tk)k∈N in L2(0,1;L2(Ω)). Further, note the uniform bounded-
ness of the solution, which yields

(Tk,ρk)⇀ (T ∗,ρ∗), weakly-* in L∞(Q),

for k→∞. These convergences are by far sufficient to pass to the limit in (1.5),
yielding

e(x∗,u∗)=0 in Z∗,

which finally proves the assertion.

Remark 3.2. In general, we cannot expect the uniqueness of an optimal control u,
since the set of states given by the constraint e is not convex. Only for cases where δ
is large we can overcome this problem.
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4. The linearized state system

This section is devoted to the study of the linearization of the state system (1.2).
Let x=(T,ρ)∈X∞ be given. We define the linear operator Ã(x)∈L(X∞,Z∗) by

Ã(x)v
def
=





∂tvT −k∆vT − 1
3κ∆vρ

− ε2

3κ∆vρ +κvρ−κ16πa|T |
3
vT

vT (0)



 , for v =(vT ,vρ)∈X∞,

as well as its natural extension A(x)∈L(X,Z∗) for a given x∈X∞. Given g =
(gT ,gρ,v0)

T ∈Z∗, we say that v∈X solves

A(x)v =





gT

gρ

v0



 in Z∗,

iff v is a variational solution of the linear system

∂tvT −k∆vT −
1

3κ
∆vρ =gT , (4.1a)

−
ε2

3κ
∆vρ +κvρ−κ16πa|T |

3
vT =gρ, (4.1b)

supplemented with boundary conditions

αvT +n ·∇vT =0, (4.1c)

γvρ +n ·∇vρ =0, (4.1d)

and initial condition

vT (0)=v0. (4.1e)

4.1. Existence and uniqueness. The existence of a unique solution to (4.1)
is the content of the following result.

Theorem 4.1. Assume A.1 and A.2. Let x∈X∞, v0∈L2(Ω) and (gT ,gρ)∈V ∗×V ∗

be given. Then, there exists a unique v∈X fulfilling (4.1). Further, there exists a
constant C >0 such that

‖v‖X +‖v‖L∞(L2)≤C
{

‖v0‖L2(Ω) +‖gT ‖V ∗ +‖gρ‖V ∗

}

.

The proof of Theorem 4.1 relies on the reformulation of (4.1) as one linear
parabolic equation and the derivation of a G̊arding inequality. We write (4.1) in
weak form: Find v∈X with vT (0)=v0 in L2(Ω) such that

〈∂tvT ,φT 〉V ∗,V +k(∇vT ,∇φT )L2(Q) +
1

3κ
(∇vρ,∇φT )L2(Q)

+kα(vT ,φT )L2(Σ) +
γ

3κ
(vρ,φT )L2(Σ) = 〈gT ,φT 〉V ∗,V

and

ε2

3κ
(∇vρ,∇φρ)L2(Q) +κ

(

vρ−16πa|T |
3
vT ,φρ

)

L2(Q)
+

ε2γ

3κ
(vρ,φρ)L2(Σ) = 〈gρ,φρ〉V ∗,V
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for all φ=(φT ,φρ)∈V 2. We define the operator Ψ :H−1(Ω)→H1(Ω), where Ψ=Ψ[f ]
solves

−
ε2

3κ
∆Ψ+κΨ=f in Ω,

γΨ+n ·∇Ψ=0 on ∂Ω.

Due to standard results [4, Theorem 5.8, page 83] this operator is well defined and
there exists a positive constant c= c(Ω) such that we have the estimate ‖Ψ‖H1(Ω)≤

c‖f‖H−1(Ω).
Next, we define the bilinear form a :V ×V →R via

a(r,φ)=k(∇r,∇φ)L2(Q) +
1

3κ

(

∇Ψ[κ16πa|T |
3
r],∇φ

)

L2(Q)

+kα(r,φ)L2(Σ) +
γ

3κ

(

Ψ[κ16πa|T |
3
r],φ

)

L2(Σ)
. (4.2)

This bilinear form is well defined, bounded and fulfills a G̊arding inequality.

