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A MULTIPLE-PATCH PHASE SPACE METHOD FOR COMPUTING
TRAJECTORIES ON MANIFOLDS WITH APPLICATIONS TO
WAVE PROPAGATION PROBLEMS*

MOHAMMAD MOTAMED? AND OLOF RUNBORG?*

Abstract. We present a multiple-patch phase space method for computing trajectories on
two-dimensional manifolds possibly embedded in a higher-dimensional space. The dynamics of tra-
jectories are given by systems of ordinary differential equations (ODEs). We split the manifold
into multiple patches where each patch has a well-defined regular parameterization. The ODEs are
formulated as escape equations, which are hyperbolic partial differential equations (PDEs) in a three-
dimensional phase space. The escape equations are solved in each patch, individually. The solutions
of individual patches are then connected using suitable inter-patch boundary conditions. Properties
for particular families of trajectories are obtained through a fast post-processing. We apply the
method to two different problems: the creeping ray contribution to mono-static radar cross section
computations and the multivalued travel-time of seismic waves in multi-layered media. We present
numerical examples to illustrate the accuracy and efficiency of the method.
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1. Introduction

We want to compute trajectories on two-dimensional compact manifolds possibly
embedded in a higher-dimensional space. The dynamics of the trajectories we con-
sider are given by systems of ODEs in a phase space. In many problems, we need
to compute a large number of trajectories. In other words, the dynamical systems of
ODEs need to be integrated for many different initial conditions. Examples include
geodesics computation in computational geometry [11], robotics [2] and the theory of
general relativity. Our motivation for this comes from high frequency wave propaga-
tion problems. We consider the problem of scattering of a time-harmonic incident field
by a bounded scatterer D. We split the total field into an incident and a scattered
field. The scattered field in the region outside D is given by the Helmholtz equation,

AW +n(x)?w?*W =0, xecR3\D, (1.1)

where n(x) is the index of refraction, and w is the angular frequency. We can impose
either a Dirichlet, Neumann or Robin boundary condition on the boundary of the
scatterer D and the Sommerfeld radiation condition at infinity. The computational
cost of direct numerical simulations of (1.1) grows algebraically with the frequency.
Therefore, at high frequencies, numerical methods based on approximations of (1.1)
are needed. Geometrical optics (GO), for example, considers simple waves,

W(x)~a(x)e“?™  xecR3, (1.2)

when w — o0o. The amplitude a(x) and the phase function ¢(x) depend only mildly on
w, and the computational cost will then be independent of w. GO can be formulated
either as PDEs for ¢ and a, known as eikonal and transport equations, respectively,
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618 A MULTIPLE-PATCH PHASE SPACE METHOD FOR COMPUTING TRAJECTORIES

or as a system of ordinary differential equations (ODEs). Geometrical theory of
diffraction (GTD), [18] is a correction to the GO approximations by adding diffraction
effects. One type of diffracted rays is creeping rays, which are generated at the
shadow line of the scatterer and propagate along geodesics on the surface, continuously
shedding diffracted rays in their tangential direction. A wave field, associated to a
creeping ray, is generated on the surface

We(u) =a(u)e“?™, (1.3)

where ¢(u) and a(u) are surface phase and amplitude and u € R? is a parameterization
of the surface. The creeping rays are related to (1.3) in the same way as the standard
GO rays are related to (1.2). Similar to GO rays, creeping rays can also be formulated
either as PDEs or as a system of ODEs. There are two different approaches to com-
pute the standard GO and creeping rays and the associated wave fields in (1.2) and
(1.3); Lagrangian and Eulerian methods. Lagrangian methods are based on ODEs.
The simplest Lagrangian method is standard ray tracing [6, 24, 13, 29], which gives
the phase and amplitude solution along a ray. Interpolation must then be applied to
obtain the solution everywhere. But, in regions where rays cross or diverge this can
be rather difficult. The interpolation can be simplified by using wave front methods
[38, 10]. In these methods, instead of individual rays, an interface representing a
wave front is evolved. Eulerian methods, on the other hand, are based on PDEs. The
PDEs are discretized on fixed computational grids to control accuracy everywhere,
and there is no problem with interpolation. The simplest Eulerian methods solve the
eikonal and transport equations [37, 36, 8, 20]. However, these equations only give the
correct solution when it is a single wave. In the case of crossing waves, more elaborate
schemes have been devised based on a third formulation of geometrical optics as a
kinetic equation set in phase space. A survey of this research effort, in the free-space
GO case, is given in [7, 31, 25]. In the surface ray case, see [26, 39] for some recent
works. Fomel and Sethian [9] presented a fast phase space method for computing
solutions of static Hamilton-Jacobi equations in phase space. Their method is based
on escape equations which are time-independent PDEs in a three-dimensional phase
space. The PDE solutions, computed by a fast marching method, give the informa-
tion for all trajectories from all possible starting configurations. Recently, the authors
extended the fast phase space method [26] to the problem of efficiently computing all
possible creeping rays on a hypersurface. The escape solutions contain information
for all incident angles. The phase and amplitude of the field are then extracted by a
fast post-processing. This method is computationally attractive when the solution is
sought for many different sources but with the same index of refraction, for example
for computing the mono-static radar cross section (RCS). The computational cost of
solving the PDEs is less than the cost of tracing all rays individually. If the surface
is discretized by N? points the complexity is O(N3logN), which is close to optimal.
In the mono-static RCS case, direct ray tracing would cost O(N?) if a comparable
number of incidence angles (N?) and rays per angle (N) are considered. However,
it is only applicable for scatterer surfaces with simple geometries. It assumes that
the surface is represented by a single parameterization, and therefore surfaces with
coordinate singularities cannot be treated, and the singularity has to be excised. Most
scatterer surfaces with complicated geometries, for example, cannot be represented
by a single non-singular explicit parameterization. This problem can be resolved by
splitting the scatterer surface into several simpler surfaces with explicit parameteriza-
tions. These multiple patches collectively cover the scatterer surface in a non-singular
manner. Moreover, one can get other benefits in this way:
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1. smaller gradients in the solution by refining the patches with more highly
varying velocity coefficients,

2. possibility to parallelize, since the patches can be handled independently,
3. less need for internal memory, and

4. use of the possible symmetry of the scatterer (for example, an ellipsoid).

In this paper, we consider a two-dimensional compact manifold M embedded in R¢
and compute trajectories on the manifold. We first consider the case when the man-
ifold is represented by a single regular parameterization and modify the fast phase
space method [9, 26] to a more general class of problems. Second, we consider the
case when the manifold is represented by an atlas of charts and modify the single-
patch phase space method to this case. In both cases, dynamics of trajectories are
given by systems of first-order ODEs. Multiple-patch (or multi-block) finite differ-
ence schemes have long been used in computational science. They are a sub-class of
domain decomposition methods for solving PDEs by iteratively solving sub-problems
on smaller sub-domains [5]. However, the scheme presented here is not based on itera-
tions. Another domain decomposition method related to the multiple-patch algorithm
is the slowness matching Eulerian method [34], where local single-valued solutions of
the eikonal equations are patched together by slowness matching to obtain a global,
multi-valued traveltime field. In Section 2, we give the governing equations describing
the dynamics of trajectories on two classes of compact manifolds: the manifolds which
can be represented by a single regular parameterization and the manifolds which are
described by an atlas of charts. The construction of the single- and multiple-patch
schemes are described in Sections 3 and 4, respectively. In Sections 5 and 6, we
present applications in computing creeping rays and seismic waves, together with
sample numerical results from a prototype implementation of the scheme.

2. Governing equations

Consider a two-dimensional compact manifold M embedded in R?. We want to
compute trajectories on the manifold. Since we are interested in applications to wave
propagation problems, it is natural to consider the trajectories as rays, and we will use
this terminology henceforth. We consider two cases: when the manifold is represented
by a single regular parameterization, and when the manifold is represented by an atlas
of charts. In both cases, dynamics of rays are given by systems of three first-order
ODEs describing the rate of change of the rays’ location and direction along the ray
trajectories.

