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MULTISCALE COUPLINGS IN PROTOTYPE HYBRID
DETERMINISTIC/STOCHASTIC SYSTEMS:

PART I, DETERMINISTIC CLOSURES∗

M.A. KATSOULAKIS † , A.J. MAJDA ‡ , AND A. SOPASAKIS §

Abstract. We introduce and study a class of model prototype hybrid systems comprised of a
microscopic stochastic surface process modeling adsorption/desorption and/or surface diffusion of
particles coupled to an ordinary differential equation (ODE) displaying bifurcations excited by a
critical noise parameter. The models proposed here are caricatures of realistic systems arising in
diverse applications ranging from surface processes and catalysis to atmospheric and oceanic models.

We obtain deterministic mesoscopic models from the hybrid system by employing two methods:
stochastic averaging principle and mean field closures. In this paper we focus on the case where
phase transitions do not occur in the stochastic system. In the averaging principle case a faster
stochastic mechanism is assumed compared to the ODE relaxation and a local equilibrium is induced
with respect to the Gibbs measure on the lattice system. Under these circumstances remarkable
agreement is observed between the hybrid system and the averaged system predictions. We exhibit
several Monte Carlo simulations testing a variety of parameter regimes and displaying numerically
the extent, limitations and validity of the theory. As expected fluctuation driven rare events do occur
in several parameter regimes which could not possibly be captured by the deterministic averaging
principle equation.

1. Introduction
Couplings of atomistic or molecular, and more generally microscopic stochas-

tic models to deterministic macroscopic ordinary and partial differential equations
(ODE/PDE) are commonplace in a wide array of applications, ranging from catalysis
and deposition processes to stochastic models for tropical and open ocean convec-
tion and complex biological networks, see for instance [18, 24]. In this category of
problems microscopic stochastic processes, typically simulated by Monte Carlo (MC)
methods, model small scale activity on an interface or boundary layer, e.g. adsorp-
tion, desorption, surface reaction and surface diffusion of particles, in contact with a
gas/fluid phase. The micromechanisms are interrelated with the large scale adjacent
fluid flow modeled by continuum ODE/PDE describing the evolution of fluid and
thermodynamic variables.

The overarching challenge in all these hybrid problems is essentially two-fold: a
first difficulty arises in the direct numerical simulation of realistic size systems due to
scale disparities between the discrete stochastic microscopic models and the continuum
macroscopic equations; secondly, the fact that the coupled systems have nonlinear in-
teractions across a wide range of scales, implies that the stochasticity inherited from
the microscopic model can play a subtle but important role in the dynamic behavior
of the overall system. In this paper we address directly or indirectly both issues in the
context of proposed prototype mathematical models of a deterministic ODE coupled
with a stochastic spin flip/spin exchange Ising model, that capture essential features
of complex hybrid systems. More specifically the models put forward here, (a) allow
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for testing the derivation of computationally inexpensive mesoscopic deterministic and
stochastic models for the average behavior of the hybrid systems in various asymptotic
limits, and (b) render computationally feasible detailed comparisons of the derived
mesoscopic theories against direct numerical simulations of the full hybrid system;
although remarkable agreement is observed, long-time simulations and asymptotic
analysis in a linearized stochastic PDE limit strongly suggest that fluctuation-driven
rare events do occur in several parameter regimes and are not captured by the de-
terministic mesoscopic equations. Furthermore fluctuations play a dominant role in
regimes where phase transitions occur in the stochastic system. As a result it is clear
that we need to develop mathematical strategies that allow fluctuations to be properly
and systematically included in the deterministic mesoscopic models. In a companion
publication [8] we address this issue by employing recently developed coarse-grained
stochastic models [9, 10, 11], in order to describe the microscopic mechanisms with a
hierarchy of coarser (and thus computationally preferable) but still discrete, stochas-
tic observables. In this spirit, hybrid coarse-grained models were already introduced
in [13] as stochastic parameterizations of unresolved features of tropical convection;
such models provide a computationally efficient stochastic model whose predictions
can be directly related to observational data. In the next paragraphs we motivate the
proposed prototype systems by first discussing two concrete applications that have
partly inspired the choice of the models and the ensuing analysis and simulations
discussed in this paper.

Microscopic descriptions of surface mechanisms on catalytic reactors, [25] involve
adsorption, desorption, reaction and surface diffusion processes and can be modeled
by stochastic Ising systems with spin flip and spin exchange dynamics, [17]. On the
other hand, the gas-phase modeling is based on continuum PDE and includes equa-
tions for transport, thermodynamics and gas-phase reactions, [2]. The microscopic
stochastic surface processes are coupled to the continuum PDE via boundary con-
ditions and adsorption/desorption rates to and from the surface. One of the first
examples of hybrid systems studied in the literature can be found in [24]. This phys-
ical system was first studied in the mean-field (MF) regime in [12], and includes an
ODE describing the spatially uniform coverage on the catalytic surface. The resulting
system of two coupled ODEs predicts oscillations both in the coverage and the pres-
sure but it disregards fluctuations, detailed interactions and spatial inhomogeneities.
Comparisons between MF and MC simulations [24] show that in many parameter
regimes there is substantial agreement attributed to the coupling with the well-mixed
gas-phase; drastic discrepancies are also observed, as well as a variety of dynamic and
equilibrium behaviors, depending on the separation of time scales between individ-
ual micromechanisms and the time scale of the ODE, and also the presence of phase
transitions for the surface process.