Lemma 4.2. The bilinear form a defined by (4.2) is bounded on V ×V , i.e., there
exists a constant C >0 such that

|a(r,s)|≤C ‖r‖V ‖s‖V for all r,s∈V.

Moreover, there exist constants µ,η >0 such that

a(r,r)≥µ‖r‖
2
V −η‖r‖

2
L2(Q) for all r∈V.

Proof. First, we prove the boundedness of the bilinear form a employing the
Cauchy-Schwarz inequality

|a(r,s)|≤k‖∇r‖L2(Q)‖∇s‖L2(Q) +
1

3κ
‖∇Ψ‖L2(Q)‖∇s‖L2(Q)

+kα‖r‖L2(Σ)‖s‖L2(Σ) +
γ

3κ
‖Ψ‖L2(Σ)‖s‖L2(Σ)

≤C ‖r‖V ‖s‖V ,

for some positive constant C depending only on the data, where Ψ=Ψ[κ16πa|T |
3
r]

for notational convenience. Here, we used the continuity of the trace operator tr :V →
L2(Σ) to estimate ‖Ψ‖L2(Σ) by ‖∇Ψ‖L2(Q), as well as A.2, which yields

‖∇Ψ‖L2(Q)≤‖Ψ‖L2(H2)≤K ‖r‖L2(L2) ,

where K =K(T )>0. The G̊arding inequality is derived using Young’s inequality and
A.2, yielding

a(r,r)≥k‖∇r‖
2
L2(Q)−

1

3κ
‖∇Ψ‖L2(Q)‖∇r‖L2(Q) +kα‖r‖

2
L2(Σ)−

γ

3κ
‖Ψ‖L2(Σ)‖r‖L2(Σ)

≥
k

2
‖∇r‖

2
L2(Q)−

1

18kκ2
‖∇Ψ‖

2
L2(Q) +

kα

2
‖r‖

2
L2(Σ)−

γ2

18kκ2α
‖Ψ‖

2
L2(Σ)

≥
k

2
‖∇r‖

2
L2(Q)−c(Ω,a,k,α,γ,T )‖r‖

2
L2(Q)

≥µ‖r‖
2
V −η‖r‖

2
L2(Q) ,



962 OPTIMAL BOUNDARY CONTROL FOR RADIATIVE HEAT TRANSFER

with µ=k/2 and η = c(Ω,a,k,α,γ,T )+k/2.

Now, we are in the position to prove the main theorem of this section.

Proof of Theorem 4.1.

Proof. We rewrite (4.1) as one equation for vT using the bilinear form a which
yields: Find vT ∈V such that vT (0)=v0 in the sense of L2(Ω) and

〈∂tvT ,φ〉V ∗,V +a(vT ,φ)=

〈

gT +
1

ε2
(κΨ[gρ]−gρ) ,φ

〉

V ∗,V

for all φ∈V. (4.3)

Due to Lemma 4.2 we have the boundedness and weak coercivity of a, and the con-
tinuity of the right hand side is immediate, such that standard results for linear
parabolic equations [13, Theorem 10.3, page 379] imply that there exists a unique
solution vT ∈W with vT (0)=v0 in L2(Ω). Hence, also (4.1) is uniquely solvable and

the solution is given by v =(vT ,vρ)
def
= (vT ,Ψ[16κπa|T |

3
vT +gρ])∈X.

Finally, we derive the energy estimate. In the following let ci >0, i=1,... ,9,
denote constants depending only on the data. Testing (4.3) with φ=vT , we get

1

2
∂t‖vT (t)‖

2
L2(Ω) +k‖∇vT (t)‖

2
L2(Ω) +kα‖∇vT (t)‖

2
L2(Σ)

−
κ

ε2

(

Ψ[16κπa|T |
3
vT (t)+gρ(t)],vT (t)

)

L2(Ω)
+

1

ε2

(

gρ +16κπa|T |
3
vT (t),vT (t)

)

L2(Q)

= 〈gT (t),vT (t)〉H−1(Ω),H1(Ω) .