2.1. Single-patch manifolds. First, assume that the manifold can be rep-
resented by a regular parameterization x= X (u), where x € M, and the parameters
u=(u,v) belong to a set Q CR?. Note that if M is a hypersurface or a plane em-
bedded in R3, then x = (z,y,2) €R?, and if M is a plane in R?, then x= (z,y) € R%.
We introduce the phase space P=R? xS, where S=[0,27], and consider the triplet
~v=(u,v,0) as a point in this space. Let the rays be given by a system of three ODEs

Y=8(7), (2.1)

where the dot denotes differentiation with respect to the parameter 7 being the arc
length along the rays, and g=(g1,92,93) is a given three-vector function which is
periodic in §# €S. The ray trajectories on M are then confined to a subdomain €, =
) x SCP in phase space. Note that the parameter values u= (u,v) represent the rays’
location X (u) on M, and the angle 6 represents the direction of the rays.
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REMARK 2.1. A generic Hamiltonian system with Hamiltonian H(u,p) in four-
dimensional space © x R?, with p€R?, can typically be reduced to the form (2.1).
Here, 6 can, for instance, be an angle representing the direction of vector p. For
example, if H=|p|?>+V (u)=C, one can reduce it by setting

p=(C—- V(u))l/2 (cosf sinH)T,

where C' is determined by initial data. See also Section 5 and Section 6 for more
examples.

Moreover, let any information transporting along the rays, represented by a (pos-
sibly vector-valued) function 3(7), be given by a more general system of the form

B=a(v.0), (2.2)

where a(v,) is some given function. For example, when (3 is the length of the ray,
we have a=1.

2.2. Multiple-patch manifolds. There are two main classes of problems
for which representing the manifold by a single parameterization is not applicable:
the manifolds which cannot be described by a single regular parameterization due to
singularities, e.g. an airplane surface, and the manifolds with different (discontinuous)
material properties, e.g. earth consisting of materials with different seismic velocities.
The former class is of a topological and geometrical nature related to the underlying
manifold, and the latter class is more related to special applications. We therefore,
secondly, consider the more general case when M is described by an atlas of charts
(Mj,w;), with j=1,..., P, where the sets M; collectively cover M, and the mapping
wj: M; —€) is bijective. In particular, we assume that €2 is the unit square and M;
are patches with parametric equations

x=X;(u): [0,1]? — M; cRY,

and the mappings are w; :Xj_l. Then M =J; wj_l([(),l]Q). Note that although the
sets are closed, we still consider M as an atlas. We assume further that the patches
stick together along their sides (patch boundaries) and denote the side between two
connected patches M; and M, by S;;;. Note that it is possible to have j=j’, for
instance when M is a torus. When j # j’, we have S;;; = M; N M;. It is also possible
that a patch does not share a side with another patch, for example, if the manifold
has boundary (e.g. a finite cylinder). We denote such a side by Sy; which belongs
only to M;. Denote the set of all sides by S. For each patch with the id number j,
let the rays be given by a system of three equations set in €,,,

¥=g;(7), (2.3)

where g; = (g{‘7 g%, gg) is a given three-vector function. Note that g; may be different
for different j. As before, the systems (2.3) are natural structures for Hamiltonian
systems on four-dimensional spaces {2 x R? with Hamiltonian H;(u,p) whose order
are reduced by one. Correspondingly, let any information transporting along the
rays, represented by a (possibly vector-valued) function 3(7), be given by a system of
the form

B=a;(1,0) (2.4)
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where o (7y,5) is a given function. A main difference between the numerical methods
for the single patch representation of the manifold and the multiple-patch case is that
in the latter we need to connect the solutions of adjacent patches and impose suitable
conditions at the inter-patch boundaries. In order to treat this problem, we need to
introduce a global space, which is bijective with the space Zp x €),,, and in which the
boundary conditions are defined and can easily be handled. Here Zp=1{1,2,...,P}.
We first note that by our assumptions above, there is a bijective mapping between
(jou)€Zp xQ and x€ M, except when x is at patch boundaries (x€.Sj;/). Now,
let Tx M be the tangent plane (the set of tangent vectors) to M at point x € M and
TM =ycp TxM be the tangent bundle of M. The dimension of T'M is twice the
dimension of M. An element of TM is a pair I':=(x,q) where x€ M and q€ T, M.
We consider the unit tangent bundle UT'M of M which contains all unit-normed
tangent vectors (||q||=1). Note that UT M is a three-dimensional manifold embedded
in R2¢. We now want to prove that the unit tangent bundle UT M is in fact the global
manifold which is bijective with the space Zp x),. But, before the proof, we notice
that, by construction, for each point I'=(x,q) € UT M, there is a well-defined patch
id number j=J(T), except when x is on patch boundaries. We extend this function
also to the patch boundaries as follows:

e if x€S;; and qlfS;;, then J(I')=lim. o argmin; dist(x+eq, M;), which
means that J(T') is the id of the patch into which the ray starting at T’
enters.

e if xeS;; and q|| S;j, then J(I') =max(j,5").

Where by q||Sj;/, we mean that q is parallel to the patch boundary in an interval
around x € Sj;/. Therefore in this case, I' belongs to both UT'M; and UT M, and we
can choose either of j' and j" as the value of the function J(T"). In order to have a well-
defined function, we choose the larger one. Moreover, if x is at a corner sharing several
patches j,j’,7",..., and q is parallel to S;;/, we again choose J (I') =max(j,j"). We now
prove the following Lemma.

LEMMA 2.2. Suppose the Jacobian J; = Dy X; € R*? has full rank for all (j,u) € Zp x
Q). For each j there is then a bijective mapping W; :UTM; —Q,, given by W;(T') =,
where

= (x,q), Jj(w;(x))5(8) 5(0) = (cosH

qzma sin@)’ 7= (w;(x),0). (2.5)

Moreover, there is a bijective mapping between (j,y) € Zp xQp, and I'=(x,q) e UTM.

Proof. First assume that x€ M; and q€ UTxM;. Since the mapping w; :X'j_l
is bijective, there is u such that X;(u)=x, given by u=w;(x). Moreover, since the
Jacobian J;(u) has full rank, its columns span the tangent plane at x, and since q
belongs to this plane, there exists a solution 6 to

J;j(u)s(0) ) cosl

— = 0) =1 . .
Sws@] =% 0= e

The second statement follows since 7 (I") is well-defined for all '€ UT'M. This proves

the lemma. O

Note that the atlas of charts (UT'M;,W;) describe the space UT'M =J, W;l (Qp).
Figure 2.1 shows a schematic representation of the two-dimensional manifold M, the
three-dimensional space UT' M and the corresponding bijective mappings to the pa-
rameter space {2 and phase space (2,,.
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M UTM

wj

Qp

F1G. 2.1. A schematic representation of the two-dimensional manifold M embedded in R and
the three-dimensional space UTM embedded in R2%. The bijective mappings w; and W; map a
chart j of these manifolds to the two-dimensional parameter space 2 and the three-dimensional
phase space 2, respectively.

2.2.1. Boundary conditions. We may have different boundary conditions
at the patch boundaries. In some problems, the rays are continuous at the patch
boundaries. Such problems include geodesics and creeping rays computations on
a hypersurface with constant index of refraction. In these problems, the boundary
conditions are determined easily by the continuity of rays. In some problems, the rays
may not be continuous at the patch boundaries. For example, seismic propagation
in a multi-layered media with different seismic velocities is such a problem, in which
the boundary conditions are determined by Snell’s law of refraction or the law of
reflection. As was mentioned before, the inter-patch boundary conditions are given
in physical space in terms of I' € UT M, rather than in terms of y€,. Let I'=(x,q),
where x€ S5, and j'=J(I') #j, which means that the ray arrives at the side S,/
from patch M;. The inter-patch boundary condition at S, is given by,

I=c;;/(I),

where L;; is some known function, and = (x,q) eUTM 7(5)- For example, depend-
ing on the ray arriving at the side S;; from patch M;, we may have the following
boundary conditions:

o If the ray is continuous, then £;;s is the identity function

X=X, q=q.
e If the ray is refracted, then
x=x, q=85(x,9).
e If the ray is reflected, then
x=x, q=R(x,q).

