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AN ENTROPY DISSIPATION–ENTROPY ESTIMATE FOR A THIN
FILM TYPE EQUATION∗

E. A. CARLEN† AND S. ULUSOY‡

Abstract. We prove a lower bound on the rate of relaxation to equilibrium in the H1 norm
for a thin film equation. We find a two stage relaxation, with power law decay in an initial interval,
followed by exponential decay, at an essentially optimal rate, for large times. The waiting time until
the exponential decay sets in is explicitly estimated.
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1. Introduction
The following fourth-order nonlinear parabolic equation

ft =−(fnfxxx)x , −a≤x≤a , (1.1)

with either periodic or “no flux” boundary conditions; i.e., fx(±a)=fxxx(±a)=0,
arises in modeling the evolution of thin films. The particular case n=1, on which we
shall focus, is used to model the flow in a Hele-Shaw cell; see [9].

This equation has been studied recently by many authors, e.g. [3],[1],[4],[2],[6].
In particular, in [2] Bernis and Friedman established the existence of a class of Hölder
continuous weak solutions, and proved their existence. This was done for n≥1, and
using “no flux” boundary conditions. They showed moreover that these weak solutions
are actually classical solutions as long as they stay positive, and showed that if f0≥0,
then this property is preserved for all time, and also that

∫ a

−a
f(x,t)dx is independent

of t. The same equation has been studied under periodic boundary conditions in [5].
These authors prove that the weak solutions become classical, regular and positive in
a finite time.

Several papers [5],[1],[8] have addressed the question of long–time behavior of
solutions, and have shown that if f0 is positive, then

lim
t→∞

f(x,t)=
1
2a

∫ a

−a

f0(x)dx. (1.2)

The steady state or “equilibrium” solutions to (1.1) are the constants. Since∫ a

−a
f(x,t)dx is constant for any smooth solution f(x,t) to (1.1), the equilibrium so-

lution corresponding to the initial data f0 is the constant on the right hand side in
(1.2). Thus, (1.2) expresses the fact that solutions eventually relax to equilibrium.
However, the proofs of (1.2) in [5],[1] rely on compactness arguments, and give no rate
information. The analysis by Lopez, Soler and Toscani in [8] is based on an ingenious,
but somewhat intricate, use of “entropy functionals” of the sort developed by Bernis
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172 DISSIPATION IN A THIN FILM EQUATION

and Friedman in their fundamental work [2]. They provide an explicit exponential
decay bound in the L1 norm.

In this paper, we prove quantitative bounds of the relaxation rate to the equilib-
rium solution for n=1 with a finite domain [−a,a]. We do this in a stronger norm
that in [8], namely the H1([a,a]) Sobolev norm, and the rate we obtain is essentially
“best possible”, as it corresponds to the rate at which the linearized equation relaxes.
As we show, the relaxation proceeds in two stages: There is an initial slow stage with
power law decay. Then, once the solution has entered a neighborhood of the equilib-
rium that is sufficiently small for the errors made in linearization to be controlled, the
relaxation proceeds at an exponential rate.

A straight forward analysis of the error terms in a linearization of (1.1) about the
equilibrium shows that once the solution is close to equilibrium in the L∞ norm, the
distance to equilibrium begins to decay exponentially fast. The details are simple,
but are provided below.

The interesting question concerns initial data that is far from equilibrium: How
long does it take solutions with initial data far from equilibrium to get sufficiently close
to equilibrium that the linearization “takes over” Indeed, one can ask if, in general,
they ever get close enough. We answer this question and show that there is a power
law bound on the distance from equilibrium valid for classical solutions even if they
start far from equlibrium.

We do this by proving what has come to be known as an entropy dissipation–
entropy bound for (1.1). The term “entropy” is frequently used for a Lyapunov func-
tional whose rate of decrease can be bounded in terms of itself. That is, if H(f) is
some functional of f , and along the flow of some evolution we have

d
dt

H(f)≤−Φ(H(f)) , (1.3)

with Φ some continuous strictly monotone increasing function on R+, then functional
H(f) is called an entropy, and the inequality (1.3) is called an entropy dissipation–
entropy inequality. The point is that (1.3) can be used to quantitatively estimate the
rate of decay of H(f).

The entropy functional we employ has been discovered by Laugesen [7]: For p≥0,
define Hp(f) by

Hp(f) :=
∫ a

−a

(fx)2

fp
dx .

Notice that with g =(1−p/2)f1−p/2, Hp(f)=
∫ a

−a
g2

xdx, so the precise definition of
Hp(f) is that it is infinite unless g has a square integrable distributional derivative,
and otherwise, it is the square integral of the distributional derivative of g. However,
as in [7], we shall be working with positive classical solutions where the formula can
be taken literally.