Employing A.2 and Young’s inequality we have the estimates

(

Ψ[16κπa|T |
3
vT (t)+gρ],vT (t)

)

L2(Q)

≤ c1

{

‖vT (t)‖
2
L2(Ω) +‖gρ(t)‖H−1(Ω)‖vT (t)‖H1(Ω)

}

≤ c2‖vT (t)‖
2
L2(Ω) +

k

4
‖∇vT (t)‖

2
L2(Ω) +c3(k)‖gρ(t)‖

2
H−1(Ω) .

Employing an analogous estimate for the right hand side, this yields

1

2
∂t‖vT (t)‖

2
L2(Ω) +

k

2
‖∇vT (t)‖

2
L2(Ω)

≤ c4‖vT (t)‖
2
L2(Ω) +c5

{

‖gT (t)‖
2
H−1(Ω) +‖gρ(t)‖

2
H−1(Ω)

}

.

From Gronwall’s Lemma we get immediately

‖vT ‖L∞(L2(Ω))≤ c6

{

‖v0‖L2(Ω) +‖gT ‖V ∗ +‖gρ‖V ∗

}

and further

‖vT ‖V ≤ c7

{

‖v0‖L2(Ω) +‖gT ‖V ∗ +‖gρ‖V ∗

}

.

Finally, using φ=∇∆−1vT as a test function and following the argument in the proof
of Theorem 2.1, we get

‖∂tvT ‖V ∗ ≤ c8,
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which altogether yields

‖v‖X ≤ c9

{

‖v0‖L2(Ω) +‖gT ‖V ∗ +‖gρ‖V ∗

}

.

In view of Theorem 4.1 we have

Corollary 4.3. Let (x,u)∈X∞×U be given. Then ex(x,u) :X →Z∗ is a homeo-
morphism.

4.2. Regularity. For more regular data we expect that the solution of the
linearized system has also a higher regularity. We show that uniformly bounded data
implies that also the linearized solution is bounded.

Theorem 4.4. Assume A.1 and A.2. Let x∈X∞, v0∈L∞(Ω) and (gT ,gρ)∈
[L∞(Q)]2 be given. Then, the unique solution v∈X of (4.1) is in fact uniformly
bounded, i.e. v∈ [L∞(Q)]2.

For the proof we use Moser’s iteration technique [4, page 188].

Proof. For l∈N and p>1 we define [s]l =min(l,max(−l,s)) and Φl(s)=

|[s]l|
p−2

[s]l. Note that it holds that Φl ∈H1(R)∩L∞(R), Φ′
l(s)≥0 a.e. in R, and

∫ s

0

Φl(z)dz≥
1

p
|[s]l|

p
.

We use Φl(vT )∈V as a test function in (4.1) and get

〈∂tvT ,Φl(vT )〉H−1(Ω),H1(Ω) +k

∫

Ω

Φ′
l(vT )|∇vT |

2
dx

−
1

3κ

∫

Ω

∆Ψ[κ16πa|T |
3
vT +gρ]Φl(vT )dx+kα

∫

∂Ω

vT Φl(vT )ds=

∫

Ω

gT Φl(vT )dx

Further, we have

−
1

3κ

∫

Ω

∆Ψ[κ16πa|T |
3
vT +gρ]Φl(vT )dx

=
1

ε2

∫

Ω

κ16πa|T |
3
vT Φl(vT )+(gρ−κΨ)Φl(vT )dx

≥−
1

ε2

∫

Ω

|κΨ+gρ| |[vT ]l|
p−1

dx.