Here, the functions S and R are determined by Snell’s law of refraction and the law
of reflection, respectively. See Section 6.2 for more details. In the next two sec-
tions, we present a patch-based phase space method for computing ray trajectories



M. MOTAMED AND O. RUNBORG 623

on manifolds. First, we consider the case when the manifold is represented by a
single parameterization and construct a single-patch phase space method based on
writing the systems (2.1-2.2) in an Eulerian framework. Next, we consider a wider
class of manifolds which are represented by multiple parameterizations and introduce
a multiple-patch phase space method based on solving the Eulerian version of sys-
tems (2.3-2.4) in each patch and connecting the solutions of individual patches using
suitable inter-patch boundary conditions. In both methods, properties for particular
ray families are obtained through a fast post-processing.

3. Single-patch phase space scheme

We consider the case when the two-dimensional manifold M embedded in R? is
represented by a single regular parameterization. The objective is to compute the
ray trajectories together with the information transported along them on M. First,
the system of ODEs (2.1 - 2.2), describing rays and other information, are formulated
as time-independent Eulerian PDEs in phase space. These equations are then solved
numerically on a fixed computational grid. The solution to the PDEs is post-processed
to extract information for a particular family of rays.

3.1. Mathematical formulation. = We consider a ray 7(7) satisfying (2.1),
starting at 7(0) =v=(u,v,0) € Q, and ending at the boundary 02, =0Q xS. We call
this end point (U,V,0) € 09, the escape point of the ray. See Figure 3.1. We then
define three types of unknown escape functions for this ray, as follows:

o [':P—P, F(v)=(U,V,0) is the escape point.

e &:P—R is the length of the ray. We also refer to this as the travel-time of
the ray.

e B:P—R is a function representing a relation between the [-values at the
escape and starting points, where [ satisfies (2.2).

[2}9)

w,v), e

Fic. 3.1. A ray trajectory in the parameter space, starting at = (u,v,0) €, and ending at
the escape point F(v)=(U,V,0) € 0Q,.

Each escape function f(7) of the above types satisfies an ODE,

L F) = h(3 (). £ (), (31)

where the forcing term h is 0, 1 and «(~, f) for f=F, f=® and f= B, respectively.
Using the chain rule, the escape PDE for each escape function f(v) reads

(V) fut92(7) fo+93(7) fo=h(7.f),  v7EQ, (3.2)
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with the boundary condition at inflow points of 0€2,,
fn)=b,  yedpiov, a0V ={yea,|n(y) g(y) <0},

with n being the outward normal vector in the phase space. Note that for the first
two types of escape functions f=F and f=®&, the boundary value b is v and 0,
respectively. For the third type f= B, if for instance B is the difference or ratio
between [(-values at the escape and starting points, the boundary value are b=0 or
b=1, respectively. The escape equation (3.2) is a linear hyperbolic equation, and the
variable velocity coefficients g=(g1,92,93) are known and determine the characteris-
tic direction at every point v€(2,. One important property of the solutions to the
escape PDEs is that they are in general discontinuous due to discontinuous boundary
conditions. This happens, for example, when a characteristic touches a boundary
tangentially, such that at some points on the plane the characteristic is in-going, and
suddenly it becomes out-going.

3.2. Numerical solution of the escape PDEs. We now want to solve (3.2)
numerically. We discretize the phase space domain 2, = x S uniformly, setting u; =
1Au, v;=jAv and 0}, = kA0, with the step sizes Au=Av = % and A= %’r, assuming
2 is the unit square. Moreover, let f;;; approximate an escape function f(u;,v;,0).
In addition to the boundary condition at inflow points, since the function f is periodic
in 0, we use periodic boundary conditions,

f(u,v,0)= f(u,v,27),

as numerical boundary conditions. There are different methods for solving the escape
equation (3.2). One way is to discretize the PDEs in the phase space using a finite
difference, finite volume or finite element approximation and arrive at a system of
linear equations Af =0, where A is an N x N3 matrix with a sparse structure and
beRN’ represents the boundary conditions. This system can then be solved itera-
tively, and one can speed up the computations using suitable preconditioners [12, 4].
However, in the case that characteristics change direction many times in the phase
space domain, it is difficult to find good preconditioners. Another way to solve the

escape equations is to write them as

fita futgfotogsfo=nh

and solve these time-dependent equations until the steady state f; =0. This method
can be seen as an iterative method. Finding a fast algorithm which is not much
restricted by the CFL condition is analogous to finding a good preconditioner in the
iterative method. Yet, another way to solve the equation (3.2) is to compute the
approximate solution f;;, using a ray tracing method, which traces back along the
characteristic to the initial boundary from each grid point (7,7,k). The main drawback
with this method is that it will be expensive, because one needs to trace back all N3
points in the domain all the way to the boundary. Instead, we use a Fast Marching
algorithm, given by Fomel and Sethian [9]. A similar method in two-dimensional
space was also proposed in [16]. The basic idea of the algorithm is to march the
solution outwards from the boundary and use the characteristic directions to update
grid values. Note that in the algorithm, we always also compute ®;;. besides f;;1.
First, the grid points are divided into three classes:

o Accepted: the correct values of fj;; and ;5 have been computed.



M. MOTAMED AND O. RUNBORG 625

e Considered: adjacent to Accepted for which f;;, and ®;;, have already been
computed, but may be corrected by a later computation.

e Far: the correct values of fi i and ®;;;, are not known.
The major steps of the algorithm are then as follows:

0. Start with all nodes (u;,v;,0;) €€, in Far, and assign ®;;;, at these nodes a
large value. This large value needs to be greater than the length (travel-time)
of every possible ray in the computational domain. Put the boundary nodes
(ui,vj,ﬂk)eaﬂi,“ﬂow in Accepted, and assign fij; and ®;;, at these nodes
the correct boundary values. Put each node adjacent to Accepted, for which
the characteristic’ at that node points back to the boundary, in Considered.
Each Considered node is then given a value by using a local cell characteristic
method.

1. Take the Considered node with the smallest arrival time ®;;;, as Accepted.

2. Find the octant toward which the characteristic going through that node
points.

3. For each neighboring grid point in the octant which is not Accepted use the
local cell characteristic method to (possibly) compute new values for fi;x
and @®;;,. In the case we can compute new values for a Far node, put it in
Considered.

4. Loop to step 1 until all points are Accepted.

Since in [9] the local cell characteristic method, used in steps 0 and 3 of the algorithm,
is not discussed, we will here describe a version of first and second order local cell-
based ray tracing methods using a local linear and parabolic ray tracing and the
Taylor expansion of the trajectory near the starting point. Consider a grid cell in €,
and assume we want to compute the value of f;;, at a corner of this cell, knowing
the correct values of f at some neighboring grid points. The output of the local ray
tracing would be either a new value for f;;, or no new value, depending on whether
the neighboring points, to which the characteristic points back, are Accepted or not.
See Figure 3.2. Let 7 be the arc length parameterization along the characteristic (7).
We start at v(0) = (u;,v5,0%), where we want to compute a possibly new value, and
trace backwards along the characteristic to intersect a cell face at y(7*), 7* <0. We
Taylor expand f near the starting point,
. . df 2 f
FO)=f0 ) +77 (v (0) + ==

with local truncation error O(7*) ~ O(Au?). Note that d%f(’y(O)) and %f('y(())) in
(3.3) are given by:

(4(0) +O(7"%), (3:3)

diT F(1(0) =R (v(0), F((0))),

& 1G(0) = h(3(0), £((0))
=g(7(0)) - V3 (v(0), F(4(0))) + 7oy (v(0), £ (7(0))) = (v(0), f (4(0)))..

Therefore, to find f(7(0)), with accuracy of O(7**), we need to know 7* and f(y(7*)).
Note that for f=F and f=®, since %F(’Y(T)) =0 and %@(7(7’)) =1, the expansion

IWe approximate the characteristic by a piecewise linear curve for a first order method and
piecewise parabolic for a second order method.
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(3.3) reduces to

F(y(r7))=F(~(0)), (3.4)
(y(77)) =2((0)) + 77" (3.5)
3.2.1. First order method. We assume that characteristics are linear in

each cell. Therefore, we can write

Y(r)mo1+oa1, 01=7(0), o02=7(0)=g(7(0)).

