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STEADY STATE SOLUTIONS OF THE SMOLUCHOWSKI
EQUATION FOR RIGID NEMATIC POLYMERS UNDER IMPOSED
FIELDS*

QI WANG'T, SARTHOK SIRCAR¥, AND HONG ZHOU?

Abstract. We solve the Smoluchowski equation for steady state solutions of rigid nematic
polymers and suspensions under imposed elongational flow, magnetic or electric fields, respectively.
Under the three imposed fields, we show that (1) the Smoluchowski equation can be cast into a
generic form, (2) the external field must parallel to one of the eigenvectors of the second moment
tensor in steady states, and (3) the steady state solution of the Smoluchowski equation (probability
density function or simply pdf) is of the Boltzmann type parameterized by material parameters and
two order parameters governed by two algebraic-integral equations. Then, we present a complete
bifurcation diagram of the order parameters with respect to the material parameters by solving
the algebraic-integral equations. The stability of the pdf solutions is inferred from the minimum
of the free energy density. The solution method is extended to dilute solutions of dipolar, rigid
nematic polymers under an imposed electric field. The first moment of the steady state pdf is shown
to be parallel to the external field direction at sufficiently strong permanent dipole or relatively
weak dipole-dipole interaction. In this case, the steady solution of the Smoluchowski equation is
parameterized by one order parameter and material parameters in the Boltzmann form. Otherwise,
the first moment is not necessarily parallel to the external field direction.
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1. Introduction

The kinetic theory is an effective tool in modeling soft matter and complex
fluids [25, 3, 20]. In the past, it has been perceived as a sophisticated formal-
ism hardly amenable to analytical analysis. Given the rising interest in math-
ematical analysis on kinetic theories recently, various attempts have been made
to analyze the properties of the partial differential equations in kinetic theo-
ries and obtain their solutions analytically, semi-analytically and/or numerically
[4, 26, 8,9, 10, 11, 12, 13, 19, 14, 16, 15, 17, 18].

In this paper, we give a systematic derivation of the exact steady state solution of
the Smoluchowski equation in semi-implicit form using a projection method and then
study its variation with respect to material parameters numerically. We demonstrate
the method with two examples. One is the concentrated solution of rigid nematic
polymers in the elongational flow, or magnetic field, or electric field. The other
is the dilute solution of dipolar, rigid nematic polymers under the influence of the
electric field. In both cases, we give the exact solution in the semi-implicit form of
an exponential function parameterized by order parameters governed by algebraic-
integral equations. To our best knowledge, the idea was first used in the work of
Ramalingam and Armstrong in a Doi type kinetic theory [1, 2] when solving the
solution for the uniaxial order parameter in an imposed elongational flow. The basic
idea stems from the fact that the solution of the Smoluchowski equation in potential
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606 STEADY STATE SOLUTION OF SMOLUCHOWSKI EQUATION

fields is of the Boltzmann type, which is completely determined by the total potential.
The total potential in turn can be parameterized by a set of scalar order parameters
and prescribed field parameters. Once the order parameters are determined through
a particular representation, their governing equations emerge in the form of algebraic-
integral equations. In principle, this approach extends to any potentials that can be
expressed as a finite sum of the linear combination of the spherical harmonic functions
on the sphere.

2. Steady states under an imposed elongational flow, electric or mag-
netic field

We adopt the extended Doi-Hess model for solutions of rigid nematic polymers
[20, 21, 22, 23, 24] with the well-known Maier-Saupe excluded volume potential

W(m,x,t):—%(mm%mm, (2.1)
where N is the dimensionless number density of the nematic polymer, m is a unit
vector for the axis of symmetry of the molecule, which is modeled as a spheroid,
(mm) = meH:l mm f(m,t)dm is the second moment of m with respect to the prob-
ability density function f(m,t) [20, 23]. When the molecule (or nematic particle in
the case of suspensions) is under an imposed electric or magnetic field, an induced
dipole or magnetic moment in the molecule will occur even though it does not have an
intrinsic dipole (nondipolar) or magnetic moment (nonferromagnetic). The potential
due to the external field effect is given by the potential

VH:—%(H-m)Q,VE:—%(E~m)Q, (2.2)

respectively, where H is the magnetic field vector, and y, is the difference of the
susceptibility parallel and perpendicular to the molecular direction; E is the electric
field, and « is the difference between the polarizability parallel and perpendicular to
the molecular direction. We note that, in this formulation, the mean-field dipole-
dipole interaction due to the induced dipole is not accounted for.