Using Young’s inequality

ap−1b≤
p−1

p
ap +

1

p
bp, a,b≥0, p>1

and due to Assumption A.2, we get

∫

Ω

|κΨ+gρ| |[vT ]l|
p−1

dx≤
κ

p

∫

Ω

|Ψ|
p

dx+
1

p

∫

Ω

|gρ|
p

dx+
p−1

p

∫

Ω

|[vT ]l|
p

dx

≤
κK(Ω)p

p
‖vT ‖

p
L2(Ω) +

1

p
‖gρ‖

p
Lp(Ω) +‖[vT ]l‖

p
Lp(Ω) .
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In analogy we have

∫

Ω

gT Φl(vT )dx≤
1

p
‖gT ‖

p
Lp(Ω) +

p−1

p
‖[vT ]l‖

p
Lp(Ω) .

Combining all these estimates and integration with respect to t yields

1

p
‖[vT (t)]l‖

p
Lp(Ω)≤

1

p
‖[v0]l‖

p
Lp(Ω) +

(

1+
1

ε2

)∫ t

0

‖[vT (τ)]l‖
p
Lp(Ω) dτ

+
1

p

{∫ t

0

‖gT (τ)‖
p
Lp(Ω) dτ +

1

ε2

∫ t

0

‖gρ(τ)‖
p
Lp(Ω) dτ +

κK(Ω)p

ε2

∫ t

0

‖vT (τ)‖
p
L2(Ω) dτ

}

,

or

1

p
‖[vT (t)]l‖

p
Lp(Ω)≤

(

1+
1

ε2

)∫ t

0

‖[vT (τ)]l‖
p
Lp(Ω) dτ

+
Kp

2

p

{

‖v0‖
p
L∞(Ω) +‖gT ‖

p
L∞(Q) +‖gρ‖

p
L∞(Q) +‖vT ‖

p
L∞(L2)

}

,

for some K2 =K2(Ω,κ,ε)>0. Now, Gronwall’s Lemma and Theorem 4.1 imply that

‖[vT (t)]l‖
p
Lp(Ω)≤Kp

2

{

‖v0‖
p
L∞(Ω) +‖gT ‖

p
L∞(Q) +‖gρ‖

p
L∞(Q)

}

e(1+1/ε2)pt,

for all t∈ [0,1] and p≥1. Finally, we can go to the limit l→∞ and get

‖vT (t)‖Lp(Ω)≤K2

{

‖v0‖L∞(Ω) +‖gT ‖L∞(Q) +‖gρ‖L∞(Q)

}

e(1+1/ε2)t,

for some constant K2, independent of p. Now, we let p→∞ and get vT ∈L∞(Q).
The boundedness of vρ follows now from standard results.

5. Adjoints and derivatives

In this section we want to identify the adjoint system and prove the existence and
uniqueness of the adjoint states.

Theorem 5.1. Assume A.1-A.3 and let x∈X∞ be given. Then, for every f =
(fT ,fρ)∈X∗ the adjoint equation

A(x)∗ξ =f in X∗

possesses a unique variational solution ξ =(ξT ,ξρ,ξ0)∈Z. Furthermore, if f ∈V ∗×
V ∗, then we have that (ξT ,ξρ)∈X, and ξ can be characterized as the variational
solution of

−∂tξT −k∆ξT −16πaκ |T |
3
ξρ =fT , (5.1a)

−
ε2

3κ
∆ξρ +κξρ−

1

3κ
∆ξT =fρ in Q (5.1b)

with boundary conditions

k(n ·∇ξT +αξT )=0, (5.1c)

n ·∇ξT +γξT +ε2(n ·∇ξρ +γξρ)=0 on Σ (5.1d)
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and terminal condition

ξT (1)=0 in Ω. (5.1e)

Moreover, ξT (0)= ξ0, and we have the following a priori estimate:

‖ξT ‖V +‖ξρ‖V ≤C ‖f‖X∗ .

For f ∈V ∗×V ∗ it even holds that

‖ξ‖X ≤C ‖f‖V ∗×V ∗ .