Note that o1 and o3 are known. There are six possible planes, ©=1u;41,v="v;+1 and
0 =0j+1, which this line can intersect. We, therefore, get six crossing points 71,...,7g,
which are solutions of six linear equations. It is then clear that 7% =max, o7;.
Knowing the crossing face and the crossing point v(7*), we continue as follows:
a. If all four points of the cell face are Accepted, use these points to interpolate
a value of f(y(7*)). Then use the first two terms of the Taylor expansion
(3.3) to compute a new value for f;;x~ f(7(0)). Note that we need to solve
a (possibly) nonlinear algebraic equation, when h depends on f,

FOr(0) = f(3(7)) =7 h(7(0), £(7(0)))-
Put this node in Considered. Since the method is first order, a two dimen-
sional bilinear interpolation is used. See Figure 3.2.
b. If no points on the cell face are Accepted, do not update the value.

c. Else, continue tracing along the characteristic until either (a) or (b) occurs.
Note that each time the characteristic enters a new cell, the new starting
point needs to be updated.

O Considered
@ Accepted

Fi1G. 3.2. A grid cell in Q. Point A is updated by tracing the characteristic back to point B
and interpolating from the accepted values. Here, points A and B correspond to v(0) and ~(7*),
respectively.

3.2.2. Second order method. We assume that characteristics are parabolic
in each cell and write

. 1. 1. .
Y(r)mo1+0oam+037%, 01=7(0), 02=%(0), o3= 57(0) = QDW(OW(O)-
Note that o1, 09 and o3 are known. In this case, there are nine possible cell faces
which can intersect this parabola; v =u;,v=wv;,0 =0, and the six faces in the linear
case. By intersecting the parabola with the faces, we get nine crossing points 7,...,79,
which are solutions of simple quadratic equations. We then get 7" =max,, <o7; and

continue in the following way:
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a. Pick the crossing face and eight faces around it in the same plane, sharing
sixteen grid points in total. If all sixteen points are Accepted, use these points
to interpolate a value of f(y(7*)). Then use the first three terms of the Taylor
expansion (3.3) to compute a new value for fi;;~ f(7(0)). Note that, again,
we need to solve a (possibly) nonlinear algebraic equation, when h depends

on f,

2
T d

— - h(3(0),£(3(0)).

FO(0) = f(y(77)) =77 h(7(0), f (+(0))) =

Put this node in Considered. Because the solution can be discontinuous, we
use a version of two dimensional essentially non-oscillatory (ENO) interpola-
tion based on Newton divided differences and the Newton formulation of the
interpolation polynomial. Among four points in each dimension, we pick up
either the left three or the right three points which have a smaller divided
difference and use a second order polynomial. See [33].

b. If no points on the cell face are Accepted, do not update the value.

c. Else, continue tracing along the characteristic until either (a) or (b) occurs.
Note that each time the characteristic enters a new cell, the new starting
point needs to be updated.

The algorithm is a one-pass algorithm and is of complexity O(N3log N). Note that we
use a heap sort algorithm for extracting the smallest arrival time ®;;; of Considered
nodes and for inserting new updated values of Considered nodes. There is, however,
no proof of convergence for the method.

3.3. Post-processing. Solutions of the escape PDEs (3.2) give the escape
point, length and other information for rays with all possible starting points in the
phase space. These solutions need to be post-processed to extract properties for a ray
family. As an example, suppose we want to compute the length of the ray between
two points u; and up in the parameter space Q2. We first observe that F'(y1)=F(72),
if and only if the points v; and ~- lie on the same ray. We can thus find 6, and 65,
as the solution to

F(ul,Hl):F(ugﬁg). (36)

The length is then given by |®(uy,01) — ®(usz,02)|. Note that there may be multiple
solutions to (3.6), giving multiple lengths. If up €992, the expression simplifies to
solving

(U(uy,01),V(uy,61)) =uy, (3.7)

for 0 to get the length ®(uy,61). To solve (3.6), we note that since F'=(U,V,0) € 0Q,,
is a point on the phase space boundary, it can be reduced to a point (S,0) in R?, where
S represents the escape location on the boundary 9. For example, if Q=[0,1]2, we
can choose S €[0,27] along 9 such that S=0, S=m and S=2r for (U,V)=(0,0),
(U,V)=(1,1) and (U,V)=(0,0), respectively. The left and right hand sides of (3.6)
are then curves in R? parameterized by #; and 6, and solving the algebraic equation
(3.6) amounts to finding crossing points of these curves. Having the discrete solutions
at the points u; and uy for all N directions, we then need to find crossing points
of two complex lines of N straight line segments as the solutions to (3.6). This can
be done with a complexity of O(N); see e.g. [35]. We note that in the case that a
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second order method for solving the escape equations is used, the linear intersection
algorithm will not affect second order accuracy of the method. In fact, the intersection
algorithm is performed only to find the intersection’s neighboring points. We use a
higher order interpolation to compute the initial angles 6; and 6y and the escape
functions corresponding to these angles. The complexity of finding the ray length
between one fixed source point and all other N2 points in €2 is then O(N?), and the
total complexity, including solving the escape PDEs, will therefore be O(N3logN).
This is expensive for computing this so called travel-time field for only one source
point. For example by using wave front tracking or solvers based on the surface
eikonal equation, the complexity is O(N?). However, if the solutions are sought for
many source points, the phase space method can be more efficient. See Section 5 for
such an example.

4. Multiple-patch phase space scheme

We now consider the more complicated and realistic case when the manifold
M cannot be represented by one regular parameterization. We let M be described
by an atlas of charts or multiple patches and want to compute the ray trajectories
together with the information transported along them on the manifold. First, in each
chart (patch) the ODEs of the system (2.3 - 2.4) are formulated as time-independent
Fulerian PDEs and solved numerically on a fixed computational grid in phase space.
The solutions to the PDEs in each chart are then connected using suitable inter-patch
boundary conditions. Information for a particular family of rays is then extracted
through a fast post-processing. We describe the multiple-patch scheme and the key
design choices in such a scheme, including the number and shape of patches, the
treatment of inter-patch boundaries and the choice of escape boundary.

4.1. Multiple-patch construction. We first want to define a function F for
the multiple patch case that corresponds to the single patch solution F' described in
Section 3. Let R be some curve in M, representing an escape boundary. We consider
a ray starting at a point € UTM and define F(T'):UTM — UTM as mapping the
point I' to another point in the space UT'M where the projection of the ray onto M
first crosses R (assuming such a point exists). If the compact manifold has a boundary
(e.g. a finite cylinder), we let this be the escape boundary, similar to the case of a
single-patch manifold. Hence, R={]J ; So;. However, for a compact boundaryless
manifold (e.g. a sphere or a torus), there is no obvious escape boundary, as in the
single patch case. In this case we will let

R= U Sjj/ cS (41)
(4,3 )CR

be the escape boundary, where R is some index set, to be determined (see below). To
compute F(T"), we first recall that, by construction, for each point I'=(x,q) e UT M,
there is a well-defined patch id number j=7(I') and a well-defined mapping W;:
UTM;—,. Now, suppose Fj;(v) are the solutions to the escape PDE (3.2), with
f=F in Q, corresponding to each patch with j=1,...,P. The function F(T") is then
given recursively by

Lo=T, (4.2)
and while %, ¢ R, where T, = (Xn,Qn),

J=T@0), Tnp=W;'"F;(W;(Ty), j'=J(Cn1), Tni1=LjjTns1), (43)
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where L£;;/ is the operator representing the inter-patch boundary conditions between
patches M; and M. Then F(I')=I',-, where n* is the smallest index for which
Xp+ €R.

REMARK 4.1. If the rays are continuous at the patch boundaries, £;;; will be the
identity function (an =Ty41). From the above recursive formula, it is easy to see
that, in order to compute the function F for all points in UT'M it is enough to
know the escape PDE solutions F} in all patches and the patch transfer functions
Tjj :Wj/W]71 at all sides connecting two patches M; and Mj,. Note that these
transfer functions can be easily calculated from the mappings W;. As an example,
in Section 5, we will discuss the computation of creeping rays which are continuous
at patch boundaries. If the rays are not continuous at the patch boundaries, each
time they pass a boundary, the coordinates of I, 11 may change (fn+1 #T,41). This
happens when, for example, the rays change their direction as they enter another patch
with different properties. The patch transfer functions are then changed to 7;; =
Wi Lo W{l. Here, transfer functions are again easily calculated from the mappings
W; and the inter-patch boundary conditions. We will consider such examples in
Section 6, where the rays change direction according to Snell’s law of refraction and
the law of reflection.

