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STRUCTURE-PRESERVING MODEL REDUCTION USING A
KRYLOV SUBSPACE PROJECTION FORMULATION∗

REN-CANG LI† AND ZHAOJUN BAI‡

Abstract. A general framework for structure-preserving model reduction by Krylov subspace
projection methods is developed. It not only matches as many moments as possible but also preserves
substructures of importance in the coefficient matrices L,G,C, and B that define a dynamical system
prescribed by the transfer function of the form H(s)=L∗(G+sC)−1B. Many existing structure-
preserving model-order reduction methods for linear and second-order dynamical systems can be
derived under this general framework. Furthermore, it also offers insights into the development of
new structure-preserving model reduction methods.
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1. Introduction
Krylov subspace projection methods are increasingly popular in model reduction

owing to their numerical efficiency for very large systems, such as those arising from
structure dynamics, control systems, circuit simulations, computational electromag-
netics and microelectromechanical systems [13, 10, 12, 5, 42, 47, 48, 52]. Recent
survey articles [1, 4, 19] provide in depth review of the subject and comprehensive
references. Roughly speaking, these methods project the original state-space onto
a low-dimensional subspace to arrive at a (much) smaller system having properties,
among others, that many leading terms (called moments) of the associated (matrix-
valued) transfer functions expanded at given points for the original and reduced sys-
tems match.

Consider the matrix-valued transfer function of the form

H(s)=L∗(G+sC)−1B, (1.1)

which describes an associated multi-input multi-output (MIMO) time-invariant sys-
tem to be studied. Here G,C ∈C

N×N , B∈C
N×m, L∈C

N×p. The power series ex-
pansion of H(s) at s=0 is formally given by, assuming G is nonsingular,

H(s)=
∞∑

i=0

(−1)isiMi,

where moments Mi are defined as

Mi
def= L∗(G−1C)iG−1B≡L∗G−1(CG−1)iB. (1.2)

In today’s applications of interest, such as VLSI circuit designs and structural dy-
namics, N can be up to millions [1, 4, 20]. Computations of H(s) usually have to be
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done through some kind of reduction on L, G, C and B. Let X,Y ∈C
N×n such that

Y ∗GX is nonsingular (and thus rank(X)=rank(Y )=n). We may reduce the transfer
function H(s) to

HR(s)=L∗R(GR +sCR)−1BR, (1.3)

where

LR =X∗L,GR =Y ∗GX,CR =Y ∗CX,BR =Y ∗B. (1.4)

The associated moments of HR(s) at s=0 are

MRi
def= L∗R(G−1

R CR)iG−1
R BR≡L∗RG−1

R (CRG−1
R )iBR, (1.5)

for i=0,1,2,.... There are various techniques to pick X and Y to perform reduction.
Among them Krylov subspace-based model-reduction is getting much of the attention.
The idea is to pick X and Y as the bases of properly defined Krylov subspaces to
match as many Mi to MRi as possible from i=0 and forward. If Mi =MRi for 0≤ i≤ `,
then H(s)=HR(s)+O(s`+1).

The general form (1.1) is often treated by rewriting it as, e.g.,

H(s)=L∗(I +sG−1C)−1(G−1B). (1.6)

By doing so G−1C is projected as one whole matrix, unlike above where G and C
are projected separately. See [16, 23, 41]. There are advantages and disadvantages
associated with the two different ways to do projections. The advantage would be some
computational saving because the projection of G−1C, namely Y ∗G−1CX, is often
computed while bases of Krylov subspaces are being built, regardless of how G and C
are projected: separately or as a whole in terms of G−1C, and so extra work is needed
if G and C are projected separately. The disadvantages include the loss of structures in
G and C, such as symmetry and possibly stabilities inherent in the original full-order
systems. One prime example would be PRIMA [38] which preserves the important
stability property and passivity of the original system from LRC circuits. Recently,
researchers are more inclined to project G and C separately [49, 38, 55, 24, 7, 8, 18, 50]
because of its capability of structure preservations.

For the case of C = I (and thus Y ∗X = In), Villemagne and Skelton [51, 1987] gave
a thorough study of the conditions on X and Y under which the number of moments
match, and arrived at many results, some new and some old, dated back as early as
[27, 1974]. These results consist of the foundation of the PVL algorithm [16] and a
similar one [23] proposed in the mid 1990s to provide a more stable implementation of
the asymptotic waveform evaluation algorithm [41]. For the case of C 6= I, a general
moment-match theory was developed by Grimme [28]. This paper will exploit these
existing moment-matching theorems, such as those presented in [51, 28], to design
an algorithmic framework that not only matches moments, but also preserves sub-
structures in the coefficient matrices L, G, C and B. We show that many existing
structure-preserving methods, such as the ones presented in [49, 38, 7] for linear and
second-order dynamical systems, can all be derived under this general framework.

This paper is based on two recent technical reports of the authors [33, 34], and
part of the results has been reported in the conference proceeding [35].

The rest of this paper is organized as follows. Section 2 defines two general
projectors that will be used to prove moment-matching theorems in Section 3 in a
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simpler way. These moment-matching theorems are the theoretical foundation of this
paper. A general framework to design structure preserving model reduction is given
in Section 4, and its application to the transfer function of a second-order system is
in Section 6 with the help of the inherent structural properties of Krylov subspaces
for certain block matrices presented in Section 5.