Proof. From Theorem 4.1 we learn that, given x∈X∞, the linear operator A(x)
possesses a bounded inverse A(x)−1∈L(Z∗,X). A direct calculation leads to the
adjoint operator

〈A(x)v,ξ〉Z∗,Z

= 〈v,A(x)∗ξ〉X,X∗

= 〈∂tvT ,ξT 〉V ∗,V

+
〈

vT ,−k∆ξT −κ16πa|T |
3
ξρ

〉

V,V ∗

+

〈

vρ,−
ε2

3κ
∆ξρ +κξρ−

1

3κ
∆ξT

〉

V,V ∗

+kα(vT ,ξT )L2(Σ) +
γ

3κ
(vρ,ε

2ξρ)L2(Σ) +
γ

3κ
(vρ,ξT )L2(Σ)

+k〈vT ,n ·∇ξT 〉L2(H1/2(∂Ω)),L2(H−1/2(∂Ω))

+
ε2

3κ
〈vρ,n ·∇ξρ〉L2(H1/2(∂Ω)),L2(H−1/2(∂Ω))

+
1

3κ
〈vρ,n ·∇ξT 〉L2(H1/2(∂Ω)),L2(H−1/2(∂Ω))

+(vT (0),ξ0)L2(Ω)

for every v∈X.
Since A−∗(x)∈L(X∗,Z), we find for every f =(fT ,fρ)∈X∗ a unique solution

ξ =(ξT ,ξρ,ξ0)∈Z of

〈v,A(x)∗ξ〉X,X∗ = 〈v,f〉X,X∗

for all v∈X.
Combining the bounded invertibility of A(x) with the norm identity

∥
∥A−1(x)

∥
∥
L(Z∗,X)

=‖A−∗(x)‖L(X∗,Z), we get

‖ξ‖Z ≤ c‖f‖X∗ (5.2)

for some constant c>0.
Now, assume that the right hand side fulfills f ∈V ∗×V ∗. Then, the function

t 7→B(t)
def
= (k∆ξT +κ16πa|T |

3
ξρ +fT )(t)

is in V ∗. Let ∂tξT be the distributional derivative of ξT and extend the inner product
(·,·)L2(Ω) continuously to H−1(Ω)×H1(Ω). Then ∂tξT ∈V ∗, which can be seen as
follows. Testing appropriately yields

−

(∫ 1

0

∂tξT χdt,h

)

L2(Ω)

=

(∫ 1

0

B(t)χdt,h

)

L2(Ω)

, for all χ∈C∞
0 (0,1), h∈H1(Ω),
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and using a density argument we get ∂tξT ∈V ∗. Due to (5.2) we finally have ξ∈
X×L2(Ω), and standard regularity theory implies ξT ∈C0([0,1], H−1(Ω)). Note that
ξT is well defined in H−1(Ω). Hence, by means of the Gelfand triple, we have ξT ∈
C0([0,1], L2(Ω)), which leads to the terminal condition ξT (1)=0 as well as ξT (0)=
ξ0.

5.1. Derivatives. In this section we study the differentiability properties of
the mapping e defined in Section 2, which are necessary for superlinear numerical
algorithms, like SQP or Newton-like methods [11]. Further, we introduce the reduced

cost functional Ĵ(u)
def
= J(x(u),u) and derive a representations for its first variation,

which is necessary for an appropriate numerical treatment [12, 15].

Theorem 5.2. The mapping e=(e1,e2,e3) :X∞×U →Z∗ is twice continuously
Fréchet-differentiable with locally Lipschitz-continuous second derivative. The ac-

tion of the first two derivatives at (x,u)∈X∞×U in the direction x̃
def
= (T̃ , ρ̃) or

(x̃,x̂)
def
= ((T̃ , ρ̃),(T̂ , ρ̂))∈X2

∞, respectively, is given by

〈e1x(x,u)x̃,φT 〉V ∗,V =
〈

∂tT̃ ,φT

〉

V ∗,V
+k
(

∇T̃ ,∇φT

)

L2(Q)
+

1

3κ
(∇ρ̃,∇φT )L2(Q)