In the same broad mathematical context of phenomena with fluid-surface cou-
plings, stochastic models for unresolved features in tropical convection were recently
proposed in [18]. Due to the significant impact of tropical convection to the short-
term climate, it is crucial to be incorporated to general circulation models (GCM), for
accurate short-term weather/climate prediction. Currently, the smallest mesh sizes
for the discretization of the fluid and thermodynamic equations in GCM range from
50−300km. However deep penetrative convection towers are of the order of 1−10km
in the horizontal variable and need to be incorporated as a subgrid scale model. The
process of modeling these unresolved features is referred to as “parametrization” and
is carried out according to various, usually deterministic, recipes [6]. Related issues
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also arise in numerous Atmosphere/Ocean problems such as the modeling of sea-ice
cover, open ocean convection and deep convective clouds in the tropics. In spite of
the progress in deterministic parameterizations, many significant observed features
of tropical convection cannot still be reproduced with current GCM [6]. In this di-
rection, a new stochastic parametrization for tropical convection was introduced in
[18] which is roughly analogous to the hybrid catalysis model described above. The
significance of this stochastic/deterministic coupling is underscored by the sensitivity
of the PDE systems on the (area fraction) parameter σ̄. It was shown in [19] that in
models with two vertical baroclinic modes (and is known to occur in single vertical
baroclinic mode models), waves change from a stable convectively damped regime to
a scale-selective unstable convective regime when σ̄ is varied in a suitable interval.

As it is evident from the two examples discussed above, hybrid systems are ex-
pected to have a host of complicated and nonlinear interactions between different
scales, fluctuations and parameter regimes. A common feature of this class of hybrid
models is that the influence of noise can be critical since in various parameter regimes
they can exhibit average behavior characterized by oscillations, Hopf and saddle node
bifurcations, heteroclinic orbits and possibly chaos. It is therefore clear that we need
to develop prototype problems that can capture such essential features of the physical
models but which still are amenable to asymptotics, analysis and tractable computa-
tions. This in turn will allow us to benchmark new modeling and computational ideas,
such as coarse-graining [9, 10, 11], stochastic averaging [7], and mode elimination [20].
More specifically we introduce in Section 2 a system of microscopic stochastic surface
processes modeling adsorption/desorption and/or surface diffusion of particles with
spin flip/exchange Ising systems, coupled to an ODE that serves as a caricature of the
gas-phase, exhibiting a similar variety of dynamic and stability behaviors in different
parameter regimes. Examples of such ODEs considered here are scalar equations ex-
hibiting bi-stability and saddle-node bifurcations, as well as a spatially homogeneous
complex Ginzburg-Landau equation exhibiting a Hopf bifurcation behavior.

Our work on these problems addresses two main themes. First in Section 3, we de-
rive deterministic mesoscopic models from the hybrid system by employing a stochas-
tic averaging principle to the microscopic lattice model (see [7], [20] for stochastic
averaging for SDE). These derivations are carried out rigorously when the stochastic
mechanism is faster than the gas-phase (ODE) relaxation, inducing a local equilib-
rium with respect to the Gibbs measure on the lattice system. We also address briefly
the implications of the possibility of phase transitions in the spin flip model, although
in this paper we focus on the much simpler case where phase transitions do not occur.
Other mesoscopic, spatially distributed equations can be derived without assuming
time-scale separation but rather long range interactions on the microscopic processes.
In both asymptotic regimes the resulting averaged equations can be thought of as
deterministic coarse-grained models providing some first intuition on the interplay of
various mechanisms and models.

In Section 4 we carry out extensive comparative simulations with both the hybrid
system and the mesoscopic deterministic equation derived through stochastic averag-
ing and observe remarkable agreement. However simulations for very long times with
our hybrid prototype models, as well as “crude” linearization arguments, strongly
suggest that fluctuation-driven rare events do occur in several parameter regimes and
are not captured by the deterministic averaged equations discussed above. Further-
more, random fluctuations are especially important in phase transition regimes. As a
result it is clear that fluctuations need to be properly included in any coarse-grained
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mesoscopic model. In a follow-up publication [8] we address this issue by employing
recently developed coarse-grained stochastic models [9, 10, 11], in order to describe
the microscopic mechanisms with a hierarchy of coarser stochastic observables.

2. A mathematical prototype hybrid model
We now introduce the microscopic spin flip stochastic Ising process {σt}t≥0, mod-

eling the adsorption and desorption of particles on a one-dimensional surface, coupled
to an ODE that serves as a caricature of an overlying gas-phase dynamics. The
stochastic process is completely determined by its generator L and the coupled sys-
tem is written as

d

dt
Ef(σ) = ELf(σ) (2.1)

d

dt
�X = f( �X, σ) (2.2)

for which we provide all the details below. Examples of ODEs such as (2.2) considered
here are scalar equations with bistable behavior or saddle node bifurcations, as well as
a spatially homogeneous complex Ginzburg-Landau equation exhibiting Hopf bifur-
cations. In addition to the spin flip mechanism, we can also consider spin exchange,
as well as combined mechanisms. In this paper we concentrate only on one of them,
namely spin flips.

2.1. Microscopic Arrhenius spin-flip / spin-exchange dynamics. We
consider a microscopic stochastic model defined on a periodic lattice of size N which
we denote by L = {1, 2, . . . , N}. At each lattice site x ∈ L, an order parameter σ, is
allowed to take the values 0 or 1. In accordance with the classical Ising model we refer
to the order parameter as spin. We will assume that sites cannot be occupied by more
than one particle (exclusion principle). A spin configuration σ is an element of the
configuration space Σ = {0, 1}L and we write σ = {σ(x) : x ∈ L} denoting by σ(x)
the spin at x. Physically this mechanism may describe the desorption of a particle
from a surface described by the lattice to the gas phase above and conversely the
absorption of a particle from the gas phase to the surface. Similarly it can describe
phase transitions without order parameter conservation.

The stochastic process {σt}t≥0 is a continuous time jump Markov process on
L∞(Σ, R) with generator, [14],

Ladf(σ) =
∑
x∈L

c(x, σ)[f(σx) − f(σ)] (2.3)

for any test function f ∈ L∞(Σ, R). Here c(x, σ) denotes the rate of the process (see
2.6) and σx signifies the configuration after a flip at x,

σx(y) =
{

1 − σ(x), if y = x
σ(y), if y �= x.