Throughout the paper, C, C
k, and C

k×` are the sets of complex numbers, column
vectors of dimension k, and k×` complex matrices, respectively. Ik ∈C

k×k is the
identity matrix, and sometimes simply I when its dimension can be judged from the
context. Unless otherwise explicitly stated, capital letters are matrices, while lower
case letters are vectors or scalars. X∗ is the complex conjugate transpose of matrix X,
span(X) is the subspace spanned by the columns of X with dimension dim(span(X))=
rank(X), the rank of X. If span takes more than one argument matrices, it is the
subspace spanned by all the columns of those matrices combined. For scalar α, ᾱ

def= α∗.
Let A be N×N , and let Z be N×`. The kth Krylov subspace generated by A on

Z is defined to be

Kk(A,Z)= span(Z,AZ,...,Ak−1Z).

For convenience, when k =0, define K0(A,Z)={0}, a trivial subspace.

2. Projectors
The use of projection techniques is a classical and powerful idea. It is an indis-

pensable tool in studying infinite dimensional operator theory, but one may be able
to get around it in finite dimensional cases through matrix manipulations, for exam-
ple, the moment-matching proofs in [6, 9, 19, 38, 49, 53]. However, using projection
language can turn those proofs into much more elegant mathematical arguments as
already made clear by [51].

Any matrix (operator) P that satisfies P 2 =P is a projector onto span(P ). Let
k =rank(P ). We have (for example, through its singular value decomposition (SVD)
[15, 26])

P =XΣY ∗,

where X,Y ∈C
N×n with rank(X)=rank(Y )=n, and Σ∈C

n×n nonsingular. P 2 =P
implies Y ∗X is nonsingular and Σ=(Y ∗X)−1. Then

P =X(Y ∗X)−1Y ∗. (2.1)

It can be verified that any matrix of this form satisfies P 2 =P . Thus (2.1) gives all
projectors of rank n. It can also be seen that P projects onto span(X)= span(P ) which
means Px=x for any x∈ span(X) and especially PX =X. On the other hand, P ∗

projects onto span(Y ) and thus y∗P =y∗ for any y∈ span(Y ) and especially Y ∗P =Y ∗.
The following two seemingly more general but equivalent forms for projectors of

rank n:

P =X(Y ∗GX)−1Y ∗G, (2.2)
Q=GX(Y ∗GX)−1Y ∗, (2.3)

will be useful in the sequel. Here G is an N×N matrix such that Y ∗GX is nonsingular.
Notice that both P in (2.2) and Q in (2.3) become the P in (2.1) when G= I. The
introduction of G will become handy for us later. The following lemma is well-known,
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and it shows that P projects onto span(X) and Q∗ projects onto span(Y ) [31, Page
20].

Lemma 2.1. Let projectors P and Q be defined as in (2.2) and (2.3). Then

Px=x, for any x∈ span(X)
y∗Q=y∗, for any y∈ span(Y ).

3. Moment-matching theorems
Let notation from (1.1) to (1.5) have their assignments there. Villemagne and

Skelton [51] and Grimme [28] developed a general theorem governing the number
of moments matched as we will present in this section. However, we shall give a
different proof using the projectors P and Q in Section 2. The keys are the following
two lemmas. The proof seems a bit more concise. Grimme’s proof was not explicitly
formulated in terms of P and Q, but rather implicitly.

Lemma 3.1. Let projector P be defined as in (2.2). Then

XG−1
R BR =PG−1B and XG−1

R CR =PG−1C ·X.

Together they imply

X(G−1
R CR)iG−1

R BR =(PG−1C)i ·PG−1B for i≥0.

Proof. By (1.4), we have

XG−1
R BR =X(Y ∗GX)−1 ·Y ∗GG−1B =PG−1B,

and

XG−1
R CR =X(Y ∗GX)−1 ·Y ∗GG−1CX =PG−1C ·X,

as expected.

Lemma 3.2. Let projector Q be defined as in (2.3). Then

L∗RG−1
R Y ∗=L∗G−1Q and CRG−1

R Y ∗=Y ∗ ·CG−1Q. (3.1)

Together they imply

L∗RG−1
R (CRG−1

R )iY ∗=L∗G−1Q ·(CG−1Q)i for i≥0.

Proof. Notice that projector P in (2.2) gives rise to projector Q in (2.3) under
substitutions

X→Y, Y →X, G→G∗, (3.2)

followed by taking conjugate transpose. In view of this, with two more substitutions

B→L,C→C∗, (3.3)
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in additional to those in (3.2), we obtain (3.1) by Lemma 3.1.

Remark 3.1. It is worth noting that Lemmas 3.1 and 3.2 assume only the invertibility
of Y ∗GX, and they hold regardless of whatever span(X) and span(Y ) are.

Theorem 3.3. ([51, 28]) Let integers k,r≥0. If

Kk(G−1C,G−1B)⊆ span(X) and Kr(G−∗C∗,G−∗L)⊆ span(Y ), (3.4)

then

X(G−1
R CR)iG−1

R BR =(G−1C)iG−1B for 0≤ i≤k−1 (3.5)

and

L∗RG−1
R (CRG−1

R )jY ∗=L∗G−1(CG−1)j for 0≤ j≤ r−1. (3.6)

Together they imply that

Mi =MRi for 0≤ i≤k+r−1. (3.7)

Proof. Let projectors P and Q be defined as in (2.2) and (2.3). Then (3.4) and
Lemma 2.1 yield

P (G−1C)iG−1B =(G−1C)iG−1B for 0≤ i≤k−1, (3.8)
L∗G−1(CG−1)jQ=L∗G−1(CG−1)j for 0≤ j≤ r−1. (3.9)

Equality (3.5) is now a consequence of (3.8) and Lemma 3.1. Similarly, equality (3.6)
is a consequence of (3.9) and Lemma 3.2. Now for 0≤ i≤k−1 and 0≤ j≤ r−1 we
have

MRi+j+1 =L∗RG−1
R (CRG−1

R )jCR(G−1
R CR)iG−1

R BR

=L∗RG−1
R (CRG−1

R )jY ∗ ·C ·X(G−1
R CR)iG−1

R BR

=L∗G−1(CG−1)j ·C ·(G−1C)iG−1B

=Mi+j+1.