Similar to F(I"), we can define the functions ®(I') and B(T") in UT'M for the
multiple patch case corresponding to the single patch functions ® and B described in
Section 3. Assuming ®;(v) and B; () are the solutions to the escape PDE (3.2), with
f=® and f =B, respectively, in €2, corresponding to each patch with j=1,..., P, we
can write

B)= 3 (W, (F),
n=0

with j and T, as in (4.2)-(4.3), and

n*—1

B(I)= Y B;(W;(T,))
n=0

if B is, for example, the difference between [-values at I',, and 'y, and

n*—1

B(F) = H Bj(Wj (fn))
n=0

if B represents, for example, the ratio between (-values.

4.2. Post-processing. Suppose we want to compute the length of a ray
connecting two points x; € M, and x3 € M;,. In order to find this ray, if the mani-
fold has a boundary, we let this be the escape boundary, and the post-processing is
similar to the single patch case with F' replaced by F. In the case of a boundaryless
manifold, we choose the boundaries of M;, as the escape boundary R. We then find
F (szl(wjl (x1),61)) for all directions 6; €S. We now modify the function F(I') by
F,.(T'), where n is the number of times that the ray starting at T' hits the escape
boundary. It is therefore obvious that F1(I')=F(T'). In the case where the rays at
the patch boundaries are continuous, we have,

F,([)=FoF- - oF(). (4.4)

n times
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In general, the boundary function £;;; must be applied in composition too. Anal-
ogously, we can define functions ®,, and B,,. For all directions 03 €S we then find
F, (ngl(wj2 (x2),62)). Since we do not know how many times the ray, which starts
at xo and passes through x;, hits R, we need to find F,, for several values n=1,2,....

See Figure 4.1 for three different cases where n is 1, 2 and 3. We then find 64, 6> and

M Mj

Mj Mj

(a) n=1, (j1=Jj2=1) (b) n=2, (j1=4, je=74")
M

J

M;

(c) n=3, (j1=J2=7)

FiG. 4.1. Two neighboring patches M; and M. The ray (dashed curve) starting at x2 and
passing through x1, hits the escape boundary R (thick curves) n times. Here, three different cases
are shown where n is 1, 2 and 3.

n as the solutions to the algebraic equations

F (W'_1<wj1 (Xl)’el)) =F, (W‘_l (wjz (X2)702)) ’ (45)

J1 J2

analogous to (3.6) in the single-patch case. There will be at most four systems of
equations corresponding to four sides of patch Mj,, for each value of n. The solutions
to (4.5) can be computed by finding intersections of four sets of possibly crossing
curves. The length is then given by

12(W; () —@n (W, (12))

with y1 = (wj, (x1),01) and 72 = (w;,(x2),02).

b

4.3. Number and shape of patches and parameterizations. One of
the key design choices in such a multiple-patch scheme is the choice of patches and
parameterizations. The important things are:

1. Patches should cover the physical domain with nonsingular parameterizations.
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2. Parameterizations should have small coordinate distortions to make finite
differencing accurate.

3. The right hand side h(vy,f) in the escape PDEs should be well resolved by
the patch discretization.

REMARK 4.2. Using overlapping patches, one can possibly reduce the number of
patches. However, the objective in this work has not been optimizing the number of
patches.

4.4. Choosing escape boundary. Another key design choice is the choice
of escape boundary. Two things are important about R, and R:

1. The projection of each ray of interest onto M should cross R at some point.
Otherwise F(T') is not well defined for all points. It is not obvious how to
verify this rigorously. Having nonzero coefficients, g(v)#0 everywhere is a
necessary condition. However it is still possible to have rays that never reach
a given boundary, see e.g. [23].

2. If the compact manifold has a boundary, we can choose this as the escape
boundary, similar to the single-patch manifold.

4.5. Limitations and extra problems. There are a couple of difficulties
and problems:

1. In some cases, one cannot capture all rays of interest by only one choice of
escape boundary. Different choices of escape boundary might be needed. A
good implementation of the algorithm will then be the one which considers
different combinations of patch boundaries as the escape boundary. Note that
this is done in post-processing and does not require recomputation of the f;
solutions.

2. When a ray hits an inter-patch boundary, in order to find the escape solution
at this point, we need to interpolate the discrete solutions computed on a
fixed grid. The interpolation can be difficult if a ray is tangent to the inter-
patch boundary. One possible way to overcome such a problem is to use
overlapping patches. Another possibility is to choose another atlas of charts
for the manifold.

5. Application to creeping ray computations

A creeping rays is a type of diffracted ray which is generated at the shadow line?
of the scatterer and propagates along geodesic paths on the scatterer surface. On
a perfectly conducting convex body, creeping rays attenuate along their propagation
path by tangentially shedding diffracted rays and losing energy. On a concave scat-
terer, they propagate on the surface and importantly, in the absence of dissipation,
experience no attenuation. The study of creeping rays is important in many high
frequency problems, such as design of sophisticated and conformal antennas [19], an-
tenna coupling problems [21], radar cross section (RCS) computations [3, 19, 32, 26]
and control of scattering properties of metallic structures coated with dielectric mate-
rials [28, 1, 22, 27]. In this section, we consider the application of the multiple-patch
phase space method to computing creeping rays. Here, the computational domain is
a scatterer surface which is a two-dimensional hypersurface embedded in R?. We split

2Shadow line or horizon is the locus of the points at which the incident rays are tangent to the
scatterer surface.
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the surface into multiple patches represented by different parameterizations. The
escape PDEs describing creeping rays are solved in each patch, individually. The
creeping rays on the scatterer are then computed by connecting all individual solu-
tions. The inter-patch boundaries are treated by the continuity of characteristics. We
first consider the case when the scatterer surface has a regular explicit parameteriza-
tion and write the governing equations for computing creeping rays. We then discuss
the multiple-patch scheme and give two numerical examples where the contribution
of creeping rays to mono-static RCS is computed.

5.1. Governing equations. We consider a scatterer surface with a regular
explicit parameterization, represented by x= X (u), where x= (z,y,2) €R3, and the
parameters u= (u,v) belong to a set QCR?. Let the scatterer be illuminated by
incident rays in a direction denoted by a normalized vector I= [11,22,23]. We assume
that the shadow line ug(s) is represented by a curve in parameter space, with s being
the arc-length parameterization. The objective is to compute the geodesic paths
on the scatterer surface together with the phase and amplitude of the wave field of
creeping rays generated on the scatterer. According to Keller and Lewis [17], the
surface phase satisfies the surface eikonal equation,

Vgl =n, (5.1)

where n(u) is the index of refraction at the surface, and V is the surface gradient,
defined as

Vo:=JG Ve, G=J"J,  J=[X,X,|eR3>*2
We can write (5.1) as a Hamilton-Jacobi equation H(u,V¢)=

2

Hup)=5p ¢ wp- 1Y (52
Note that in the case n= constant, the rays associated with the surface eikonal
equation (5.1) are geodesics, or shortest paths between two points on the surface.
Henceforth, we will assume n=1. We write (without derivation) the set of equations
which are used in computing creeping rays and are obtained by reducing the order
of the Hamiltonian system corresponding to (5.2) by one. For derivations see [26]. A
geodesic on the surface is uniquely characterized by its location, (u,v), and direction,
6. Letting v := (u,v,0), the geodesics satisfy the system of ODEs (2.1) with

0, with the Hamiltonian

p(7) cost
g(y)=1{ p(y)sind |. (5.3)
pP(MV(7)

The parameter 7 is the arc length along the geodesic in the physical space, and
p=p(u,v,0)= ’Xu cosf+ X, sin€|_1 ,
V(v) = (T}, cos® 6 42T}, cosfsind + T3, sin 0) sin ) —
(I'2, cos? 6+ 212, cosfsin§ +T'2,sin? #) cos b,

where Ffj(u) are Christoffel symbols. Moreover, we know that the phase ¢ is the
length of the ray, given by (2.2) with §=¢ and =1, and the amplitude a is computed
by,

a(T):CLQQ(S,T)%leXp (—w1/3ﬁ(7)), (5.4)
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where ag is the amplitude at the starting point on the shadow line, Q(s,7) is the
geometrical spreading at distance 7 from the starting point, and 5(7) is a function
representing the attenuation factor given by (2.2) with