The transport equation for the probability distribution function of the molecular
orientation in monodomains is given by the Smoluchowski equation:

d .

j{:R- [fRut] —R-[mxmf],

m=W -m+a[D-m—D: mmm], (2.3)
where time is nondimensionalized by a constant rotary diffusivity D,., R =m X a% is
the rotational gradient operator, and % (e) denotes the material derivative: %(-)—i—

v-V(:), D and W are the rate of strain tensor and vorticity tensor, respectively;
a is a geometry or shape parameter defined by a= :z—;} with the molecular aspect
ratio r. p=Inf+ ﬁVi is the normalized chemical potential and p:=p+ ﬁVH or
bt :,u—i—ﬁVE is the extended chemical potential including the normalized external
potential.

For an elongational flow field stretching (v > 0, uniaxial elongation) or compress-
ing (<0, biaxial elongation) in the direction of es, the velocity field is given by

v:f%(xel +yes) +yzes. (2.4)
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It can be cast in the form of a potential effectively [28],

3
V.= —%k’Tegeg :mim. (2.5)

In fact,
—mxm=-—RV (2.6)
kT € *

since W =0 in elongational flow fields. Therefore, the rotary convective term in the
Smoluchowski equation can be absorbed into the extended chemical potential in (2.3).

Now that the external potentials for the elongational flow, magnetic and electric
field are identical in form, we next illustrate the solution method for Smoluchowski
equation in the case of the elongational flow field only. In this case, the Smoluchowski
equation is rewritten in the form

a _

dt _R'[fRMtL (27)

where p; =Inf+ ,%T(VZ +V.). The steady state solution of the equation is given by
Mt = Ca (28)
leading to

f:%e_ﬁ(‘/ﬁ-ve)’ (2.9)

where Z is the normalizing constant to ensure (1) =1 or the partition function. We
denote

ay
= 2.10
v=" (2.10)

and name it the effective Peclet number. Then, the total potential is given by

V:V;—i—%:—%[N(mm)—I—uegeg}:mm. (2.11)

We adopt a general representation of the second moment (mm)

<mm):s(nn—I/3)+ﬁ(nJ_nJ_—I/S)—l—%, (2.12)

where s and [ are two order parameters and n and n are two eigenvectors of (mm)
[27]. Tt follows from (2.12) that

s=2((n-m)?) + {(n -m)?) 1,
B={(n-m)?)+2((n; -m)?)—1. (2.13)

If we parameterize the vector m relative to the orthonormal frame (n,n,;,n*) as
follows

m=cosfn+sinfcos¢n | +sinfsingn”, (2.14)
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where n* is the third orthonormal eigenvector of (mm) besides n and n, , and set
e3=n, then

f_* TN[(a— )(cos? 6— 1/3)+ﬂsm 0 cos2¢]+3Y cos? 0 (215)

N

with

:Z(S,ﬂ):/ e%[(.Sf%)(COSQG )+6sm 6 cos2¢]+ 3~ cos de (216)
[[m/=1

Substituting (2.15) into the formula of s and 3, we arrive at the governing system of
equations for the order parameters.

ﬂ:/ sin?fcos2¢ fdm,
lm||=1

_ 1 2 g
s-/m” 17(3005 9—1)fdm+§. (2.17)

Using a change of variable, we rewrite the order parameters as follows
s 1
8= 4/ / (1—2%)cos2p fdzde,

1 / 32N =B/ [ ()i,

5*//P2 Vfdz+5/2,

_ E/ P2(Z)GS/Q(N(S_5/2)+V)ZQIO(C)dz+ﬁ/27
0

f= %e%[(s_g)zz-fg(1—z2)cos2¢]+37"227 (2.18)
where
- 1 3 2
Zs.p)= [ 3B (2.19)
0

Py(z)=1(322-1) is the second order Legendre polynomial, and ¢ =22 (1—22). In
the above, we used the definition for the modified Bessel function of the first kind:

w]n(z):/ e*°5% cosngdp,n=0,--- , 0. (2.20)
0

Noticing that §=0 is a solution of (2.17), we deduce the implicit equation gov-
erning the uniaxial order parameter s:

]. 3N s

1 2 3v 2
§= 7(3608207 1)76 2 (COS 071/3)+7COS Gfdm
/Imll 1 Z(s,0)

1 1
- / Py(2)e3 N5t g / e2 (Vs t)=% g, (2.21)

0 0
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The free energy density of the nematic polymer system is given by
Vi
Alf]= / kT f + -+ Ve] fdm. (2.22)
[m=1

From (2.9), we arrive at the free energy density at steady states:

Vi
Alfl= —kTInZ — —]fdm
= fkT[an—%(s2fsﬁ+ﬂ2)]. (2.23)

This formula will be used to infer the stability of the steady states. The stable steady
state is the global minimum of the free energy density. The metastable steady state
is a local minimum of the free energy, but not the global one.

2.1. Reduced symmetry. It is known that the Smoluchowski equation is
invariant under the rotational transformation in SO(3) when flows and external field
effects are absent [29]. Namely,

d

where f=f(n,t), R,=nx 5%, n=U-m for any Ue€ SO(3). With the imposed elon-
gational flow of axis of symmetry es, we denote the rotational group in the plane
transverse to the axis by SO(2)={U|UcSO(3),U-e3=es3}. Then, from the invari-

ant property of the Smoluchowski equation, we deduce eq. (2.3) is invariant under
SO(2) since

3NkKT 3vkT 3NkKT 3vkT
ut:—Tmm:<mm>— ezez:mm=— nn: (nn) —

€3€e3:nn
(2.25)

for n=U-m, where Ue SO(2). Le., there exists a reduced symmetry in the Smolu-
chowski equation under the imposed field in the plane orthogonal to the field. Namely,
if there exists a pdf solution of the Smoluchowski equation, there exists a family of
pdf solutions parameterized by SO(2).

In the extended Doi-Hess kinetic theory, the geometric parameter a can be ex-
ploited to model both rodlike (a>0) and disklike (@ < 0) molecules. Effectively, it is
the effective Peclet number that matters in the steady state solution. When mole-
cules are disklike, an uniaxial elongational flow (> 0) is effectively equivalent to a
biaxial elongational flow of rodlike nematic polymers since they share the same ef-
fective Peclet number and vice versa. Given the asymmetric correspondence between
the rodlike and disklike molecules in biaxial and uniaxial elongation, we will focus on
the rodlike nematic polymer in the following (a>0). The steady states of disklike
nematic polymers can be obtained from the correspondence principle.

2.2. Uniaxial elongation. Stretching or uniaxial elongation for rodlike
nematic polymers corresponds to v >0. The steady state solutions consist of up to
three uniaxial steady states with their uniaxial directors aligned in the direction of
the flow and a family of biaxial solutions at sufficiently high polymer concentration
parameterized by SO(2). The bifurcation diagram of the uniaxial steady states with
respect to the dimensionless concentration has been documented in [27]: there are



610 STEADY STATE SOLUTION OF SMOLUCHOWSKI EQUATION

-0.4 1 1 I I
0

Fic. 2.1. The phase bifurcation diagram for the steady state uniazial order parameter at v=
—0.1,—0.01,0,0.01,0.1 respectively. A bi-stability region exists for small magnitude Peclet numbers
and in a small window of nematic polymer concentrations near the critical concentration N =5. If
v>0, the highly aligned prolate state (s>0) is stable while the less aligned prolate steady state is
metastable; whereas the oblate state (s <0) is stable up to certain critical concentration if v <0. The
thick curves represent the stable branches while the thin curves depict the unstable ones.
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Fic. 2.2. The phase bifurcation diagram for all the steady state order parameters in uniazial
elongation. The stable solutions are uniazial prolate ones (s>0,8=0) of highly aligned and the less
aligned. The biazial states form a family of solutions parameterized by the rotational group SO(2),
which are unstable. The Peclet number here is v=0.01. The thick curves depict the stable branches
while the thin curves do the unstable ones.

up to two stable prolate steady states at small Peclet number regime limited to a
small window of nematic polymer concentration and there is only one in the regime
of large Peclet numbers. The highly aligned nematic steady state is always stable.
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When two stable prolate steady states coexist in a window of small Peclet numbers
and nematic polymer concentrations the lesser aligned one is metastable. Figure
2.1 depicts the uniaxial steady state solutions in the phase space (N,s), with v=
—0.1, —0.01, 0, 0.01, 0.1, respectively.