Finally MR0 =L∗RG−1
R BR =L∗XG−1

R BR =L∗G−1B =M0. This completes the proof.

Corollary 3.4. Assume that G and C are Hermitian. If

Kq

(
G−1C,G−1(B L)

)⊆ span(X) (3.10)

and Y =X, then Mi =MRi for 0≤ i≤2k−1.

Proof. Y =X and (3.10) imply (3.4) with r= q.

In case when approximations to H(s) around a selected point s0 6=0 are sought,
a shift

s=s0 +(s−s0) (3.11)

can be performed and then

G+sC =G+s0C +(s−s0)C
def= G(s0)+ s̃C. (3.12)
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Upon substitutions (i.e., renaming)

G(s0)→G, s̃→s,

the problem of approximating H(s) around s=s0 becomes equivalent to approximat-
ing the substituted H(s) around s=0. Observe that any reduction on G(s0) and C
by Y ∗G(s0)X and Y ∗CX can be done through reducing G and C directly as in (1.4)
because

GR(s0)
def= Y ∗G(s0)X =Y ∗GX +s0Y

∗CX =GR +s0CR. (3.13)

This is a significant observation because it says that even for approximating H(s) near
a different point s0 6=0, reduction can still be done directly to the original matrices L,
G, C, and B, regardless of the shift (3.11). This will become handy when substructures
in the original system are worth preserving.

As a straightforward application of Theorem 3.3, we have the following theorem,
which can be viewed as a special case of Grimme’s theorem in [28, Theorem 3.1].

Theorem 3.5. Let integers k,r≥0, and let G(s0) be defined as in (3.12). If

Kk(G(s0)−1C,G(s0)−1B)⊆ span(X)

and

Kr(G(s0)−∗C∗,G(s0)−∗L)⊆ span(Y ),

then

Mi(s0)=MRi(s0) for 0≤ i≤k+r−1,

where Mi(s0)
def= L∗(G(s0)−1C)iG(s0)−1B and MRi(s0)

def=
L∗R(GR(s0)−1CR)iGR(s0)−1BR. This implies H(s)=HR(s)+O((s−s0)k+r

)
.

Remark 3.2. The invariance property (3.13) of the reduction on L, G, C, and B
regardless of the shift (3.11) makes it possible to match moments at multiple points
by one reduction. This is done by enforcing span(X) and/or span(Y ) containing more
appropriate Krylov subspaces associated at multiple points. To avoid repetition, we
shall omit explicitly stating it. See [28] and Ruhe [43, 44].

Remark 3.3. Other theorems for at s0 =0 in later sections have analogous counter-
parts for at s0 6=0 too. We shall avoid explicitly stating them.

In the rest of this section, we shall apply Theorem 3.3 to three well-known methods
as examples to show the generality of these moment-matching theorems. Application
to the partial Padé-via-Lanczos method [6] is not obvious (see Example 3.3). Two
more applications are in the later sections – one is to devise a technique that makes
it possible to preserve block substructures in the model matrices L, G, C and B, and
the other is on the transfer the function of second-order dynamical systems.

Example 3.1. When G= I and p=m=1, H(s) and HR(s) are usually written as,
assuming Y ∗X = In,

H(s)= l∗(I +sA)−1b and HR(s)= l∗R(I +sAR)−1bR
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and the associated moments are Mi = l∗Aib and MRi = l∗RAi
RbR. If

span(X)=Kk(A,b) and span(Y )=Kk(A∗,l), (3.14)

then Theorem 3.3 implies Mi =MRi for 0≤ i≤2k−1, HR(s) is a Padé approximation
of H(s). The idea of the algorithms presented in [16, 23] is to run non-symmetric
Lanczos [32] to generate bi-orthogonal bases for Kk(A,b) and Kk(A∗,l) and at the
same time produce the reduced lR, AR, bR, a process that is much more stable than
the mathematically equivalent asymptotic waveform evaluation [41]. Of course non-
symmetric Lanczos can run into stability problems and breakdowns of its own as well.
Details along these lines are out of the scope of this paper. Interested readers may
read, e.g., [40, 39, 22, 54, 3].

If only one of the two conditions in (3.14) is made true, e.g., span(X)=Kk(A,b)
by Arnoldi process [2] and Y =X or any N×n matrix such that Y ∗X = In, then
Mi =MRi for only 0≤ i≤k−1 in general.

There is a straightforward block version of this example when m 6=1 and/or p 6=1.
Depending on whether r=0 or not, either a block Arnoldi process or a block non-
symmetric Lanczos process can be used to generate X and Y .

Example 3.2. The PRIMA algorithm considers the transfer function H(s) where
L=B [38]. By taking Y =X and

span(X)=Kk(G−1C,G−1B),

Theorem 3.3 implies that Mi =MRi for 0≤ i≤k−1. The proof in [38] did not use the
language of projection. The columns of X which form an orthonormal basis of the
Krylov subspace is usually computed by the Arnoldi process [2] if B is a vector or its
natural block version extension otherwise.

As is, G in the formulation in PRIMA [38] is not Hermitian, while C is. Never-
theless a simple sign change can make both G and C Hermitian; see [21] or Section 4.
A benefit of doing so is given in Corollary 3.4, especially when L=B which is the
case in the formulation of SyMPVL method [21].