Q . (pg(7) e N
a(’y)pg<’y)exp<z6( ) > ), qo~2.33811. (5.5)

Here pgy(v) is the radius of curvature of the surface along the ray trajectory. We
then let the escape function B be the difference between the B-values at the escape
and starting points. All escape functions F, ® and B satisfy Equ. (3.2), with the
right hand side h being 0, 1 and « given by (5.5) respectively. In order to compute
the amplitude, in addition to 3, we need also to compute geometrical spreading. We
set 1(s,7) :=u(r), with 1(s,0) =ug(s) and let X (s,7) ;=X (u(s,7)) be a point on the
geodesic at the distance 7 from the starting point X,(s)=X(s,0) on the shadow line.
The geometrical spreading of the creeping ray at X (s,7) in the physical space is given
by, [26],
L%,

Q(s,T) X Kor (5.6)
We consider a fixed shadow line v (s) = (ug(s),v0(s),00(s)) and define 5(s,7) :=~(7),
where ~ solves (2.1) with initial data vo(s). Let L(yo)={5(s,7) : 7>0} be a sub-
manifold of phase space P on which the creeping rays generated at vo(s) lie. The
Eulerian version of the geometrical spreading @ :LL(yy) — R, restricted to L(vo) and
defined as Q(7(s,7)):=Q(s,7), is then given by

2) = o)l J . T=Ju, 5.7
Q)= 7 R (o (5))]T Xo(o) (57

where z=2(s,7) is a solution to
Dy F(3)2= L Flo(s). (5.8)

; (5.9)

where X :R—R3 is defined by X (s):=X(U(70(s)),V(10(s))). Note that X,(s) in
(5.9) and D,F(7) and Fs(7o(s)) in (5.8) can be computed by numerically differenti-
ating the solution to the PDEs in (3.2) with f=F, as was done in [26]. Instead, one
can also directly compute X, in (5.6) by adding other ODEs to the geodesic system
(2.1) as follows: First, we note that X, = Jii,. We then differentiate (2.1) with respect
to s and derive the following ODE system

’LYS:D’yg:)/sa :78(530):’705(5)' (510)

By solving this ODE, @i,, and therefore X, can be computed. One can also write the
escape PDE for (5.10) in the same way as before and post-process the phase space
solution.
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5.2. Multiple-patch scheme. We now split the scatterer surface M into
several simpler surfaces with explicit regular parameterizations. As before, let M be
given by an atlas of charts (M;,w;), where the patches M; C R3 have the parametric
equations x= X, (u):[0,1]2 — M; and collectively cover M. Moreover, the mappings
w; =Xj71 : M; — [0,1]? are bijective. Since on a geodesic T in (5.7) has unit length, we
can consider the unit tangent bundle UT M of M as the global space. Note that UT M
is a three-dimensional manifold embedded in RS. By Lemma 2.2, there is therefore
a bijective mapping W; :UTM; —, for each j, defined by W;(I')=r, with v and
I' as in (2.5). Knowing the bijective mappings w; and W}, and the solution to the
escape PDEs in each patch, F);, ®; and B;, we can compute the multiple-patch escape
functions F, ® and B as described in Section 4.1.

5.3. Post-processing. In order to compute phase and amplitude of a ray
family, post-processing of the solutions to the escape PDEs (3.2) is needed. For a given
illumination direction, assume that the shadow line is known and given by I'y(s) in
the unit tangent bundle UTM. For each point x € M; covered by the surface wave,
there is at least one creeping ray which starts at the shadow line and passes through
that point. In order to find this ray, assuming the scatterer surface is boundaryless,
we first choose the escape boundary R as the boundaries of M;. Note that in the case
of a surface with boundary, we choose its boundary as the escape boundary, and the
post-processing will be similar to the single-patch case discussed in [26]. We then find
F (ijl(wj (x),6)) for all directions 6 € S. Moreover, for all points on the shadow line
we find F,, (T'y(s)), defined by (4.4), with n=1,2,.... We then find s=s*, §=0* and
n=n" as the solutions to the algebraic equations

F (W, (w;(x),0)) =F, (To(s)), (5.11)
analogous to (3.6) in the single-patch case. There will be at most four systems of
equations corresponding to four sides of patch Mj, for each value of n. The solutions
to (5.11) can be computed by finding intersections of four sets of possibly crossing
curves. Now we can use (5.8) to compute z with vo =W}, (I'g(s*)) and 7= (w;(x),0"),
where jo=J(To(s*)). Note that F(¥) and F(vy) in the left and right hand sides
of (5.8) are replaced by W;(F(W,;'(7))) and W;(F,-(To(s*))), respectively. The
geometrical spreading Q(7) at point x will be therefore computed by (5.7), and phase
and amplitude are given by

d(w;(x))=go+2(W,. ' (70)) —® (W, (%)),

A<v>=AoQ@>5exp(—wé (B(W;, () —B(Wﬁ@))))

where ¢g and Ag are the phase and amplitude at the point v, respectively.

5.4. Example 1: a scalene ellipsoid. @ We consider the scatterer surfaces to
be a scalene ellipsoid (an ellipsoid with different semi-axes) and apply the multiple-
patch phase space method to compute the contribution of backscattered creeping rays
to mono-static RCS, i.e., the rays that propagate on the surface of the scatterer
and return in the opposite direction of incident waves. We assume that the incom-
ing amplitudes are one at attachment points on the shadow line and compute the
backscattered amplitude at detachment points on the shadow line. We also compute
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the length of the backscattered rays. We consider an ellipsoid given by

2 2 2
vy zc
StEta=l

with a=2, b=1 and ¢=0.5. Since there is no single non-singular parameterization
for the ellipsoid, we split it into six patches with non-singular parameterizations (see
Figure 5.1) and solve for f(v) in each patch, as described in Section 3.2. In order
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FiG. 5.1. The upper left figure shows an ellipsoid with a single patch parameterization which
is singular at two poles. The upper right figure shows the ellipsoid divided into 6 patches. Note
that the singularities have been removed using non-singular multiple parameterizations. The lower
figure shows the structure of patches and patch boundaries in parameter space. Patches j=1,...,6

correspond to left, front, up, right, back and down patches, respectively. These 6 patches share 12
stdes in total, shown with italic numbers.

to find the backscattered creeping ray by post-processing, we first choose the escape

boundary consisting of six sides, as highlighted in Figure 5.2. We then continue as
follows:

0. Given a pair of incident angles (V1,¥5) € [0,90°]2, find the incident direction
I=[sinV; cos Uy, cos Wy cos Uy, sin Wy].
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FiG. 5.2. The ellipsoid with its patch boundaries. Thick lines show the escape boundary.

1. Find the shadow line o(s)=(uo(s),00(s)) in the phase space 2, using the
relations N7 I=0 and T'(vo(s))=1 in patch j(s). Let the parameterization
of the shadow line be discretized in N grid points {s,} with n=1,...,N.

2. For each point on the shadow line find F (Wﬂsln)('yo(sn)» as discussed in
Section 4.1.

3. A backscattered ray starting at attachment point s, and ending at detach-
ment point sy on the shadow line should satisfy

F (W, (70(s0))) =F (W}, (0(54))) +C,

where j, =7j(s,) and js=7j(s4), and C is a constant accounting for the fact
that the directions of creeping rays starting at s, and sy differ by 7 on the
escape boundary. The right and left hand sides of this equation can be rep-
resented as six sets of curves in R? parameterized by s, corresponding to six
sides of the escape boundary. To find the backscattered ray we need to find
crossing points of these curves, as is done in the single-patch case.

4. For each crossing point, there is a pair of backscattered rays (two backscat-
tered rays lying on top of each other); one starting at point s, and ending
at point sg, the other starting at point sy and ending at point s,. Although
these two rays have the same lengths, they do not have the same geometrical
spreading and therefore not the same amplitude. Compute two geometrical
spreadings as described in Section 5.3 with y9="(sq) and y="(s,) for the
first backscattered ray and vo=7(s,) and y=-(s4) for the second one.