Laugesen showed that for 0≤p≤1/2, Hp is a Lyapunov functional; i.e.,

d
dt

Hp(f)≤0 (1.4)

for any positive classical solution of (1.1) with n=1. (This was already known for
p=0. The cases with 0<p≤1/2 are more subtle.) In fact, Laugesen did more: He
showed that for all n with 1/2<n<3, there is a range of values of p, 0<p<p(n),
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for which Hp(f) is non increasing for positive classical solutions of (1.1). We have
focused on the Hele–Shaw case n=1 because of our own interests, and to keep the
formulae that follow both simple and explicit. However, we note that it is possible
to prove strict entropy dissipation–entropy inequalities such as the one we prove in
Theorem 1.1 below also for other values of n in this range.

The inequality (1.4), while pertinent to (1.2), gives no rate information on the
rate of approach, and generally it is not easy to pass from (1.4) to (1.3), since the
bound on the dissipation, which is generally a complicated functional, must be made
in terms of the original entropy functional. For example, a simple calculation yields

d
dt

H0(f)=−2
∫ a

−a

f(fxxx)2dx . (1.5)

There is no useful lower bound on the integral on the right hand side in terms of
H0(f)=‖fx‖22, without assuming that f is close to its constant equilibrium value.

Building on Laugesen’s work, we show that for certain values of p, his Lyapunov
functionals are better behaved so that its rate of decrease can be bounded below in
terms of themselves, as in (1.3).

Theorem 1.1. Consider any positive classical solution of (1.1) with n=1. Suppose
the initial data f0 is such that Hp(f0) is finite for some p with 0<p< (9+4

√
15)/53.

Then there is a strictly positive constant Bp(f0) depending on f0 only through∫ a

−a
f0(x)dx and Hp(f0) such that

d
dt

Hp(f(·,t))≤−Bp(f0)Hp(f(·,t))3 (1.6)

and hence

Hp(f(·,t))≤ [
2Bp(f0)t+(Hp(f0))−2

]−1/2
. (1.7)

We mention that an explicit computation of Bp(f0) is provided in the proof that
follows. It should also be noted that since (9+4

√
15)/53≈0.4621119507, (1.6) only

shows that Hp(f) is decreasing for a more restricted range than that obtained by
Laugesen. However, within this range, we obtain a bound on the decrease of Hp(f)
that can be expressed in terms of Hp(f) itself, and this is crucial for obtaining bounds
of the rate of approach to the equilibrium solution.

We now apply Theorem 1.1 to quantify the rate of convergence in (1.2). Given
positive, continuous initial data f0, let M denote the mean height; i.e.,

M =(2a)−1

∫ a

−a

f0dx , (1.8)

so that M is the constant value of the equilibrium solution corresponding to f0. For
the classical solution f with positive initial data f0, clearly (2a)−1

∫ a

−a
f(x,t)dx=M

for all t.
It is not hard to see that when Hp(f) is small, then so is ‖f−M‖∞. This fact

will be used below, and so we give a formal statement in the following lemma, which
provides a sort of Poincare–Sobolev inequality for the functional Hp.

Lemma 1.2. For any p with 0<p<2, and any postitive function f for which Hp(f)
is finite,

‖f−M‖2∞≤2a
(
M1−p/2 +(1−p/2)(2a)1/2(Hp(f))1/2

)2p/(2−p)

Hp(f) . (1.9)
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Proof. Notice that with g defined by g =(1−p/2)−1f1−p/2, Hp(f)=
∫ a

−a
(gx)2dx.

Then since g(b)=(1−p/2)−1M1−p/2 for some b with −a<b<a,

‖g−(1−p/2)−1M1−p/2‖2∞≤
(∫ a

−a

|gx|dx

)2

≤2aHp(f) . (1.10)

Introduce h=f−M . Then

|g−(1−p/2)−1M1−p/2|=(1−p/2)−1|(M +h)1−p/2−M1−p/2| (1.11)
≥|h|/K

(1.12)

where K is the maximum of Mp/2 and ‖M +h‖p/2
∞ . Since

(M +h)p/2 =fp/2 =((1−p/2)g)p/(2−p), we have from (1.10) that

K≤
(
M1−2/p +(1−p/2)(2a)1/2(Hp(f))1/2

)2p/(2−p)

. Combining this with (1.11),
which says that

‖f−M‖∞≤K‖g−(1−p/2)−1M1−p/2‖∞ ,

and then with (1.10), we obtain the result.