Example 3.3. This is for the moment-matching of a partial Padé-via-Lanczos method
presented in [6]. As in Example 3.1, it concerns the SISO transfer functions

H(s)= l∗(I +sA)−1b and HR(s)= l∗R(I +sAR)−1bR.

After k-steps, assuming no breakdowns, the non-symmetric Lanczos procedure gen-
erates right and left Lanczos vectors

v1,v2,...,vk+1 and w1,w2,...,wk+1,

where v1 =αb and w1 =βl for some α 6=0 6=β. Let Vj =(v1 v2 ··· vj) and Wj =
(w1 w2 ··· wj). Then1 W ∗

j Vj = Ij for 1≤ j≤k, W ∗
k vk+1 =0=V ∗k wk+1, and

span(Vj)=Kj(A,b), span(Wj)=Kj(A∗,l). (3.15)

Thus let X =Vk and Y =Wk; by Theorem 3.3, we have

HR(s)=(l∗b)e∗1(I +sTk)−1e1 =H(s)+O(s2k),

1Bi-orthogonalization between vk+1 and wk+1 has not been done yet, i.e., w∗
k+1vk+1 can be

anything, including zero. Thus possible breakdown may occur at the very next Lanczos step.
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where Tk =W ∗
k AVk. But this HR(s) as is may be unstable in the sense that Tk

has eigenvalues in the right half plane of C while the original A does not. Bai and
Freund [6] proposed to update Tk by a rank-one matrix ze∗k to Tk +ze∗k and hopefully
with a judicial choice of the vector z∈C

k, Tk +ze∗k has no eigenvalues in the right half
plane, and accordingly used H̃R(s)=(l∗b)e∗1[I +s(Tk +ze∗k)]−1e1 as a reduced model.
By carefully exploiting the zero structures in Tk +ze∗k, they proved if z’s entries,
except its last ` ones, are zeros, then

H̃R(s)=H(s)+O(s2k−`). (3.16)

We now apply Theorem 3.3 to reach the same conclusion. Notice that the motivation
of employing the rank-1 update makes the situations vk+1 =0 or wk+1 =0 uninterest-
ing because either of the two implies all eigenvalues of Tk are A’s. Nevertheless the
proof below requires that only one of the two not be zero. Assume vk+1 6=0. Take
Y =Wk +wz∗ and X =Vk, where w is any vector such that V ∗k+1w=ek+1. Such w
exists because rank(Vk+1)=k+1. It is known that AVk =VkTk +vk+1e

∗
k. Then

Y ∗X =W ∗
k Vk +zw∗Vk = I

and

Y ∗AX =Tk +(W ∗
k vk+1 +zw∗vk+1)e∗k =Tk +ze∗k.

Since the first k−` columns of Y are the same as those of Wk,

span(Y )⊇ span(Wk−`)=Kk−`(A∗,l).

Still span(X)=Kk(A,b). By Theorem 3.3, we have (3.16). The proof for the case
wk+1 6=0 is similar.

4. Structure-preserving moment-matching theorem
We now extend the moment-matching theorems presented in the previous sec-

tion to preserve substructures in the system matrices L, G, C and B. Specifically,
suppose the matrices L,G,C,B in the transfer function (1.1) have some natural parti-
tioning that is derived from, e.g., the physical layout of a VLSI circuit or a structural
dynamical system:

L=
( p

N1 L1

N2 L2

)
, G=

( N1 N2

N ′
1 G11 G12

N ′
2 G21 G22

)
, C =

( N1 N2

N ′
1 C11 C12

N ′
2 C21 C22

)
, B =

( m

N ′
1 B1

N ′
2 B2

)
,

(4.1)
where N ′

1 +N ′
2 =N1 +N2 =N . We wish the reduced system to inherit the same struc-

ture; that is, LR, GR, CR and BR should be partitioned so that

LR =

� p

n1 LR1

n2 LR2

�
, GR =

� n1 n2

n′
1 GR11 GR12

n′
2 GR21 GR22

�
, CR =

� n1 n2

n′
1 CR11 CR12

n′
2 CR21 CR22

�
, BR =

� m

n′
1 BR1

n′
2 BR2

�
,

(4.2)

that each sub-block is a direct reduction from the corresponding sub-block in the
original system, e.g., GR11 from G11, where n1 +n2 =n′1 +n′2. In the formulation
(1.4) for the reduced system, this can be accomplished by picking

X =
( n1 n2

N1 X1 0
N2 0 X2

)
, Y =

( n′
1 n′

2

N ′
1 Y1 0

N ′
2 0 Y2

)
, (4.3)
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such that rank(Xj)=nj , rank(Yi)=n′i. Then the submatrices of the coefficient ma-
trices LR, GR, CR and BR of the reduced system are given by

LRj =X∗
j Lj , GRij =Y ∗i GijXj , CRij =Y ∗i CijXj , BRi =Y ∗i Bi. (4.4)

A reduction as in (4.4) is conceivably useful for the system matrices with meaningful
substructures. For example, for the time-domain modified nodal analysis (MNA)
circuit equations targeted by PRIMA [38] and SyMPVL [21], system matrices have
the following natural partitioning (adopting the formulation in [21])

G=
(

G11 G12

G∗12 0

)
, C =

(
C11 0
0 −C22

)
, G∗11 =G11, C

∗
ii =Cii, L=B, (4.5)

where G and C are the conductance and susceptance matrices; G11, C11, and C22

are the matrices that contain the stamps for resistors, capacitors, and inductors,
respectively; G12’s entries are either 1 or −1 or 0, representing the current variables
in Kirchhoff’s current law equations. Accordingly B =L has a natural partitioning,
too. As stated in [38], if the original circuit is composed of passive linear elements
only, Cii and G11 are all (real) symmetric nonnegative definite. Using reduction (4.4)
with Y =X, all these substructures will be preserved, except that the entries of GR12

could be numbers other than 1 or −1 or 0. Passivity of the system is preserved for
the same reason as PRIMA [38].