+kα
(

T̃ ,φT

)

L2(Σ)
+

γ

3κ
(ρ̃,φT )L2(Σ) ,

〈e2x(x,u)x̃,φρ〉V ∗,V =
ε2

3κ
(∇ρ̃,∇φρ)L2(Q) +κ

(

ρ̃−16πa |T |
3
T̃ ,φρ

)

L2(Q)

+
ε2

3κ
γ (ρ̃,φρ)L2(Σ)

and e1xx =0, as well as

〈e2xx(x,u)[x̃,x̂],φρ〉=−κ48πa
(

T |T | T̃ T̂ ,φρ

)

L2(Q)
,

for all φ=(φT ,φρ)∈X2. Further, we have for ũ∈U that

〈e1u(x,u)ũ,φT 〉V ∗,V =−kα(ũ,φT )L2(Σ)−
γ

3κ

(

16πa|u|
3
ũ,φT

)

L2(Σ)

and

〈e2u(x,u)ũ,φρ〉V ∗,V =−
ε2γ

3κ

(

16πa|u|
3
ũ,φρ

)

L2(Σ)
.

Next, we compute the derivative of the reduced functional Ĵ . For this we need
the differentiability of the mapping u 7→x(u), which is the content of the following
theorem.

Theorem 5.3. Assume A.1, A.2 and let T0∈L∞(Ω). Then, the mapping u 7→x(u)
is Fréchet-differentiable as a mapping from U to X∞ and its derivative is given by

x′(u)=−e−1
x (x(u),u)eu(x(u),u).
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Proof. We split the operator e(x,u) into its linear part D and its nonlinear part
N acting on x, as well as a nonlinear operator B acting on u, i.e.,

e(x,u)=Dx+N(x)+B(u),

where D :X →Z∗, N :X∞→YQ := [L∞(Q)]
3

and B :U →YΣ := [L∞(Σ)]
3

are defined
by

〈D1(x),φ〉V ∗,V
def
= 〈∂tT,φ〉V ∗,V +k(∇T,∇φ)L2(Q)−

κ

ε2
(ρ,φ)L2(Q) +kα(T,φ)L2(Σ),

〈D2(x),φ〉V ∗,V
def
=

ε2

3κ
(∇ρ,∇φ)L2(Q) +κ(ρ,φ)L2(Q) +

ε2

3κ
γ(ρ,φ)L2(Σ),

〈N1(x),φ〉V ∗,V
def
=

κ

ε2
(4πκa |T |

3
T,φ)L2(Q),

〈N2(x),φ〉V ∗,V
def
= −κ(4πκa |T |

3
T,φ)L2(Q),

〈B1(u),φ〉V ∗,V
def
= −kα(u,φ)L2(Σ),

〈B2(u),φ〉V ∗,V
def
= −

ε2

3κ
γ(4πa|u|

3
u,φ)L2(Σ),

for φ∈V , as well as D3(x)
def
= T (0)−T0, N3(x)=B3(u)=0. Note that we used the

definition of e2 to rewrite e1, as in the proof of Theorem 2.1.
The linear operator D is boundedly invertible by linear elliptic/parabolic theory

[13, Theorem 10.3, page 379], since the solution of Dx=z requires just the solution
of two decoupled linear problems. By the weak maximum principle we even get that
D−1∈L(YQ,X∞) and D−1∈L(YΣ,X∞). We define the operator R :X∞×U →X∞

by

R(x,u)=x+D−1N(x)+D−1B(u).

Then, e(x(u),u)=0 is equivalent with R(x(u),u)=0. To show the Fréchet-
differentiability of u 7→x(u), we apply the implicit function theorem to R. First note
that R is continuously Fréchet-differentiable, since N :X∞→YQ and B :U →YΣ are
continuously Fréchet-differentiable. The linear operator D−1 is clearly also continu-
ously Fréchet-differentiable, so we can apply the chain rule (see also [10]).