5. The length and amplitudes are then computed as,

¢=®(s,)+®([s,), Ts, =W, (7(sa)), Tsa=Wj, (7(s4)),

Ja Jd

A2=Qr(sa)) T exp (ot (BT +B(T.)) ).

Figure 5.3 shows the backscattered rays for two different incident angles. There are
three pairs of backscattered rays which can be detected by the algorithm. Every two



M. MOTAMED AND O. RUNBORG 637

S e —

Fic. 5.3. The left figure shows the backscattered creeping rays (thick curves) for W1 =30 and
Vo =0. The right figure shows the backscattered creeping rays for V1 =30 and Vo =10. Thin curves
represent the shadow lines.

rays of each pair lie on top of each other. We note that in [26], because of using a
single patch and excising the singularity at two poles, only the shortest backscattered
ray could be captured. Figure 5.4 shows the length and amplitudes of the shortest
backscattered ray for different incident angles, with w=1. The peaks in the amplitude
correspond to caustic backscattered creeping rays which have infinite amplitudes. Such
rays are particularly important in near-field RCS computations. However, in far-field
RCS, due to the the geometrical spreading outside the scatterer, their contribution
may not be as important. Figure 5.5 shows the convergence of length and ampli-
tudes of the backscattered creeping ray for a fixed vertical angle Wo =70 and different
horizontal incident angles ¥ € [—90°,90°]. We use a second-order Fast Marching al-
gorithm on a coarse grid of the size 50% and a fine grid of the size 1003. We compare
them with a reference solution obtained by a high-order ray-tracing method. The
rate of convergence confirms the second-order accuracy of the algorithm. We note
that compared to the results in [26], where a first-order algorithm was used, the ac-
curacy of the amplitude has been improved dramatically. This shows that using a
first-order-accurate method for computing the phase and amplitude results in a worse
relative error for the amplitude than for the phase. Therefore, higher-order algo-
rithms are required to obtain low relative errors for the amplitude, as observed also
in [30]. The complexity of using the fast phase space method proposed here consists
of two parts. First, the cost of solving the PDEs by the Fast Marching method is
O(N3logN). Second, the cost of finding the backscattered rays for each shadow line
is O(N). For all N? shadow lines, the cost is O(N?). Therefore the total complexity
will be O(N3logN). The total cost of other methods, such as wave-front tracking
and solvers based on the surface eikonal equation, will be O(N*%), if the cost for each
shadow line is O(N?). In this case, using the phase-space method will then be much
faster.

REMARK 5.1. A graph structure can be useful for a general computer implementation.
The topology of the surface can be described by a graph, in which each patch is a
node and the edges go between connected patches. Figure 5.6 a shows the graph
corresponding to the ellipsoid divided into six patches which are connected through
twelve sides (see Figure 5.1). The graph therefore has six nodes and twelve edges.
We can also introduce another topology graph, in which the nodes are the sides of
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Fic. 5.5. Length and amplitude (with w=1) of the backscattered creeping rays for different
horizontal incident angles and a fized vertical angle Vo =T0°. By refining the grid, solutions of the
second order phase-space algorithm converge to a reference solution obtained by a high order ray
tracing method with a correct rate. The right figures show zoomed views of left figures.

5.5. Example 2: a balloon. We consider a balloon-shaped surface consisting
of a hemisphere in the positive side of the z-axis, centered at the origin and with radius
r, and the surface created by rotating the part of the parabola z%=2r(r—y) over
the interval —v/2r <0 about the z-axis. This is a simple smooth version of the cone-
hemisphere studied in [3] as a model for low-observable objects where creeping rays are
important for RCS. We divide this surface into six patches, as shown in Figure 5.7; The
hemisphere is split into five patches j=1,...,5, and the parabolic part is represented
by one patch j =6. We excise the singularity at the vertex of the balloon by cutting it
off. The lower boundary of patch 7 =6 will therefore be an excision boundary and is
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(a)

Fic. 5.6. Representation of an ellipsoid divided into 6 patches by two different graph structures.
The left figure shows the graph with 6 nodes and 12 edges. Here, the nodes 1 to 6 denotes the left,
front, up, right, back and down patches, respectively. The right figure shows the graph with 12 nodes
and 72 edges.

not considered as a patch boundary. We also partition the upper boundary of patch
j =06 into four boundaries connecting to lower boundaries of patches j=1,...,4. Note
that the left and right boundaries of patch j=6 are in fact the same. Therefore,
there are in total thirteen sides connecting six patches. See Figure 5.7. Since the

(b)

Fic. 5.7. The left figure shows the balloon divided into 6 patches. The right figure shows the
structure of patches and patch boundaries in parameter space. Patches j=1,...,6 correspond to
front, right, back, left, up and down patches, respectively. These 6 patches share 13 sides in total,
shown with italic numbers.

surface is symmetric about the z-axis, we consider a fixed horizontal incident angle
¥, =90°, and due to symmetry about the yz-plane, we consider the vertical angles
U, €[—90°,90°]. Figure 5.8 shows the backscattered rays for two different incident
angles Wy =40° and Wy =—40°. For positive vertical-incident angles, there are four
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pairs of backscattered rays which can be detected by the algorithm. Two of them are
symmetric and have the same length and amplitudes. For negative vertical-incident
angles, only one backscattered ray can be captured. We notice that in the case ¥y =
90°, there will be infinitely many backscattered rays which results in high observability
of the object in this incident direction. On the other hand, for U5 =—90°, there will
be no backscattered ray because we have excised the vertex. In fact, even if we did not
excise it, all creeping rays would go to the vertex and diffract in different directions.
Figure 5.9 shows the length and amplitude of backscattered rays in a polar coordinate

<

Fic. 5.8. Backscattered creeping rays (thick curves) for Wo=40° (left figure) and Vo =—40°
(right figure). Thin curves represent the shadow lines.

system for all incident directions ¥ € [0°,360°]. The angles ¥ €[0°,90°] in the polar
system correspond to Wy €[0°,—90°], and the angles W€ [270°,360°] correspond to
U, €[90°,0°]. The values for ¥ e[90°,270°] are then calculated using the symmetry
of the surface about the yz-plane.

6. Application to seismic wave computations

The inhomogeneity of earth causes deflection and reflection of seismic waves. The
numerical study of seismic wave propagations, therefore, helps us to learn about the
inhomogeneous structure of earth, which is important in direct and inverse problems
of seismology and seismic exploration of oil. In this section, we apply the multiple-
patch phase space method to compute the travel-times of seismic rays. We consider
a two-dimensional multi-layered medium whose different layers have different wave
speeds. We split the medium into multiple patches corresponding to different layers.
The escape PDEs describing seismic waves are solved in each patch, individually.
The travel-times of the waves in the medium are then computed by connecting all
individual solutions. The inter-patch boundaries are treated by Snell’s law and the
law of reflection. We first consider the case when the medium has a regular explicit
parameterization and derive the governing equations. We then discuss the multiple-
patch scheme and give a numerical example for computing the travel-times.