Since there are N = |L| sites on the lattice then the system can be in any of 2|L|

possible states while the energy of any particular state is given by the following Hamil-
tonian,

H(σ) = −1
2

∑
x∈L

∑
y �=x

J(x, y)σ(x)σ(y) +
∑

x

hσ(x), (2.4)
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where J(x, y) is an interparticle potential and h is a given external potential. We let,

J(x, y) = γJ(γ|x − y|)
where γ is a parameter prescribing the range of microscopic interactions. Here J is
assumed to be even, J(r) = J(−r) and as an example, can take a form similar to [9],

J(r) =
{

J0 if 0 ≤ r ≤ 1
0 otherwise,

where J0 is a parameter which based on its sign describes attractive, repulsive or no-
interactions. For attractive microscopic interactions for instance J0 is positive. We
let γ = 1/(2L + 1) where L denotes the interaction radius.

Applying a spin flip stochastic model we create new states from old ones generated
by a Markov process as described below. Equilibrium states of the stochastic model
are described by the Gibbs states at the prescribed temperature T . If we denote the
inverse temperature by β = 1/(kT ) we then have,

µβ,N(dσ) =
1
Z

e−βH(σ)PN (dσ) (2.5)

where PN (dσ) denotes the (product) prior distribution on L,

PN (dσ) =
∏
x∈L

ρ(dσ(x)) and ρ(σ(x) = 0) =
1
2
, ρ(σ(x) = 1) =

1
2
.

Here Z is the partition function, guaranteeing that (2.5) is a probability measure.
Note that k = 1.38 × 10−23 JK−1 is the Boltzmann constant. As is common we
measure temperature in energy units and therefore we take k = 1.

In this model we implement spin flip Arrhenius dynamics. Therefore under this
type of mechanism the simulation is driven based on the energy barrier a particle has
to overcome in flipping from one state to another. For Metropolis and other choices
of dynamics see [9]. The Arrhenius spin flip rate c(x, σ) at lattice site x and spin
configuration σ is given by

c(x, σ) =
{

cde
−β[U0+U(x)], when σ(x) = 0,

ca when σ(x) = 1.
(2.6)

where,

U(x) =
∑
z �=x

z∈L

J(x, z)σ(z) − h. (2.7)

with absorption/desorption constants,

ca = cd = 1/τI .

and τI denotes the characteristic time of the stochastic process. Here U0 represents
the energy associated with the surface binding of the particle at location x which
we set to U0 = 0. The ODE (2.2) and the stochastic system (2.1) are coupled via,
respectively, the external field,

h ≡ h( �X) (2.8)
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and the area fraction (or total coverage) defined as the spatial average of the stochastic
process σ,

σ =
1
N

∑
x∈L

σ(x) . (2.9)

In general we write the spin flip rate (2.6) as,

c(x, σ) := ca(x, σ) + cd(x, σ) = ca(1 − σ(x)) + cdσ(x) exp(−β(U0 + U(x)) (2.10)

and therefore the probability of a spin flip at x during time [t, t + ∆t] is,

c(x, σ)∆t + O(∆t2). (2.11)

The dynamics as described here leave the Gibbs measure (2.5) invariant, since they
satisfy the detailed balance condition

c(x, σ) = c(x, σx) exp(−β∆xH(σ))

where

∆xH(σ) = H(σx) − H(σ).

In the case of a surface diffusion process we implement spin-exchange Arrhenius dy-
namics. A spin exchange between the neighboring sites x and y is a spontaneous
exchange of the values of the order parameter x and y. Physically this mechanism
describes the diffusion of a particle on a flat surface. Note that sites cannot be oc-
cupied by more than one particle (exclusion principle). As in the spin flip dynamics,
a spin exchange (for nearest neighbors x and y) occurs with rate c(x, y, σ) satisfying
the detailed balance law

c(x, y, σ) =

⎧⎨
⎩

cdiffe−β[U0+U(x)] when σ(x) = 1, σ(y) = 0,

cdiffe−β[U0+U(y)] when σ(x) = 0, σ(y) = 1,
0 otherwise

(2.12)

where cdiff = 1/τdiff . The corresponding generator for this process, Ldiff , satisfies
the equivalent of (2.3) with rate (2.12). As a result the corresponding generator,
L, in (2.1) of the combined mechanism for the dynamics comprised of spin flip and
spin-exchange is given via,

L = Ldiff + Lad.

Similar combined mechanisms were considered in [24]. In this paper we focus for
simplicity on the spin flip case only.

2.2. Couplings with deterministic systems. One of the types of ODE
(2.2) we consider is the well-known [1, 16], spatially homogeneous cubic Complex
Ginzburg Landau equation,

τc
d �X

dt
= (a(σ̄) + iω) �X − γ̃| �X |2 �X + γ �X∗ (2.13)

where �X = X + iY and �X∗ = X − iY . In matrix form (2.13) is written as

d �X

dt
= f( �X, σ̄) =

1
τc

[A �X − γ̃| �X |2 �X], for A =
(

a(σ̄) + γ −ω
ω a(σ̄) − γ

)
(2.14)
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with �X(t0) = �X0 and | �X|2 = X2 + Y 2. All constants γ, γ̃, ω, τc are to be specified
in the simulations Section 4, while a(σ̄) is defined in (2.15) below. Here σ denotes
the area fraction as in (2.9) of the stochastic process σ. This is our main coupling
variable of the ODE (2.2) with the stochastic noise model while the other one is the
external field h = h( �X). The Jacobian of the linearized system (2.14) is,

K =
1
τc

[
a(σ̄) + γ −ω

ω a(σ̄) − γ

]

with eigenvalues

λ = a(σ̄) ± i
√

ω2 − γ2.