The biaxial steady states emerged at sufficiently high concentration correspond
to the entire nematic equilibrium family parameterized by SO(2) with their major
directors aligned in the plane perpendicular to the direction of elongation absent of
flow. However, these biaxial steady solutions are unstable. Figure 2.2 depicts all
uniaxial steady states and a pair of biaxial steady state families with their major axes
perpendicular to each other in the plane orthogonal to the direction of elongation.
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Fi1c. 2.3. The phase bifurcation diagram for all the steady state order parameters in biazial
elongation. The stable solution is the oblate (s<0,8=0) one up to a critical concentration and
then assumed by a family of biazial solutions (s#0,8#0). The bistability region may exist in
a small window of nematic polymer concentrations at small Peclet number regimes. The Peclet
number here is v=—0.01. The thick curves depict the stable branches while the thin curves do the
unstable ones.

2.3. Biaxial elongation. When rodlike nematic polymers are in biaxial
elongation, v <0, there exist up to three uniaxial steady states with their uniaxial
directors aligned in the axis of the flow symmetry. At small concentration, the only
uniaxial steady state is the oblate one; whereas there are two more prolate uniaxial
steady states at sufficiently high concentration. At high enough concentration, a fam-
ily of biaxial steady states parameterized by SO(2) emerges. At low concentration,
the only stable steady state is the oblate uniaxial one. At sufficiently high concen-
tration, a family of biaxial steady state parameterized by SO(2) is stable. The stable
biaxial steady state is deformed from the prolate uniaxial equilibrium (v =0) with
their uniaxial director aligned in the plane orthogonal to the flow direction. Again,
bi-stability may take place in the regime of small Peclet numbers for a limited range of
concentration. Figure 2.3 depicts a representative bifurcation diagram for all steady
states as functions of the Peclet number and dimensionless concentration.

We have obtained solutions of the Smoluchowski equation semi-analytically by
assuming the imposed field parallels to one of the eigenvector direction of the second
moment tensor. Next, we show that this is a fact.

To prove it, we note that the imposed field direction can be parameterized in the
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frame of n, n , n* as follows:

e3=cosf'n+sinf cos¢’'n, +sinf’ sing'n*, (2.26)
where ¢’,¢" are constants. So,

es3-m=cosfcosd +sinfsind’ cos(d—¢'). (2.27)
The pdf solution of the Smoluchowski equation is given by

f _ le%[(s—g)(cosz0—1/3)—4—%sin2«90032(;5]—}-%(cochosO'—i—sinOsinH' cos(p—¢'))?] (2 28)
A T

where Z is the normalizing constant. From the definition of the second moment
equation, we arrive at three additional identities

n-M-n; =0n-M-n*=0,n; -M-n*"=0, (2.29)

where M = (mm). Next, we show that either ' =0 or 6’ =7/2 together with ¢/ =0
or ¢/ =m /2. This is equivalent to say that es is in one of the eigenvector directions of
the second moment tensor M.

It follows from (2.29)

(cosBsinfcos(p—¢')) =0 (2.30)

for any values of ¢'. We define

F()\):/ cos@sinfcos(¢— ¢ Ve / Zdm, (2.31)
[m][=1
where
h(X\)= %[(5 - g)(COSQQ —-1/3)+ gsin200052¢] + 3?V((COSQCOSQ’)2 +
(sinfsin®’ cos(¢p—¢'))? +2Acosfcosd sinfsind’ cos(p—¢'))]. (2.32)

We note that (2.30) implies
F(1)=0. (2.33)

Since the integrand in the integral of F(0) is an analytical function of sin?# multiplied
by cosf which is an odd function about § =7/2, it can be easily shown to be zero.
However,

F'(\) = const ></ sin20’sin?20 cos® (¢ — ¢’ )e" /Zdm # 0 (2.34)

[lm||=1
provided
sin26’ #0. (2.35)
This would contradict to the fact that F/(0)=F(1)=0 if (2.35) were true. Thus

0'=0,7/2. (2.36)
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In the case of ' =7/2, we define