For the sake of moment-matching, Theorem 3.3 remains true here. In terms
of finding X and Y as defined in (4.3), we can use the following generic algorithm

which produces Z =
( n1 n2

N1 Z1 0
N2 0 Z2

)
from any given Z̃ =

(
N1 Z̃1

N2 Z̃2

)
such that span(Z)⊇

span(Z̃).

Algorithm 4.1. From given eZ to Z:
1. Compute Zi∈C

Ni×ni having full column rank such that span(Zi)⊇ span( eZi);

2. Output Z =

�
Z1 0
0 Z2

�
.

There are a variety of ways to realize Step 1: Rank revealing QR decompositions,
modified Gram-Schmit process, or singular value decompositions [11, 15, 26]. For
maximum efficiency, one should make Zi have as few columns as one can. Notice the
smallest possible number is rank(Z̃i), but one may have to add a few more columns
to make sure the total number of columns in all Xi and that in all Yi are the same,
as required by Item 3 of Theorem 4.1 below.

Theorem 4.1. Let X be the output of Algorithm 4.1 with input X̃, and likewise let
Y be the output with input Ỹ . Assume that GR is nonsingular (and thus the total
number of columns in all Xi and that in all Yi must be the same).

1. If Kk(G−1C,G−1B)⊆ span(X̃) and Y =X, then Mi =MRi for 0≤ i≤k−1.
2. If G and C are Hermitian, and if Kk

(
G−1C,G−1(B L)

)⊆ span(X̃) and Y =
X, then Mi =MRi for 0≤ i≤2k−1.

3. If Kk(G−1C,G−1B)⊆ span(X̃) and Kr(G−∗C∗,G−∗L)⊆ span(Ỹ ), then Mi =
MRi for 0≤ i≤k+r−1.

Proof. It is a consequence of Theorem 3.3 and Algorithm 4.1.

Remark 4.1. A natural way to compute X̃ (and Ỹ ) is to run a (block) Arnoldi
process; but it can also be computed by a modified Arnoldi sub-orthogonalization
process to be published elsewhere [33].
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Remark 4.2. Analogously to Corollary 3.5, Theorem 4.1 remains valid if G, Mi, and
MRi are replaced by G(s0), Mi(s0), and MRi(s0), respectively.

Sample implementations to realize the three corresponding statements of Theo-
rem 4.1 are given below, where strAMR stands for structural preserving Arnoldi-type
model reduction, while the “L” in strLMR stands for Lanczos-type. Notice that Al-
gorithm 4.4 (strLMR) is essentially a two-sided Arnoldi process, and compared to
Algorithm 4.3, it has an advantage of producing a (much) smaller reduced model for
the same number of matched moments. But there is a tradeoff, too, namely Algo-
rithm 4.4 does not preserve the symmetry in G and C as Algorithm 4.3 does.

Algorithm 4.2. strAMR – Sample Implementation:
Given L,G,C,B as in (4.1) and expansion point s0.

1. Ĝ=G+s0C; solve ĜQ̂=B for Q̂;
2. Q1 =orth(Q̂): an orthonormal basis matrix for span(Ĝ−1B);
3. Arnoldi process computes X̃:

For j =1 to k−1 do
Solve ĜQ̂=CQj for Q̂;
For i=1 to j do

Q̂= Q̂−Qi(Q∗i Q̂);
EndFor
Qj+1 =orth(Q̂);

EndFor

X̃ =(Q1 Q2 ··· Qk) partitioned as X̃ =
(

N1 X̃1

N2 X̃2

)
;

4. X1 =orth(X̃1); X2 =orth(X̃2); Yi =Xi;
5. Compute nonzero blocks of LR, GR, CR, and BR, as in (4.4);
6. Evaluate the reduced HR(s) as needed.

Algorithm 4.3. strAMR II– Sample Implementation:
Given L,G,C,B as in (4.1) with Hermitian G and C and expansion point s0. Replace
B in Step 1 of Algorithm 4.2 by (B L).

Algorithm 4.4. strLMR – Sample Implementation:
Given L,G,C,B as in (4.1) and expansion point s0.

1. Ĝ=G+s0C;
2. solve ĜQ̂=B for Q̂;
3. solve Ĝ∗P̂ =L for P̂ ;
4. Q1 =orth(Q̂): a basis matrix for span(Ĝ−1B);
5. P1 =orth(P̂ ): a basis matrix for span(Ĝ−∗L);
6. Arnoldi process computes X̃ and Ỹ :

For j =1 to k−1 do
Solve ĜQ̂=CQj for Q̂;
Solve Ĝ∗P̂ =C∗Pj for P̂ ;
For i=1 to j do

Q̂= Q̂−Qi(Q∗i Q̂);
P̂ = P̂ −Pi(P ∗i P̂ );

EndFor
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Qj+1 =orth(Q̂);
Pj+1 =orth(P̂ );

EndFor
X̃ =(Q1 Q2 ··· Qk); Ỹ =(P1 P2 ··· Pk);

partitioned as X̃ =
(

N1 X̃1

N2 X̃2

)
, Ỹ =

(
N1 Ỹ1

N2 Ỹ2

)
7. X1 =orth(X̃1); X2 =orth(X̃2);
8. Y1 =orth(Ỹ1); Y2 =orth(Ỹ2);
9. Make sure that the total number of columns in X1 and X2 is the same as

that in Y1 and Y2; if not, add random columns to the pair with less columns;
10. Compute nonzero blocks of LR, GR, CR, and BR, as in (4.4);
11. Evaluate the reduced HR(s) as needed.