Oscillations occur for ω2 − γ2 > 0. In general however we observe convergence to a
limit cycle for a(σ̄) ≥ 0 and decay to the stable node at (0, 0) otherwise.

In addition to the complex Ginzburg-Landau ODE we also consider scalar exam-
ples of ODE exhibiting bi-stability and saddle-node bifurcations. We summarize here
the three types of examples which we will study in detail in the numerical investiga-
tions Section 4:

Scalar Bif.: f(X, σ) = a(σ̄)X +
γ̃

τc
X3, where a(σ̄) =

1
τc

[b(1 − σ̄) + z]

Saddle Bif.: f(X, σ) = a(σ̄) +
γ̃

τc
X2, where a(σ̄) =

b

τc
(z − σ̄) (2.15)

Hopf Bif.: f( �X, σ) =
1
τc

[A �X − γ̃| �X |2 �X], where a(σ̄) = b(σ̄ − z),

for γ̃, b, z constants varying per test case and matrix A as in (2.14). Further details
on all constants are also to be found in the numerical simulations Section 4.

3. Deterministic closures
In this section we derive deterministic closures of the hybrid system (2.1), (2.2)

in two distinct asymptotic regimes. Here we restrict our study to the spin flip case
only. First, using stochastic averaging, we obtain an effective ODE for the variable
X = X(t) in the time-asymptotic limit τI → 0, i.e. when the relaxation time τI of the
stochastic system (2.1) is much faster than the relaxation time τc of the ODE (2.2).
The results and the accompanying simulations presented in this paper primarily refer
to the case where phase transitions are absent in the spin flip system, although we
briefly discuss the phase transition case also.

Second, we obtain a coupled, spatially distributed deterministic mesoscopic sys-
tem for the evolution of X and the average local coverage corresponding to the stochas-
tic order parameter σ. Both derivations are carried out rigorously on a finite time
interval [0, T ]. Finally we briefly discuss the breakdown of the validity of the deter-
ministic closures in infinite time intervals; more precisely, stochastic fluctuations can
trigger large deviations from the averaged system given enough time, in which case
the dynamic stability of the hybrid system may lead to an entirely different long-time
behavior than the one predicted by the deterministic system. This issue, as well as
the related issue of phase transitions in the spin flip system are fully explored in [8],
however some relevant simulations are presented in Section 4.2, Table 4.2 and Figure
4.13.
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3.1. Stochastic averaging in time and the role of phase transitions.
In the first deterministic closure example, we assume that the stochastic system

evolves with a characteristic time which is much faster compared to that of the ODE.
In this case we can apply a stochastic averaging principle, which is similar to the
one presented in [7] for systems of stochastic differential equations with fast and slow
scales.

The main requirement here is the ergodicity property of the stochastic process
{σt}t≥0. Indeed, for any fixed, finite N , the process is ergodic with (2.5) as the unique
invariant measure, [17]; in particular we have,

lim
T→∞

1
T

∫ T

0

f( �X, σ̄t) ds = f̄( �X) for �X ∈ R2 (3.1)

where

f̄( �X) = Eµβ,N
f( �X, σ̄) for �X ∈ R2. (3.2)

Due to special structure of f which depends on σ̄ linearly (see (2.15)), we always have

Eµβ,N
f( �X, σ̄) = f( �X, uβ,N(h( �X)))

where,

uβ,N(h) = Eµβ,N
σ̄ =

1
Z

∑
{σ}

∑
x∈L

σ(x)e−βH(σ)PN (σ) . (3.3)

Furthermore (3.3) is known as average coverage or in classical statistical mechanics
as average magnetization. It is clear from the formula that for finite N , uβ,N(h) is an
analytic function of h, we refer to [5] (Theorem V.4.3) for a detailed discussion of its
properties (e.g. monotonically increasing, concave for h > 0, symmetry in h, etc.). In
other words there are no first-order phase transitions for finite N . In this case (3.2)
and the averaged ODE (3.6) below are always well defined, regardless of temperature
and strength of interactions. In fact we expect the following statement to hold:

• On an arbitrary bounded time interval [0, T ] with fixed N and τc we have:

lim
τI→0

P
(

sup
0≤t≤T

| �X(t) − x̄(t)| > δ
)

= 0 , (3.4)

for any δ > 0 where �X = �X(t) is the solution of (2.2),

{
d
dt

�X = 1
τc

f( �X, σt), for t ∈ [0, T ]
�X0 = x

(3.5)

and x̄ = x̄(t) is the solution of the averaged system (depending on the lattice
size N)

⎧⎨
⎩

d
dt x̄t = 1

τc
f̄(x̄t)

f̄(x̄t) = f(x̄t, uβ,N(h(x̄t)))
x̄0 = x

for t ∈ [0, T ] . (3.6)
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Remark 3.1. The main difference and difficulty in the rigorous proof of this state-
ment over the analogous one in [7] is that in contrast to the SDEs discussed there,
here the original process (2.1), (2.2) is a jump process, so continuity arguments such
as (9.5), (9.6) in [7] do not apply directly. To that end it may be possible to adapt
the methods of [7] along with an asymptotic expansion of the generator in (2.1).
Remark 3.2. As pointed out earlier, for a finite N , the spin flip system has, strictly
speaking, no phase transitions which can arise depending on the competition between
fluctuations and interactions, in the N → ∞ limit. Therefore (3.4) always applies
since in that context N is kept fixed, while τI → 0 (τ = τc/τI → ∞). However, even
for finite N , phase transitions are manifested in hysteresis MC simulations (see for
instance Figures 1 and 2 in [9]). We expect a similar phenomenon to arise here, since
the coupling of (2.2) to the spin flip system is through the external field h = h( �X).

In this paper we restrict our study to regimes that do not have phase transitions,
in which case the formulation of (3.6) is unambiguous. We return to the study of
phase transitions in a subsequent publication [8] where metastability and hystere-
sis phenomena dominate the coupled system, giving rise to multiple steady states,
excitable states and oscillations.