G(\) :/ sin? @ cos sin pe? / Zdm, (2.37)
[lm[=1
where
N
g= 37 [(s— g)(cos2 0—1/3)+ g sin® 0 cos2¢] + 331/ sin?6(cos? rcos? ¢’ +
sin? psin® ¢’ +2Asin ¢ cos gsing’ cos¢')]. (2.38)

We recall that (2.29) implies G(1) =0. At A=0, the integrand is given by an exponen-
tial function of cos2¢ multiplied by sin2¢. The integral in ¢ over [0,27] is therefore
equal to zero. lL.e.,

G(0)=0. (2.39)

Then, using the same argument, we arrive at
G'(\) =const x sin2¢'/ sin® @sin®2¢e? /Zdm #0 (2.40)

[ml=1

provided sin2¢’ #0. This would contradict to G(0)=G(1) =0 if it were true. Hence,
¢’ =0,7/2. We then conclude that e; must be in one of the principal axes or eigen-
vector directions of the second moment tensor M.

THEOREM 2.1. When the Smoluchowski equation with the Maier-Saupe excluded
volume potential is driven under an imposed magnetic, or electric field, or an elon-
gational flow field, one of the principal azes of the second moment of the steady state
probability density function solution must be parallel to the imposed field direction.

3. Effect of an imposed electric field on a dilute solution of nematic
polymers

We consider a dilute solution of dipolar, rigid nematic polymers or suspensions,
where the excluded volume effect is neglected. When the electric field is applied, the
total potential consisting of the intermolecular (dipole-dipole) and external electric
potential is given by

U:—cz<m>-m—,uE-m—%EE:mm7 (3.1)

where aq is the difference of the polarizability parallel and perpendicular to m, pu
is the strength of the permanent dipole and « is the strength of the intermolecular
dipole-dipole interaction potential.

We set

(m) =s1qy, [lau][ =1, (3.2)
where
s1={(q; -m) (3.3)

is an order parameter describing the averaged molecular orientation about the direc-
tion q;. We extend q; into an orthonormal basis qi, q2 and qz and parameterize m
and E with respect to the basis:

m = cosfq; +sinf cos¢pqs + sinfsin ¢qs,
E = ||E||[cos#'qy +sinf’ cos¢'qa +sind' sin¢’'qs]. (3.4)
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Assuming E||q;, we arrive at

f _ lek%[(asl+;AE)cos«9+aT,°E2 cos? 6]
- )

1
51 = <COS€> :/ ZekiT[(a81+;4E)z+%E222]dz/Z’
-1

1
Z= / errllasituB)z+ B2, (3.5)
-1

Figure 3.1 depicts the bifurcation diagram in the phase space («a, s1) at selected values
of p,ap and F=|E||. The stable branch is identified by examining the free energy
density at steady state

_ % m) - m+um-E+ 22EE: mm] fdm =[S 2 — .
A_/|m|_1kT(flnf) [ (m) - mt pm B+ 2 EE:mm]fdm= g 57— kTinZ]

(3.6)

At zero electric field strength, the order parameter goes through a second order phase
transition as « increases. The critical strength is a«=3. When the electric field is
applied, the symmetric phase diagram is broken so that a single branch of positive
(negative) s; forms for all values of o and positive (negative) values of E and two

1.0
0.8
0.6
0.4r

0.2r

n 0.0

-0.2r

-0.4-

-0.61

Fic. 3.1. The phase bifurcation diagram for the steady state order parameter s1 as functions
of a. The parameter values are kT =1,00 =0.2,4=0.1,E=—0.1,0,0.1. The steady state bifurcation
diagram is symmetric about s1 =0 and occurs at ac =3. When E >0, the symmelry is broken in
such a way that a stable and positive order parameter exists for all >0 while a pair of negative
order parameters emerge at sufficiently large values of . Whereas E <0, a stable negative order
parameter persists for all a >0 while a pair of positive order parameters emerge at sufficiently large
values of a. This indicates that nematic polymers incline to orient in the direction of the externally
imposed electric field. The thick curves depict the stable branches while the thin curves do the
unstable ones.
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branches of the order parameter s; of negative (positive) values emerge through a
saddle node bifurcation. The single branch order parameter is stable, indicating that
the averaged molecular orientation favors the direction of the external field.