Since by (1.7), H(f) decays to zero like t−1/2, h=f−M decay to zero, uniformly
in x, like t−1/4, assuming only that f0 is positive and that Hp(f) is finite for some
p in the range indicated in Theorem 1.1 After this polynomial decay has gone on
long enough, we reach a sufficiently small neighborhood of the equilibrium that it is
possible to control the errors in linearization, and from this point onward, the decay
is exponentially fast.

The following theorem, which makes this precise, is relatively easy to prove. How-
ever it is meaningful only on account of Theorem 1.1 and Lemma 1.2 that guarantee
its applicability to solutions of our equation with initial data in a fairly general class.

Theorem 1.3. For any positive classical solution of (1.1) with n=1, let M be the
corresponding equilibrium value, and suppose the initial data f0 is such that Hp(f0)<
∞ for some p with 0<p< (9+4

√
15)/53. Then for any ε>0, there is a finite time Tε,

explicitly computable in terms of M and Hp(f0) so that for all t>Tε, ‖f−M‖∞≤ ε.
Morover, for all t>Tε, we have

H0(f)≤H0(f0)e−(t−Tε)2(M−ε)(π/a)4

in case we are using periodic boundary conditions, and

H0(f)≤H0(f0)e−(t−Tε)2(M−ε)(π/2a)4

in case we are using “no flux” boundary conditions.

Recall that H0(f)=
∫

f2
xdx, so Theorem 1.3 proves that this Sobolev norm decays

to zero exponentially fast. Of course ‖f−M‖2∞≤ (2a)H0(f), and so Theorem 1.3 also
ensures an exponential rate of convergence in (1.2) in the uniform norm. As will be
clear from the proof, which is based on linearization, the rates are essentially best
possible, as one cannot hope for faster convergence than one would get from the
linearized equation. While explicit exponential convergence in (1.2) was obtained in
the L1 norm earlier, the rates were considerably slower. To our knowledge, Theorem
1.3 provides the first proof that

∫
f2

xdx decreases to zero at any rate for any class of
initial data that is not already close to equilibrium.
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2. Proofs
Proof of Theorem 1.1

Proof. The proof is given in several steps.
(Step One): We first show that for 0≤p< (9+4

√
15)/53

d
dt

Hp(f)≤−CpI3 (2.1)

where Cp is a strictly positive constant given explicitly in (2.14) below. Toward this
end, we compute the rate of change of Hp((f ·,t)). (All integrals below are over the
range [−a,a]. To facilitate reading the formulae, we drop the limits from our notation
here.)

d
dt

Hp(f)=
d
dt

∫
f2

x

fp
dx

=2
∫

fx

fp
ftxdx−p

∫
f2

x

fp+1
ftdx

=−2
∫

fx

fp
(ffxxx)xxdx+p

∫
f2

x

fp+1
(ffxxx)xdx .

(2.2)

Integrating by parts twice in the first integral and once in the second, so that fxxx is
the highest spatial derivative present, one obtains

d
dt

Hp(f)=−2
∫

f2
xxx

fp−1
dx+4p

∫
fxfxxfxxx

fp
−p(p+1)

∫
f3

xfxxx

fp+1
dx. (2.3)

To show that the quantity in (2.3) is negative, we shall write it as a sum of
negative multiples of integrals of perfect squares. This is also the basic strategy of
Laugesen, though we make some different choices below, so as to arrive at (2.1).

For any numbers α, β and γ, to be chosen below, define the quantity

A=
∫ (

αfxxx +β
fxxfx

f
+γ

f3
x

f2

)2

f1−pdx . (2.4)

This can be written as

A=α2I1 +β2I2 +γ2I3 +2αβJ12 +2αγJ13 +2βγJ23 (2.5)

where

I1 =
∫

f2
xxx

fp−1
dx, I2 =

∫
f2

xf2
xx

fp+1
dx, I3 =

∫
f6

x

fp+3
dx; (2.6)

J12 =
∫

fxfxxfxxx

fp
dx, J13 =

∫
f3

xfxxx

fp+1
dx, J23 =

∫
f4

xfxx

fp+2
dx. (2.7)

Integration by parts yields the following relations:

I2 =
(

1+p

3

)
J23− 1

3
J13 and J23 =

(
2+p

5

)
I3 . (2.8)
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There is no integration by parts identity relating J12 to other integrals in the lists
(2.6) and (2.7) – integrating by parts in J12, no matter how it is done, would introduce
other integrals into the game.