We conclude this section by noting that there are two practical ways to obtain
and implement the averaged system (3.6) by first obtaining uβ,N(h).

In general we can calculate uβ,N(h) numerically. That is for a given h we calculate
by Monte Carlo Eµβ,N

σ̄ → uβ,N(h) as t → ∞. As discussed earlier for a fixed number
N of lattice sites and periodic boundary conditions, the microscopic system does not
exhibit phase transitions, hence the aforementioned limits are well defined. In this
case there are no restrictions on the range of interactions. In fact in the nearest
neighbor case limN→∞ uβ,N(h) = uβ(h) can be calculated explicitly (pg. 49, [15])

uβ(h) =
1
2
− sinh(βh)

2
√

sinh2(βh) + exp(−4βJ0)

which is analogous to Figure 3.1 below.
In the long range interaction limit N = 2L + 1, L, N → ∞, we obtain the usual

mean-field formulae where uβ(h) = limN→∞ uβ,N(h) is the unique minimizer (h �= 0)
of the free energy functional, [22]

I[c] = βhc + r(c) − β
J0

2
c2 (3.7)

where r(c) = c log c + (1 − c) log(1 − c) and c corresponds to average magnetization.
We therefore solve the following nonlinear equation for uβ :

h = J0uβ − 1
β

log
uβ

1 − uβ
. (3.8)

We give such a calculation in Figure 3.1 for different values of β. There we plot the
minimizer uβ of (3.7) as a function of the external field h. Beyond the phase transition
point (which is nontrivial even in one-dimensional mean-field models), i.e. for βJ0 > 4,
uβ is a multivalued function of h, see Fig 3.1. Numerically we have observed that for
L > 20 and N = 1000 lattice nodes uβ,N(h) is satisfactorily approximated by uβ(h)
from (3.8).

In Figure 3.2 we present numerical Monte Carlo simulations of uβ,N(h) for dif-
ferent radius potential lengths and contrast them with the exact analytic solution
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3.2. Deterministic closures in a general setting. We now attempt to
carry out the derivation of mean-field equations for our coupled system (2.1), (2.2)
without the time-scales separation assumed in the previous section, by writing an
evolution equation for the mean values of the random processes. As in similar deriva-
tions for other microscopic systems such as the Boltzmann equation, it is expected
that this will not be possible in general, due to the fact that the evolution of any
single moment of the random process will likely depend on higher moments, creating
an infinite hierarchy of equations. To demonstrate this fact we will next derive one
such exact but not closed equation for the simplest observable, namely the average
coverage Eσ(x).

We consider the spin flip Arrhenius type dynamics which we presented in Section
2.1, and using the definition of the generator, we obtain the following time evolution
law for the average coverage Eσ(x):

d

dt
Eσ(x) = E(1 − 2σ(x))c(x, σ),

where c(x, σ) is given in (2.10). Therefore,

d

dt
Eσ(x) = E(1 − 2σ(x))(ca(1 − σ(x)) + cdσ(x)e−βU(x)) (3.9)

= E(ca − caσ(x) + cdσ(x)e−βU(x) − 2σ(x)ca

+ 2σ2(x)ca − 2cdσ
2(x)e−βU(x))

with U(x; �X, σ),

U(x; �X, σ) =
∑
z �=x

J(x, z)σ(z) − h( �X).

Note here that,

σ2(x) = σ(x) and therefore also, Eσ2(x) = Eσ(x) ;

recalling that ca = cd = 1
τI

we obtain

d

dt
Eσ(x) =

1
τI

E
[
(1 − σ(x)) − σ(x)e−βU(x; �X,σ)

]
(3.10)

Note that (3.10) is exact but not closed in terms of Eσ(x). By carrying out a spatial
average over (3.10) we can also obtain an exact but still not closed formula for Eσ̄.
Although such an equation cannot provide a predictive tool by itself, it can certainly be
used, since it is exact, as a numerical benchmark for the deterministic and stochastic
closures presented next.

3.3. Deterministic mesoscopic closures. In this subsection we obtain in
the asymptotic limit of long range interactions a spatially distributed deterministic
closure of (2.1), (2.2), without the time-scales separation assumed in the previous
section.

We discuss first formally, and in the spirit of the intuitive derivations in [23] for
uncoupled spin flip models, exact closures for Eσt(x) in the case of weak long range
interactions, i.e. when N = 2L + 1, N, L → ∞. As in [23] we assume “propagation
of chaos” for the microscopic system, in which case the fluctuations of the spins
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{σ(x) , x ∈ L} about their mean values are independent and the law of large numbers
formally applies. Thus the fluctuations of β

∑
y �=x J(x, y)σ(y) about its mean will be

small such that in the long range interaction limit we will have,

Ee−β
∑

y �=x J(x,y)σ(y) = e−β
∑

y �=x J(x,y)Eσ(y) + oN (1).

Therefore we formally obtain from (3.10),

d

dt
Eσ(x) =

1
τI

{
1 − Eσ(x)) − E(σ(x)eβh( �X))e−β

∑
y �=x J(x,y)Eσ(y)

}
+ oN (1).

We denote the local average coverage,

u(x, t) = Eσt(x), v(x, t) = EU(x) = β
∑
y �=x

J(x, y)u(y, t)

and �Y = E �X

and we obtain the system of equations,{
d
dt

�Y = 1
τc

f(�Y , ū)
d
dtu(x, t) = 1

τI

(
1 − u(x, t)) − e−v(x,t)Eσ(x)eβh( �X)

)
+ oN (1) for each x ∈ Z ,

(3.11)
where ū(t) = 1

N

∑
x u(x, t). At this point it is not obvious when this system can

be closed, even as N → ∞, since the dependence of the external potential h on the
random process �X makes it unclear how to pass the expected value inside in the
product, Eσ(x)eβh( �X) without the use of further simplifying assumptions.