We next show that q; must be parallel to E under certain conditions, i.e., the
orientational axis of the first moment is dictated by the external field. From the
parametrization of the electric field, we have

f — leﬁ [(as1)cosO+uE(cosOcosd’ +sinfsinf’ cos(p—9’))+ GTOEQ (cosfcosf’ +sinfsin b’ cos(p—o’))?]
Z 7

(3.7
where Z is the normalizing constant. The other conditions that we can use are
Q2 (m)=qs3- (m)=0. (3.8)
This translates to
(sinfsin @) = (sinfcos¢p) =0. (3.9)
It follows from (3.9) that
(sinfcos(¢p—¢)) =0, (3.10)

for any values of ¢.

THEOREM 3.1. When the solution of dipolar, rigid nematic polymers is driven by an
imposed electric field, the first moment of the steady state probability density function
must be parallel to the external field direction provided |u| > |agE)|.

Proof. We first assume s; #0 since the first moment is a zero vector otherwise.
We set ¢ =¢’ in (3.10) and define

H:/ sinfcos(¢p—¢')e? dm, (3.11)
[m[[=1
where
1
b= T [(aws1)cosO+ pE(cosfcost +sinfsing’ cos(p—¢')) +
%E%cos@cos@’—l—sianinG’cos(qb—(b’))z]. (3.12)
We denote
1

Y= T [aes cosf + pE cosfcosd + ?ECOSQ Ocos? 6’ +

a(f)cos(p—¢') +b(0) cos* (¢ —¢')], (3.13)
where

a(0)= (uE 4 agE*cosfcosh’)sinfsinf’,
b(0)= %EQ sin2@sin?¢’. (3.14)
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Taking into account the periodicity of the trigonometric functions, we observe that H
does not depend on ¢’. Without loss of generality, we set ¢’ =0. Through a series of
variable changes, we arrive at

/2 pmw/2 o ,
H:/ / sinQGcosgbeﬁ[TOE2 cos? fcos™ 0'+-b(0) cos® 9] [sinh(a(@)cos¢/kT)
0 0

eﬁ[asl cosO+uEcosfcosh’] + sinh(a(ﬂ' _ 9) COS@/kT)E%[asl cosGJr#EcosecosG']]dodd)'

(3.15)

If |u| > |aoE|, a(B)a(r —§6)>0. Thus, if sinf’ £0, H >0, which contradicts to H=0.
This implies, sinf’ =0. I.e., the magnetic field is parallel to the direction of the first
moment qg.

The condition on the size of the parameters in theorem 2 is necessary for some
values of . In fact, if |u| <|aoE| and « is large enough, then the direction of <m >
may be different from that of E (which will be shown below by numerical calculations).
This result can be illustrated by an intuitive physical argument. Each rodlike polymer
is subject to two potentials: 1) the external potential caused by the electric field and 2)
the (mutual) intermolecular potential caused by other polymers in the ensemble. It is
known that in the absence of the external potential, there is an I-N phase transition
caused by the dipole-dipole interaction between rigid polymers rigid nematic when
a>3kT [14, 15, 18]. In other words, for o> 3kT, polymers tend to form a cluster
with a distinguished direction (director). In the absence of the external potential, the
director of the cluster is arbitrary. In the presence of the external potential, however,
the director of the cluster is no longer arbitrary. If the director of the cluster is not a
stationary point of the external potential, then the cluster cannot be a steady state
solution. The external potential has at least two stationary points for any values of
w,aq,E. To continue the discussion, we need to switch to a spherical system different
from the one used above. We select the z-axis as the direction of E and the y-axis
perpendicular to the plane spanned by <m> and E (assuming <m > and E are not
parallel to each other of course). In this coordinate system,

E=F(0,0,1), <m>=(r1,0,73). (3.16)
In spherical coordinates, the external potential is given by

1
Ugzt(0,¢) = —uE cost — 0 B2 0520 = —aoEQ(L cosf+ —cos?0).  (3.17)
2 OzoE 2

When || < |agE|, the external potential has a third stationary point, 6y, determined
by

I

cos(bp) = “adE

(3.18)
The stationary point g is between 0 and 7. Therefore, the intuitive analysis indicates
that when |u| < |apE| and « large, there can be a steady state cluster whose director
is different from the direction of E.