Next, we need to show the invertibility of Rx(x,u) for given (x,u)∈X∞×U . Let
g∈X∞ be given. We will show that there exists a unique w∈X∞ with Rx(x,u)w=g.
This equation is equivalent to

w+D−1Nx(x)w=g in X∞,

or, setting v =w−g, we get

v+D−1Nx(x)(v+g)=0 in X∞.

This can be written as

Dv+Nx(x)v =−Nx(x)g in Z∗,

which just corresponds with the linearized state system, i.e. A(x)v =−Nx(x)g. Since
Nx(x)g∈YQ, we get from Theorem 4.1 and Theorem 4.4 that there exists a unique
solution v∈X∞ and thus also a unique w=v+g∈X∞. This verifies all assumptions
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of the implicit function theorem, which we apply now to deduce that the Fréchet-
derivative of u 7→x(u) exists and is given by

x′(u)=−e−1
x (x(u),u)eu(x(u),u).

5.2. The first-order optimality condition. The necessary first-order opti-
mality condition is given by

Ĵ ′(u)=0.

Using the chain rule one obtains for ũ∈U that
〈

Ĵ ′(u),ũ
〉

U∗,U
= 〈Jx(x(u),u),x′(u)ũ〉X∗,X +〈Ju(x(u),u),ũ〉U∗,U

=
〈
Jx(x(u),u),−e−1

x (x(u),u)eu(x(u),u)ũ
〉

X∗,X
+〈Ju(x(u),u),ũ〉U∗,U

=
〈
−e∗u(x(u),u)e−∗

x (x(u),u)Jx(x(u),u),ũ
〉

U∗,U
+〈Ju(x(u),u),ũ〉U∗,U .

Introducing the variable

ξ =−e−∗
x (x(u),u)Jx(x(u),u)∈Z,

we get

Ĵ ′(u)=Ju(x(u),u)+e∗u(x(u),u)ξ.

The above representation of the derivative and the adjoint variable ξ∈Z yields
the following theorem.

Theorem 5.4. Let (x∗,u∗)∈X∞×U be a solution of the constrained minimization
problem (1.6). Then, there exists a unique Lagrange multiplier ξ∗∈Z which together
with the optimal solution (x∗,u∗) satisfies the first-order optimality system

e(x∗,u∗)=0 in Z∗,

e∗x(x∗,u∗)ξ∗+Jx(x∗,u∗)=0 in X∗,

e∗u(x∗,u∗)ξ∗+Ju(x∗,u∗)=0 in U∗.

Proof. Since we have ex(x∗,u∗)=A(x∗) and Jx(x∗,u∗)∈X∗ as well as (x∗,u∗)∈
X∞×U , the assertion directly follows from Theorem 5.1.

6. Conclusions

We have studied an optimal boundary control problem for radiative heat transfer
modeled by the SP1-system from the analytical point of view, derived the first-order
optimality system and proved existence, uniqueness and regularity for the adjoint
state. It is easily possible to generalize the presented results to frequency-dependent
models, and one can also employ spatially non-constant controls along the boundary,
if one adjusts the penalty term in the cost functional. Future work will concentrate
on more sophisticated models of the SPN hierarchy and the investigation of so-called
frequency-averaged equations [8].

Acknowledgement. This work was supported by the DFG via SFB 568, project
PI 408/3-1 and via SPP 1253, as well as by the European network HYKE, funded by
the EC under contract HPRN-CT-2002-00282. The author would like to thank the
reviewers for their valuable comments and suggestions.
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[20] G. Thömmes, R. Pinnau, M. Seaid, T. Götz and A. Klar, Numerical methods and optimal

control for glass cooling processes, TTSP, 31(4–6), 513–529, 2002.
[21] G.M. Troianiello, Elliptic Differential Equations and Obstacle Problems, Plenum Press, New

York, first edition, 1987.
[22] E. Zeidler, Nonlinear Functional Analysis and its Applications, volume II/A and II/B, Springer-

Verlag, Berlin, first edition, 1990.