However on this issue the rigorous derivation of mean-field equations is more
systematic and illuminating. As in the uncoupled case, instead of writing an equation
directly for Eσt(x), we consider an averaged - but still stochastic - quantity, namely
the empirical measure,

µN (dy, t) =
1
N

∑
x∈L

σt(x)δx(dy), for y ∈ R

In this case (2.2) becomes exactly,

d �X

dt
= f( �X, µ̄N ) with µ̄N (t) =

∫
R

µN (dz, σ) = σ̄t , (3.12)

while (as we will show in the proof below) for the stochastic model we have,

d

dt
< µN (·, t), φ > =

ca

N

∑
x∈L

φ(x) − ca < µN (·, t), φ >

− cd < µN (·, t), φ exp[−β(J ∗ µN (·, t) − h( �X))] + oN (1) .

Passing to the weak-∗ limit in µN (dy, t) we have:
Theorem 3.3. If the potential J(x, y) = 1

2L+1J( |x−y|
2L+1 ) is smooth long-ranged, i.e.

N = 2L + 1, then for any T finite we have that

lim
N→∞

X(t) = Y (t) , uniformly in [0, T ] ,
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and

lim
N→∞

µN (dy, t) = u(y, t)dy , uniformly in [0, T ] ,

where the latter limit is in the sense of probability measures, and (Y, u) solve (compare
to (3.11)),

{
d
dt

�Y = 1
τc

f(�Y , ū)
d
dtu = 1

τI

{
1 − u − ue−βJ∗ueβh(�Y )

} for t ∈ [0, T ] (3.13)

where ū(t) =
∫ 1

0 u(x, t) dx.

Proof: We consider the empirical measure µN (dy; t) = 1
N

∑
x∈L σt(x)δx(dy) as

our observable quantity. Then we define

f(σ) =< µN , φ >=
1
N

∑
x∈L

σt(x)φ(x)

for any test function φ, and consider the martingale

Mt = f(σt) − f(σ0) −
∫ t

0

Lf(σs)ds ,

with quadratic variation

< Mt >=
∫ t

0

Lf2(σs) − 2f(σs)Lf(σs)ds =
2

N2

∫ t

0

∑
x∈L

[c(x, σ)]φ2(x) ,

hence E < Mt >= O(1/N). By Doob’s maximal inequality we have that for any time
horizon t1,

P

(
sup

t∈[0,t1]

|Mt| > δ

)
≤ 1

δ2
O(1/N).

Thus on a set of probability approximately one we have,

< µN (·, t), φ >=< µN (·, 0), φ > +
∫ t

0

L < µN (·, s), φ > ds + O(δ) , (3.14)

where a short calculation shows that

L < µN (·, s), φ > =
d0

m

∑
x∈L

φ(x) − d0 < µN (·, s), φ >

− d0 < µN (·, s), φ exp
[− β

(
J̄ ∗ µN − h( �X)

)]
> ,

and �X = �X(t) solves (3.12).
Here we remark that the assumption of long-range interactions allowed us to

rewrite the right-hand side of (3.14) as a function of µN (dy, s) and thus obtain an ap-
proximate closed equation for the measure µN (dy, s). The relative compactness of the
probability distributions of the random measures µN (dx, t) in the space D([0, T ],M+)
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(the set of right continuous functions with left limits taking values in the space of posi-
tive finite measures M+) follows from the estimate on the quadratic variation < Mt >.
Then passing to the N → ∞ limit in (3.14) and (3.12) we obtain

< µ(·, t), φ > − < µ(·, 0), φ > =
∫ t

0

d0 < λ − µ(·, s), φ >

− d0 < µ(·, s), φ exp
[− β

(
J ∗ µ − h(Y (t))

)]
ds ,

and

d�Y

dt
= f(�Y , µ̄) with µ̄(t) =

∫
R

µ(dy, t) ,

where λ is the Lebesgue measure in T . It is not hard to see that the measure val-
ued solutions are absolutely continuous with respect to the Lebesgue measure, i.e.
µ(dx, t) = u(x, t)dx (we refer to [14] for similar compactness and regularity argu-
ments) thus the theorem follows in the strong sense.

Remark 3.4. To obtain stochastic corrections to the mean-field equation (3.13), we
can formally apply the expansion,

�X(t) = �Y (t) + 1√
N

ζ

µN (dy, t) = u(ξ, t)dy + 1√
N

ξ
(3.15)

where u = Eσt and (�Y , u) are deterministic averages and (ζ, ξ) central limit theo-
rem type corrections. We obtain a system where (Y, u) satisfies the mean field system
(3.11), while the stochastic corrections (ζ, ξ) satisfy respectively a linearized ODE
derived from (2.2) and a linear (linearized according to (3.15)) Stochastic Partial Dif-
ferential Equation (SPDE) for ξ (see for instance [4] and [21] for the uncoupled case).
These derivations are typically valid only for finite time intervals [0, T ]. We also re-
fer to the corresponding results for SDE asymptotics in Section 4 of [7]. Therefore
(3.13) and the corresponding SPDE for ξ may hold globally in time only under special
conditions on their asymptotics at long times e.g a stable limit point or a stable limit
cycle for (3.13). Otherwise the expansions in (3.15) (and their consequences) cannot
be reliable. In this case the proper asymptotics are given by large deviations and WKB
expansions (see the first case of Table 4.2, the third case of Table 4.1 and the cases
for τc = .1 in Tables 4.3-4.3).

4. Numerical simulations
We now present a number of numerical comparisons based on Monte Carlo sim-

ulations of the full coupled system (2.1, 2.2) against the numerical solution of the
reduced ODE (3.6) as obtained by averaging principle theory (for τ = τc/τI → ∞).
However we also include examples which are not in the τ >> 1 regime so as to further
understand the extent of validity of the theoretical predictions.