Remark 4.3. Results in this section are, naturally, extensible to partitions other
than 2-by-2. Here is an outline. Suppose we have partitionings

L=


N1 L1

N2 L2
...

Nd Ld

, G=


N1 N2 Nd

N ′
1 G11 G12 ··· G1d

N ′
2 G21 G22 ··· G2d

...
...

. . .
...

N ′
c Gc1 Gc2 ··· Gcd

, B =


N ′

1 B1

N ′
2 B2

...
N ′

c Bc

, (4.6)

and C partitioned in the same way as G, where
∑c

j=1N ′
j =
∑d

i=1Ni =N . To reduce
them block-wise to

LR =


n1 LR1

n2 LR2
...

nd LRd

, GR =


n1 n2 nd

n′
1 GR11 GR12 ··· GR1d

n′
2 GR21 GR22 ··· GR2d

...
...

. . .
...

n′
c GRc1 GRc2 ··· GRcd

, BR =


n′

1 BR1

n′
2 BR2

...
n′

c BRc

,

and CR partitioned in the same way as GR, we shall pick

X =


n1 n2 nd

N1 X1

N2 X2

. . .
Nd Xd

, Y =


n′

1 n′
2 n′

c

N ′
1 Y1

N ′
2 Y2

. . .
N ′

c Yc

,

where rank(Xj)=nj , rank(Yi)=n′i,
∑c

j=1n′j =
∑d

i=1ni. Let the definitions in (4.4)
remain valid for 1≤ i≤ c, 1≤ j≤d. Then versions of Algorithm 4.1 and Theorem 4.1
for c≥3 and/or d≥3 can be gotten. Detail is omitted.

5. Structures of Krylov subspaces of block matrices
The results of this section may be of general interest, and will be applied to

linearized second-order dynamical systems in the next section to derive structure-
preserving reduced models. The matrices here do not necessarily have anything to do
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with the transfer function. Consider

A=
( N1 N2

N1 A11 A12

N2 A21 A22

)
, B =

( m

N1 B1

N2 B2

)
, (5.1)

where N1 +N2 =N . The following theorem describes the structures in a basis matrix
of Kk(A,B) when one of Aij ’s is zero.

Theorem 5.1. Let A and B be partitioned as in (5.1), and let span(X̃)=Kk(A,B)
be partitioned as

X̃ =
( n′

1 n′
2

N1 X̃11 X̃12

N2 X̃21 X̃22

)
≡

( n′
1+n′

2

N1 X̃1

N2 X̃2

)

such that span

(
X̃11

X̃21

)
=Kk−1(A,B), and let α 6=0 be a scalar which may be different

at different occurrences. Then
1. If A11 =0, then span(X̃1)= span(B1 A12X̃21)⊆ span(B1 A12X̃2). If in addi-

tion A12 =αI (and thus N1 =N2), span(X̃1)= span(B1 X̃21)⊆ span(B1 X̃2).
2. If A12 =0, then span(X̃1)=Kk(A11,B1).
3. If A21 =0, then span(X̃2)=Kk(A22,B2).
4. If A22 =0, then span(X̃2)= span(B2 A21X̃11)⊆ span(B2 A21X̃1). If in addi-

tion A21 =αI (and thus N1 =N2), span(X̃2)= span(B2 X̃11)⊆ span(B2 X̃1).

Proof. All claims are consequences of the following observation:

if AiB =
(

Z1

Z2

)
, then Ai+1B =

(
A11Z1 +A12Z2

A21Z1 +A22Z2

)
.

Then combining the assumption that one of Aij =0 will complete the proof.
Item 4 of Theorem 5.1 was implicitly stated in [49, 7, 8]. It gives a relation between

span(X̃1) and span(X̃2); so does Item 1. It is Item 4 that led to structure-preserving
dimension reduction of second-order systems. See Section 6.

Theorem 5.1 can be extended to block matrices A other than just 2×2 block
matrices. A conceivable case that allows us to derive simple relations among blocks of
a basis matrix (conformably partitioned) of Krylov subspaces is when all block rows,
except one, of A have only one nonzero block, i.e., if

A=


N1 N2 Nd

N1 A11 A12 ··· A1d

N2 A21 A22 ··· A2d
...

...
. . .

...
Nd Ad1 Ad2 ··· Add

,

then except one block row of A, each of the rest block rows has at most one nonzero
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block. Even so there are still many subcases, one of which is

A=


N1 N2 Nd

N1 A11 A12 ··· A1d

N2 A21 0
. . . . . .

Nd Add−1 0

. (5.2)

Matrices like this arises from linearization of a polynomial eigenvalue problem [25]
in which A21 =A32 = ···=Add−1 = I and N1 =N2 = ···=Nd. As an example, we shall
state a theorem for A having form (5.2).

Theorem 5.2. Let A be partitioned as in (5.2), and let span(X̃)=Kk(A,B). Partition
B and X̃ accordingly as

B =


N1 B1

N2 B2
...

Nd Bd

, X̃ =


N1 X̃1

N2 X̃2
...

Nd X̃d

.

Then

span(X̃i)⊆ span(Bi Aii−1X̃i−1)

for 2≤ i≤d. If in addition Aii−1 =αiI for 2≤ i≤d (and thus N1 =N2 = ···=Nd),
then

span(X̃i)⊆ span(Bi X̃i−1)⊆ span(Bi Bi−1 ··· B2 X̃1).

for 2≤ i≤d.