Using the notation in (2.6) and (2.7) we can rewrite (2.3) as

d
dt

Hp(f)=−2I1 +4pJ12−p(p+1)J13. (2.9)

Our plan is to use (2.5) to eliminate the J12 term in (2.9), since we have no integration
by parts identity for J12. To achieve this, chose α=1 and β =−p. Then by (2.5),

A= I1 +p2I2 +γ2I3−2pJ12 +2γJ13−2pγJ23 ,

or, what is the same,

I1−2pJ12 =A−p2I2−γ2I3−2γJ13 +2pγJ23 . (2.10)

Combining (2.9) and (2.10),

d
dt

Hp(f)=−2A+2p2I2 +2γ2I3 +(4γ−p(p+1))J13−4pγJ23 .

Next, use the first identity in (2.8) to eliminate I2. This gives

d
dt

Hp(f)=−2A+
(

4γ−p(p+1)− 2p2

3

)
J13 +

(
2p2 1+p

3
−4pγ

)
J23 +2γ2I3 .

Finally, using the second identity in (2.8) to eliminate J23, we obtain

d
dt

Hp(f)=−2A+
(

4γ−p(p+1)− 2p2

3

)
J13 (2.11)

+
((

2p2 1+p

3
−4pγ

)(
2+p

5

)
+2γ2

)
I3 .

(2.12)

Since J13 can have either sign, we choose γ so that the multiple of J13 vanishes. That
is, we chose

γ =
3p(p+1)+2p2

12
.

With this choice of γ, (2.11) becomes

d
dt

Hp(f)=−2A− p2

360
(
3+18p−53p2

)
I3 . (2.13)

(Notice that with the choices of β and γ made above that (2.13) reduces to (1.5)
for p=0). One now easily calculates that the roots of 3+18p−53p2 =0 are p=
(9±4

√
15)/53. Thus, if we define Cp by

Cp =
p2

360
(
3+18p−53p2

)
, (2.14)
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we have that Cp >0 for 0<p< (9+4
√

15)/53, and that (2.1) holds with this value of
Cp.

(Step Two): We show that there is a constant Kp(f0) depending on f0 only through
M and Hp(f0) so that

I3≥Kp(f0)(Hp(f))3 . (2.15)

Toward this end, first notice that

I3 =
∫ a

−a

f6
x

f3+p
dx=

∫ a

−a

(
f2

x

fp

)3 1
f2

1
f1−2p

dx≥ 1
‖f‖1−2p

∞

∫ a

−a

(
f2

x

fp

)3 1
f2

.

Letting u=(fx)2/fp, and letting v =f , we have

I3≥ 1
‖f‖1−2p

∞

∫ a

−a

u3v−2dx . (2.16)

The function (r,s) 7→ r3s−2 is jointly convex, so that by Jensen’s inequality,

1
2a

∫ a

−a

u3v−2dx≥
(

1
2a

∫ a

−a

udx

)3(
1
2a

∫ a

−a

vdx

)−2

=
1

2a
(∫ a

−a
f0(x)dx

)2 (Hp(f))3

=
1
2a

(Hp(f))3

M2
.

(2.17)

Combining this with (2.16), and using Lemma 1.2, together with the fact that Hp(f)≤
Hp(f0), to bound ‖f‖∞ in terms of M and Hp(f0), we obtain (2.15). Combining this
with (2.1), we obtain (1.6).

(Step Three): We now solve the differential inequality (1.6) to obtain (1.7). To do
this, make a comparison with the solution of the differential equation

ẏ(t)=−C(y(t))3 ,

whose solution is

y(t)=
(
2Ct+(y(0))−2

)−1/2
.

This results in (1.7).

Proof of Theorem 1.3
Proof. This is relatively simple. Our starting point is (1.5). Since if ‖f−M‖∞≤ ε

then f ≥M−ε, we have from (1.5) that

d
dt

H0(f)=−2
∫ a

−a

f(fxxx)2dx

≤−2(M−ε)
∫ a

−a

(fxxx)2dx . (2.18)
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Under periodic boundary conditions, fx is orthogonal to the constant functions;
i.e., the null space of the operator −d2/dx2 with periodic boundary conditions on
[−a,a]. The least of the positive eigenvalues for this operator is (π/a)2, so that under
periodic boundary conditions, we obtain from (2.18) that

d
dt

H0(f)≤−2(M−ε)
(π

a

)4

H0(f) .

Under the “no flux” boundary conditions, fx(±a)=fxxx(±a)=0, fx belongs to
the domain of −d2/dx2 with Dirichlet boundary conditions on [−a,a]. Its smallest
eigenvalue (in absolute value) is (π/(2a))2. In this case we obtain from (2.18) that

d
dt

H0(f)≤−2(M−ε)
( π

2a

)4

H0(f) .
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