Here we only carry out and present simulations and comparisons for the averaging
principle system (3.6). We will not present any comparisons in this work between (2.1,
2.2) and the mean field theory closures (3.13) but instead defer this presentation to
a future work [8] (there we also focus on the phase transition regime where spatially
distributed models are of greater significance).

The hybrid system is comprised of a microscopic dynamics stochastic model (2.1)
in σ, coupled to an ODE of the form (2.15). Note that the ODE is coupled to the
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stochastic by parameterizing one of its coefficients through the noise parameter,

σ̄ =
1
N

∑
x∈L

σ.

On the other hand, the stochastic system is coupled to the ODE through the appli-
cation of an external potential h ≡ h( �X). We choose a scalar dependence for our
external potential of either linear or quadratic type as follows,

h( �X) = cX + h0, or h( �X) = cX2 + h0 (4.1)

for appropriate constants c and h0 whose values are specified for each case examined
below. We summarize the coupling in the following diagram,

ODE Stochastic Model

Requires �X, σ(x) σ(x), h( �X)
Provides �X σ(x)

Each equation (2.3, 2.15) comprising system (2.1, 2.2) has its own time scale,

τc ⇒ characteristic time for ODE
τI ⇒ characteristic time for stochastic spin dynamics.

We define

τ = τc/τI

and explore the following three cases:
• τ >> 1 =⇒ ODE equilibrates slower than the stochastic spin dynamics.
• τ ≈ 1 =⇒ ODE equilibrates at similar times as the spin dynamics.
• τ << 1 =⇒ ODE equilibrates faster than the spin dynamics.

where without loss of generality we fix τI ≡ 1 and vary τc accordingly for the cases
specified above.

We monitor how the phase portrait of our dynamical system (2.1, 2.2) transforms
when the critical parameter coupled to σ̄ passes through its bifurcating value. Fur-
thermore we compare how this behavior agrees or not with our averaging principle
theory. We perform these numerical comparisons under the three cases of τc outlined
above and a variety of values for the fixed parameters of the external potential and
the ODEs corresponding to a wealth of different phase space profiles.

The full coupled system is numerically solved by performing both, a Monte Carlo
simulation for (2.1) and an adaptive ODE solver for (2.2) in parallel. Each iteration
of the Monte Carlo simulation produces a variable time step ∆t and is immediately
followed by applying the ODE solver. The solver iterates until the given time step ∆t
has been exhausted. This procedure repeats until the stopping criteria (see below)
have been met. More specifically we obtain a solution of (2.1) by implementing the
following process-type kinetic Monte Carlo (KMC) algorithm [3] for spin flip Arrhenius
dynamics:

Spin Flip Kinetic Monte Carlo Pseudo-code (Global Update Scheme)
1. Calculate all transition rates ca(l, σ) (absorption), cd(l, σ) (desorption), from

(2.10) for all nodes l in the lattice L.
2. Calculate the total Ra =

∑
l∈L ca(l, σ), Rd =

∑
l∈L cd(l, σ) absorption, des-

orption rates respectively. Obtain the total rate RT = Ra + Rd based on
above.
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3. Obtain two random numbers, ρ1 and ρ2.
4. Use the first random number to choose between absorption or desorption

based on the measure created by the rates Ra, Rd and RT . Let us assume
that the choice is to absorb(desorb). Then we denote c ≡ ca(l, σ)(cd(l, σ))
and R = Ra(Rd).

5. Find the node at lattice position k ∈ L such that,

k∑
j=0

c(j, σ) ≥ ρ2R >

k−1∑
j=0

c(j, σ)

6. Update the time, t = t + ∆t where ∆t = 1/RT .
7. Repeat from step 1 until equilibration or dynamics of interest have been

captured.
As expected a kinetic Monte Carlo algorithm produces no “null” steps and therefore
every iteration is a success. (A version of the pseudo-code just described has also been
created which implements a local update scheme at every iteration thus improving
speed at the reciprocal expense of allocating more computer memory).

We follow-up each iteration of our stochastic solver by implementing a solution
of the ODE (2.15) for the time step ∆t. We employ a 4th order adaptive Runge-
Kutta-Fehlberg (RKF). The scheme applies a Runge-Kutta method of order 5 to
estimate the error in a Runge-Kutta method of order 4. Further the scheme enforces
a computational advantage of performing only six evaluations per time step instead
of eleven. At each iteration, the time step is adjusted up or down to control the error.
We use the same RKF ODE solver to also obtain a solution of the resulting reduced
averaging principle ODE (3.6).

We use a finite size interaction potential range L < ∞. In all simulations in this
work we set N = 1000 lattice nodes and a potential radius of L = 20. Note that in
(3.6) uβ,N(h) is obtained from the mean field formula (3.8) since as we demonstrated
(see Figure 3.2) there is good agreement in the absence of phase transitions.

Below we display a number of examples from our Monte Carlo simulations versus
the reduced average principle equation for the three equations presented in (2.15)
which display the following stability behaviors:

(1) Scalar Bifurcation (2) Saddle Bifurcation (3) Hopf Bifurcation
For each case we present in full detail both, the complete ODE and its corresponding
averaging principle system based on the theory developed in Section 3. After each
such case we display selected simulation results and other statistical comparisons in
tables and figures. In general the tables amass succinct statistical comparisons while
the selected figures display interesting behavior of the systems in terms of stability
tendencies, potentials, probability density functions etc. The numerical data pre-
sented in this report which validate our claims are only but a fraction of the several
hundreds of numerical simulations undertaken.