6.1. Governing equations.  Consider a two-dimensional medium M repre-
sented by parametric equations x= X (u), where x=(x,y) € M CR? and u= (u,v) €
Q CR?. The phase ¢ of the wave satisfies the eikonal equation,

Vol =n(x), (6.1)
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90 90

0 180

90

Fic. 5.9. Length and amplitude (with w=1) of the backscattered creeping rays for all illumina-
tion directions ¥ € [0°,360°]. The upper left and right figures show the length and amplitude of the
backscattered rays, respectively. There are four pairs of rays among which two (illustrated by o) are
symmetric. Note that at ¥ =90° (¥y=—90°), there will be no backscattered ray because all creeping
rays go to the vertex and diffract in different directions. At ¥ =270° (V2=90°), however, there
are infinitely many backscattered rays resulting in high observability of the object in this incident
direction, and therefore the values are not shown. Because of the excision, the longest backscattered
ray (illustrated by x ) can be captured only for ¥ €[220°,320°] (¥4 >40°). Bottom figure shows the

total amplitude, Aot = 4 /A% +A§ +A§ +A‘21, of all four backscattered creeping rays.

which is a Hamilton-Jacobi equation. The Hamiltonian for the eikonal equation can
be written in the form

H(x,p)=c(x)|p|=1, (6.2)

where ¢(x)=1/n(x) is the wave speed and p=V¢. Introducing the arc length pa-
rameter 7, a ray trajectory (u(),p(7)) in Qx R? is given by the Hamiltonian system
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g:02 X -0a
D] x)p, (6.3a)
Vxe(x)

e(x)

x=c(x)

p=—[p| Vxe(x) = - (6.3b)

where the dot denotes differentiation with respect 7. Since x=.J(u)u with the Jaco-
bian J=[X, X,] € R?*2, we have

u=J " (u)x=c*(X(u))J '(u)p. (6.4)
Moreover, inspired by |p|= ﬁ, we set p= (p1,p2) | = — (cosf,sinf) T. Differentiat-

T e(x)
ing p with respect to 7, we get

. Vy—is % cosf — —fsinf
b= <Go " , C(f‘)o' aE (6.5)
xc(x)~xsm +m CcOos

By (6.3) and (6.5), we get 6 = c,(x)sinf —c,(x)cosf. Therefore, setting v := (u,v,6) €
Q,, the function g(v) in (2.1) will be

(X (u)) (g cosf+g'?sind)
g(y)=1| c(X(u))(g* cosf+g**sinb) |, (6.6)
¢z (X (u))sind —c, (X (u))cosé

where (¢*/)=J"1(u). Note that since x||p by (6.3), the angle § represents the di-
rection of the ray trajectory at x in the physical space. Moreover, with our choice of
Hamiltonian,

a%(x(r))=v¢<x<7>>-x<f>=p-p°‘(’|‘p<|7”= Iple(x(r)) =1,

implying that ¢ corresponds to travel-time.

6.2. Multiple-patch scheme. We assume that the physical domain, rep-
resenting a medium, is a two-dimensional compact manifold M C R? with boundary.
Since the wave speed distribution in a multi-layered inhomogeneous medium is not
continuous, it is natural to split the medium into different patches with continuous
wave speed distributions. We now let M be described by an atlas of charts (M;,w;)
as before. The three-dimensional unit tangent bundle UTM is embedded in R*.
In this case, there is an easier way to represent UTM by simplifying the mapping
W;:UTM; —Q, to be W;(I') =+, where

r=(xaq) q=§<a>=(c°s"), = (5(x),0). (6.7)

siné
In the same way as before, we can define and compute multiple-patch escape functions
F(T') and ®(T"). However, here the rays are not continuous at the patch boundaries
due to the change of the wave speed at these points. When a ray passes the boundary
between two layers (two neighboring patches) with different wave speeds, part of the

ray is reflected (by the law of reflection), and part of it is refracted or transmitted into
the second layer (by Snell’s law of refraction). At each interface, therefore, the ray
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field splits into two new ray families, one reflected and one transmitted. Figure 6.1
a shows the reflection and refraction of a ray at the interface between two media of
different wave speeds, with ¢y, >cr. The law of reflection gives the relation between
the angles of incidence (0j,) and of reflection (fyef) as

Oinc = Orer- (6.8)

The relation between the angles of incidence and of refraction () for a ray crossing
a boundary between different media is given by Snell’s law
Sinfinc _ cL | (6.9)
sin;,. cgr
When a ray moves from a dense to a less dense medium (cr, <cg), Snell’s law cannot
be used to calculate the refracted angle if sinfi, =sinf,. (cg/cr)>1. At this point,
the ray is reflected in the incident medium, known as internal reflection. There is
therefore a critical angle (6.,) for which the ray travels directly along the surface
between the two refractive media. The critical angle is found by Snell’s law, putting
in a transmitted angle of 90 degrees. This gives:

6., =arcsin =y (6.10)
cr

For any angle of incidence larger than the critical angle (6i,. > 0.;), the ray is totally
reflected off the interface, obeying the law of reflection. This phenomenon is called
total internal reflection. See Figure 6.1b. From (6.8)—(6.10), we can easily find the

(a)

Fi1c. 6.1. Reflection and refraction of a ray at the interface between two media of different wave
speeds. The left figure shows the reflection and refraction when cr, >cr. The right figure shows the
internal reflection when Qe > Ocr .

inter-patch boundary functions S and R discussed in Section 2.2.1. Post-processing
in this case is similar to that of the single-patch case, because the escape boundary
that we chose coincides with the external boundary of the medium. Note that the
inter-patch boundary conditions above can be seen as a way to preserve the Hamil-
tonian (6.2) for a ray across the patch boundary. In cases where the discontinuity in
¢(x) is not aligned with the patch boundary, the solution of the escape equations is
not unique. Uniqueness can, however, be recovered by enforcing the extra condition
that solutions should be continuous along constant Hamiltonian paths also inside the
patches. This is the idea of so called Hamiltonian-preserving methods developed in
[14, 15]. These methods capture the effect of a discontinuous ¢(x) on uniform grids
not aligned with the discontinuity.
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6.3. Example 3-a multi-layered medium. We consider a multi-layered
medium M =[0,6]? consisting of three layers with different wave speeds (see Figure
6.2):

e Top layer: c1(z,y)=1+0.05(x —3)%+0.25,
e Middle layer: co(z,y) = 1+E_((z_33)2+(y_3)2)7

e Bottom layer:  c¢3(z,y)=0.5+0.2240.5y.

z5

-z

15

1
a 1 z 3 Fl 5 €

05

3

5

4

3

2

0

Fic. 6.2. The medium consisting of three layers and grey scale plot of the wave speed field.

We want to compute multi-valued travel-time of seismic rays in the medium from
a given source point xg on the boundary. We split the medium into three patches
corresponding to the three layers, as shown in Figure 6.2. The escape equations for
the escape point F' and the travel-time ® are derived and solved in each patch. In
order to find the travel-time with a given source point by post-processing, we first
choose the four outermost boundaries of the entire physical domain as the escape
boundary. We then continue as follows:

0. The source point xy on the boundary is first reduced to a point Sy € R.

1. For each point x€ M, find F(I')=(U,V,0) with I'=(x,q(0)) for all §€S.
Now (U, V) can again be reduced to points S € R, parameterized by 6.

2. Find 0=0" such that Sy=5(0).
3. Travel-time at x € M will then be ®(I'"*) with I'* = (x,q(6%)).

Figure 6.3 shows the distribution of transmitted seismic rays and equi-arrival
curves, i.e., the locus of all points in physical domain which have the same travel-time,
from two different source points, xo=(3,6) and xo=(3.5,6). Note that we can track
both reflected and transmitted ray families, but not at the same time. In order to get
all rays, one needs to follow all ray families. Figure 6.4 shows the equi-arrival curves of
rays reflected from the top and bottom interfaces inside the top and the middle layers,
respectively, for a source point at xg=(3,6). If we repeat this procedure, we can also
capture multiple rays reflected from the two interfaces that get trapped inside the
middle layer and reverberate to infinity. Here, we do not consider reflections from the
domain boundaries, as we have a truncated domain much smaller than the physical
space in which the waves propagate.
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Fic. 6.3. The equi-arrival curves and the distribution of seismic rays for two different source

T

F1G. 6.4. The equi-arrival curves of reflected seismic rays from the top (left figure) and bottom
(right figure) interfaces for a source point on the center of the top of the domain.

7. Conclusion

We have modified the single-patch phase space method for computing creeping
rays to a multiple-patch method for computing trajectories on two-dimensional man-
ifolds possibly embedded in a higher-dimensional space. The dynamics of trajectories
are given by systems of first-order ODEs in a phase space. We split the manifold into
multiple patches where each patch has a well-defined regular parameterization. The
escape equations, which are hyperbolic PDEs in a three-dimensional phase space, are
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derived and solved in each patch, individually, using a second-order version of the fast
marching method. The solutions of individual patches are then connected using suit-
able inter-patch boundary conditions. Properties for particular families of trajectories
are obtained through a fast post-processing. For some applications, the complexity
of the method is attractive. Such applications include mono-static and bi-static RCS
computations, antenna coupling problems, and travel-time computations of seismic
waves when the solution is sought for many different sources.
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