We next prove that when 0<|u| < |agFE]|, there is a critical value o* such that for
a<a*, all steady state solutions satisfy that <m > is parallel to E (i.e. r;1 =0). For
a > a*, we show numerically that there exists a steady state solution where <m > is
not parallel to E (i.e. r; #0).
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In the Cartesian coordinate system with the direction of E as the z-axis:
m = (mqy,mq,ms3), E=F(0,0,1), <m>=(r1,0,r3),
U(m)=—arym;— (pE+ars)ms— % E?m3,

f(m) exp (gr[arimi+ (LE +ars)ms+ % E*m3))
m)= .
Jimj=1 exp (gplarimi + (WE+ars)ms+ % E2m3]) dm

(3.19)

In the spherical coordinate system:
m = (sinf cos@,sinf sing,cosh),
U(0,6)=—ar; sinf cos¢p — (uE+ars) cosf — % E? cos?0,

exp (g7 lory sinf cos g+ (uE+ ars) cosf + % E? cos?])

[(0,0)=——5= :
IN 02 exp (77 [y sinf cos g+ (W E + ars) cosf + %2 B2 cos?6]) dg sinf do
(3.20)
The nonlinear integral equations governing r; and r3 are
T 27
7‘1:/ / sinf cos¢ f(6,¢)dpsind db,
o Jo
T 27
7'3:/ / cosf f(0,¢p)dpsinbdb. (3.21)
0o Jo

THEOREM 3.2. When |u| <|aoE|, there exists a critical o such that all steady solu-
tions of (3.21) satisfy r1 =0 if a <a*.

We first prove that all solutions of (3.21) satisfy r1 =0 if a <kT. We prove it by
contradiction. Suppose there is a solution of (3.21) satisfying r; #0.

In the probability density f(6,¢) above, we replace r1 by r and treat it as a
variable. We consider the function

Fi(r)=r—<sinf cos¢>, (3.22)
which satisfies

The derivative of f(6,¢) with respect to r is

afo,¢) o .
Fra kT(schosqS <sinf cos¢ >) F1(0,0). (3.24)
The derivative of Fy(r) is

dF:
;T(r) =1- % < sinf cos¢(sinf cosp— < sinf cosp >) >

a . 1, a <0,
=1- k—TVar(sme cos¢g) > { 1— (sin0 cos? ), 0< a < kT, } >0, (3.25)

where Var denotes the variance. Clearly, % >0 when a<kT, which contradicts

(3.23). Thus, the only solution for r; is zero when a <kT. Let

o =inf{aleq. (3.21) has a solution with r; #0}. (3.26)
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5 10 15 20
a

Fic. 3.2. The plot of <m1> (i.e. r1) and <mgz> (i.e. —r3) as functions of a with kT =1.
It shows the existence of the first moment that is not parallel to any eigenvectors of the second
moment.

Clearly, o* exists and a* > kT. Then, r; =0 is the only solution if o <a*.

Figure 3.2 depicts the steady state solution whose director is not parallel to E. In
Figure 3.2, <mq > (i.e. 71) and — <mg> (i.e. —r3) are shown as functions of a. The
parameters used here are u=0.6kT, ag=kT, and EF=1. For this set of parameters
o* = 5.7226567kT, kT =1. d

3.1. Reduced symmetry. The direction of the first moment is arbitrary
in equilibrium. However, it is no longer arbitrary when the electric field is imposed.
When the first moment is parallel to the external field direction, for instance when
a<a* and |p| <agF| or when |u| > |agFE], the solution is invariant with respect to
the rotational group SO(2) defined in the previous section. Otherwise, the direction
of the first moment is well-defined and the pdf solution of the Smoluchowski equation
may no longer be invariant under SO(2).

4. Conclusion

We have demonstrated the projection method for solving the Smoluchowski equa-
tion with the Maier-Saupe potential for rigid nematic polymers and the dipole-dipole
interaction potential for dipolar rigid nematic polymers coupled with external fields.
The method is general and can be used to solve the Smoluchsowki equation with any
potential that is a function of the finite sum of spherical harmonic functions plus the
external potential. The solution is always of the Boltzmann type and parameterized
by a finite set of order parameters. The stability of the pdf solution can be inferred
from the free energy density function within the order parameter space.
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