6. Structure-preserving model reduction of second-order systems
In this section, we show how to apply the theory presented in the previous sections

to the structure-preserving model reduction of a second-order system. Consider the
transfer function of a second-order system

H(s)=(V ∗+sT ∗)(s2M +sD+K)−1R, (6.1)

which arises from applying the Laplace transform to the time-invariant MIMO second-
order dynamical system{

Mq̈(t)+Dq̇(t)+Kq(t) = Ru(t),
y(t) = T ∗q̇(t)+V ∗q(t),

where M,D,K ∈C
N×N , R∈C

N×m, T,V ∈C
N×p, and u(t), q(t) and y(t) are vector-

valued functions of appropriate dimensions. Notation here is adopted from structural
dynamics, where M,D,K are mass, damping, and stiffness matrices and are usually
Hermitian, but can be non-Hermitian at times.

It is quite common to deal with (6.1) by a linearization technique to turn it into
the form of (1.1). This is done by setting

C =
(

D M
W 0

)
, G=

(
K 0
0 −W

)
, L=

(
V
T

)
, B =

(
R
0

)
, (6.2)
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where W is any N×N nonsingular matrix, usually taken to be M when M,D,K are
Hermitian or simply I otherwise. By now, all existing developments for the transfer
function (1.1) can be applied in a straightforward way, but then reduced models likely
lose the second-order characteristics, i.e., they may not be turned into the second-
order transfer functions2 and consequently the reduced models have little physical
significance. To overcome this, Su and Craig [49] made an important observation
which is equivalent to Item 4 of Theorem 5.1. Their work has been further developed
in [7, 8]. Similar efforts were made by [30, 36] where algorithms are proposed and are
provably efficient for so-called low-rank cases. Specifically, in a structure-preserving
model reduction method, the transfer function of the reduced second-order system is
also of the second-order form

HR(s)=(V ∗R +sT ∗R)(s2MR +sDR +KR)−1RR, (6.3)

where

MR =Y ∗1 MX1, DR =Y ∗1 DX1, KR =Y ∗1 KX1,
VR =X∗

1V, TR =X∗
1T, RR =Y ∗1 R,

(6.4)

and X1,Y1∈C
N×n having full column rank. Together with L, G, C and B as defined

by (6.2), the transfer functions H(s) and HR(s) of the original and reduced systems
can be written in the following linear forms

H(s)=L∗(G+sC)−1B and HR(s)=L∗R(GR +sCR)−1BR,

where LR =X∗L, GR =Y ∗GX, CR =Y ∗CX, and BR =Y ∗B as in (1.4), and

X =
( n n

N X1 0
N 0 X1

)
and Y =

( n n

N Y1 0
N 0 Y1

)
. (6.5)

We now show the moment-matching property of the reduced transfer function HR(s).
Assume that K and W are nonsingular, we have

G−1C =
(

K−1D K−1M
−I 0

)
, G−∗C∗=

(
K−∗D∗ K−∗W ∗

−W−∗M∗ 0

)
. (6.6)

Both G−1C and G−∗C∗ have a zero block, a condition of Theorem 5.1. Moreover the
(2,1)-block of G−1C is −I always, and that of G−∗C∗ can be made −I, if W =M . In
what follows, X and Y are defined as in (6.5) in terms of X1 and Y1, and X̃ and Ỹ
are always partitioned as

X̃ =
(

N X̃1

N X̃2

)
and Ỹ =

(
N Ỹ1

N Ỹ2

)
.

2It is possible to turn a linear system of even dimension into a second-order system. Recently
[37, 45] and [29] propose two different ways to do that; but in both cases the coefficient matrices of
the resulted second-order system cannot be related to the original system in a meaningful way.
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Theorem 6.1. Suppose that M , D, and K are Hermitian, and M and K are non-
singular. Let integer k≥0, L,G,C and B be defined in (6.2) and W =M . If

Kk

(
G−1C,G−1(B L)

)⊆ span(X̃), (6.7)

span(M−1T )⊆ span(X1), (6.8)

span(X̃1)⊆ span(X1), (6.9)

and Y =X, then H(s)=HR(s)+O(s2k).

Proof. Note that W =M implies that both (2,1)-blocks in (6.6) are −I. By (6.8),
(6.9), Item 4 of Theorem 5.1, and B and L in (6.2), we have

span(X̃2)⊆ span(M−1T X̃1)⊆ span(X1)

which, together with (6.9), imply span(X̃)⊆ span(X), and hence

Kk(G−1C,G−1B)⊆Kk

(
G−1C,G−1(B L)

)⊆ span(X̃)⊆ span(X).

Furthermore, since G and C are Hermitian, we have

Kk(G−∗C∗,G−∗L)=Kk(G−1C,G−1L)⊆Kk

(
G−1C,G−1(B L)

)⊆ span(X̃)⊆ span(X).

The conclusion of the theorem is now a consequence of Theorem 3.3.
A sample Arnoldi-type implementation is as follows. Another implementation

includes the original one of [49]

Algorithm 6.1. qAMR – Sample Implementation: Computing X1.

1. Compute bX such that Kq(G
−1C,G−1(B L)⊆ span( bX), by, e.g., Algorithm 4.2;

2. Partition bX =

�
N bX1

N bX2

�
;

3. Compute X1 =orth(( bX1 M−1T )).

Remark 6.1. Su and Craig’s algorithm [49], in our notation, essentially first com-
putes X̃ by a block Arnoldi-like procedure to satisfy

Kk

(
G−1C,G−1

(
R V T
0 T 0

))
⊆ span(X̃),

and then uses X1 =Y1 = X̃1 to define a reduced second-order system as in (6.3). Note
that doing so may unnecessarily produce a reduced system larger than it should be

because the entire
(

M−1T
0

)
participates the Arnoldi process, whereas Theorem 6.1

says only the range of M−1T needs to be included in X1. In fact it can be proved
that

span

((
M−1T

0

)
,Kk

(
G−1C,G−1(B L)

))⊆Kk

(
G−1C,G−1

(
R V T
0 T 0

))
.

The so-called second-order Arnoldi procedure recently presented in [7, 8] can be in-
terpreted as an algorithm to directly compute an orthonormal basis of span(X1).
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The theorem below does not assume that M , D, and K are Hermitian.

Theorem 6.2. Suppose that M and K are nonsingular. Let integers k,r≥0, L,G,C
and B be defined in (6.2) and W =M . If

Kk(G−1C,G−1B)⊆ span(X̃), (6.10)

Kr(G−∗C∗,G−∗L)⊆ span(Ỹ ), (6.11)

span(X̃1)⊆ span(X1), (6.12)
span(M−1T )⊆ span(Y1), (6.13)

span(Ỹ1)⊆ span(Y1), (6.14)

then H(s)=HR(s)+O(sk+r).

Proof. Note that W =M implies that both (2,1)-blocks in (6.6) are −I. By Item
4 of Theorem 5.1, the B in (6.2), we have

span(X̃2)⊆ span(X̃1).

Therefore, by (6.10) and (6.12), we have

Kk(G−1C,G−1B)⊆ span(X̃)⊆ span(X).

On the other hand, by (6.13) and Item 4 of Theorem 5.1, we have

span(Ỹ2)⊆ span(M−1T Ỹ1)⊆ span(Y1)

which, together with (6.11) and (6.14), imply

Kr(G−∗C∗,G−∗L)⊆ span(Y ).

The conclusion is now a consequence of Theorem 3.3.

Remark 6.2. The idea in this section is naturally extensible to transfer functions of
higher degree of the form

H(s)=

(
d−1∑
i=0

siVi

)(
d∑

i=0

siAi

)−1

R,

thanks to Theorem 5.2. Detail is omitted. Other studies in high-order transfer func-
tions include [14, 17, 47, 48].

7. Numerical Examples
The first example is taken from [46]. Here N =256, the structure of G and C

are as in Figure 7.1, N ′
i =Ni =128 (i=1,2), p=m=1, and L and B are randomly

chosen. We compare the approximate accuracy of the “structurally reduced” models
by Algorithm 4.2 as proposed against otherwise “generally reduced” ones, i.e., Algo-
rithm 4.2 without Step 4 (and therefore X = X̃). Figure 7.2 plots the values of the
original and reduced transfer functions and the relative errors of the reduced functions,
where Y =X and span(X)⊃K20(G−1C,G−1B). It clearly shows that the structurally
reduced model is more accurate in the long range of frequency.

It is natural to wonder whether incorrect structural partitioning would make any
difference. Indeed it does. Supposedly we take N ′

1 =N1 =128+20 and N ′
2 =N2 =
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Fig. 7.1. Block Structure of G (left) and C (right)
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Fig. 7.2. Transfer functions (left) and relative errors (right)

128−20. Figure 7.3 plots the same things as Figure 7.2, except with this new par-
tition, where again Y =X and span(X)⊃K20(G−1C,G−1B). This figure shows that
improper partitioning can degrade accuracy. But more than that, for this partition-
ing “structural reduction” is less accurate than the “general reduction” which is quite
counter-intuitive and surprising because span(X) with some partitioning includes
span(X) without any partitioning, and thus a reduction with partitioning should do
at least just as well as one without in terms of accuracy – further studies needed.

Next example is the second-order system from [4, §3.3]: N =400, p=m=1, T =0,
and V =R randomly chosen. Figure 7.4 plots the values of the original and reduced
transfer functions and relative errors, where “quadratically reduced” refers to (6.3)
with (6.4) and X1 by, e.g., Algorithm 6.1, and “linearly reduced” refers to (1.3) and
(1.4) through linearization (6.2) with Y =X(= X̂ in Algorithm 6.1 without Step 3).

8. Concluding remarks
We presented a Krylov subspace based projection formulation for structure-

preserving model reduction of a MIMO dynamical system prescribed by its transfer
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Fig. 7.3. Transfer functions (left) and relative errors (right); Preserving incorrect structure
can lead to less accurate approximations.
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Fig. 7.4. Transfer functions (left) and relative errors (right): a second-order example

function H(s)=L∗(G+sC)−1B. The reduced-order system preserves substructures
of importance in the coefficient matrices L,G,C and B. Such a projection formula-
tion provides a simple interpretation to many existing methods, meanwhile it also has
extreme flexibility to exploit the structures of coefficient matrices L,G,C and B and
the associated Krylov subspaces. We can generalize the work presented in [7, 8] to
develop new Arnoldi-like processes that only orthogonalize the prescribed portion of
all basis vectors as opposed to whole vectors. Such new processes can be designed as
one way to numerically realize the idea in the general framework as we discussed in
this paper.

The work of Su and Craig [49] has spawned several recent research papers on
model reduction of second-order systems and quadratic eigenvalue problems, including
[7, 8, 18, 50]. But the attempt to preserve meaningful substructures as in (4.1) – (4.4)
for any general linear systems, not necessarily from linearizing a second-order system,
appears to be conceived first by [33, 34].
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