4.1. Scalar bifurcation. We start by studying one of the most fundamental
dynamical systems, a scalar (pitchfork) bifurcation. We therefore set (2.2) for �X = X
as follows,

dX

dt
= a(σ̄)X + γX3, (4.2)

where we let

a(σ̄) =
1
τc

[z + (1 − σ̄)b],
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and γ = γ̃/τc with b = 4, z = −1 and γ̃ = ±.025. The external potential we apply in
this example is linear and takes the form,

h = h(X) = cX + h0

with c = −1, h0 = 1. Note that (4.2) has three nodes: 0,±√−a(σ)/γ and two main
bifurcation states: super-critical, in the case of a stable node turning into one unstable
and two stable nodes and sub-critical in the opposite situation.

The corresponding averaged system for (2.1) based on the form of (4.2) reduces
to, {

d
dt x̄ = 1

τc
[b(1 − uβ,N(h(x̄)) + z]x̄ + γ̃

τc
x̄3

x̄0 = x
(4.3)

Recall that following the discussion in Section 3.1, uβ,N is approximated by the min-
imizer of (3.7).

We present two numerical comparisons between the Monte Carlo implementations
of (4.2) and its averaging principle analogue (4.3). We start with a super-critical
bifurcation set-up by setting γ̃ = −.025 and we display the results in Table 4.1 for the
regime of τc = 5 and 1 where averaging principle theory is expected to be valid. As
expected we have agreement between both the Monte Carlo simulations based on (4.2,
2.1) and averaging principle solutions corresponding to (4.3). We display the Monte
Carlo solutions for X and σ̄ in Figure 4.1 for the case of βJ0 = .01 where typically
the noise levels are highest. Note however that the noise is not strong enough for the
solution to perform the “jump” from the current node at X = 1.97 to the node at
−∞ as can be seen in Figure 4.2. In general the effect of noise is most noticeable
when the wells are shallower. This point will become clear in the next few examples.

In the second example we display results of comparisons performed for all cases
of τc = .1, 1 and 5 and change γ̃ = .025 (sub-critical bifurcation set-up). Note that at
least for the case of τc = .1 we do not expect, at least in theory, agreement between the
Monte Carlo simulations and our averaging principle reduced equation. The results
for τc = .1, 1 and 5 are displayed in Tables, 4.1, 4.1 and 4.1 respectively. Remarkably,
we seem to have agreement for all cases examined; even for the case of τc = .1. A
typical Monte Carlo solution is displayed for βJ0 = .01 in Figure 4.3 where we observe
the solution accumulating around the node at X ≈ 2.28. The respective potential well
is shown in Figure 4.4. Notice that comparatively the potential well in this figure is
even higher than the one in Figure 4.2 of our first example. This may account for the
fact of not observing the expected disagreement between the Monte Carlo simulations
and the averaging principle solutions. However this will not always be the case as will
be seen in the examples to follow.

Note that the highest relative error is observed for the case βJ0 = 2 in all Tables
4.1-4.1. This is expected however since for σ̄ = .75 we have a(σ̄) = 0 in (4.2) thus
triggering a change in the ODE stability profile and creating a bifurcation from one
node to three nodes and visa versa. Since our system hovers around this critical value
our predictions are understandably less accurate in that region.
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Table 4.1. Example 1. Monte Carlo simulations versus averaging principle predictions for
scalar bifurcation. MC statistics from a data set comprised of 100, 000 samples. Results shown for
τ = 1, 5. This is the case where we expect averaging principle theory to be valid. As can be seen
from the results and the analysis we have complete agreement.

βJ0
Char.
time

Monte Carlo Simulations Summary Statistics
X̄ StDev(X) ¯̄σ StDev(σ̄)

.01 τ = 1 1.9669 .008 .7258 .014

.01 τ = 5 1.9666 .003 .7258 .014
2 τ = 5 0.6336 .002 .7476 .006
−2 τ = 5 3.1395 .003 .6884 .012

βJ0
Char.
time

Averaging Principle Statistics
X̄ uβ

.01 τ = 1 1.9727 .7256

.01 τ = 5 1.9727 .7256
2 τ = 5 .7034 .7469
−2 τ = 5 3.0837 .6905

Analysis for τc = 5:
Case Characterization Aver. Princ. MC Simul. Rel. Error
βJ0 = .01 stable node at X̄AP = 1.9727 X̄MC = 1.9669 0.003
βJ0 = 2. stable node at X̄AP = .7034 X̄MC = .6336 .110
βJ0 = −2. stable node at X̄AP = 3.0837 X̄MC = 3.1395 .018

Table 4.2. Example 2. Monte Carlo simulation versus averaging principle predictions for
scalar bifurcation. Characteristic time here is set to τ = .1. This is the regime where we would not
expect agreement in the results. Nevertheless we do observe agreement!

βJ0
Monte Carlo Simulations Summary Statistics
X̄ StDev(X) ¯̄σ StDev(σ̄)

.01 2.2903 .031 .7828 .013
2 0.6506 .019 .7526 .017
−2 +∞ − 1. −

βJ0
Averaging Principle Statistics

X̄ uβ

.01 2.2802 .7825
2 .7255 .7533
−2 +∞ 1.0000

Analysis for τc = .1:
Case Characterization Aver. Princ. MC Simul. Rel. Error
βJ0 = .01 stable node at X̄AP = 2.2802 X̄MC = 2.2903 .004
βJ0 = 2. stable node at X̄AP = .7255 X̄MC = .6506 .103
βJ0 = −2. stable node at X̄AP = +∞ X̄MC = +∞ −
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Table 4.3. Example2. Monte Carlo simulations versus averaging principle predictions for
scalar bifurcation. Characteristic time here is set to τ = 1. Once again based on the results we
observe complete agreement between the solutions.

βJ0
Monte Carlo Simulations Summary Statistics
X̄ StDev(X) ¯̄σ StDev(σ̄)

.01 2.2710 .010 .7822 .013
2 0.6502 .006 .7526 .010
−2 +∞ − 1. −

βJ0
Averaging Principle Statistics

X̄ uβ

.01 2.2803 .7825
2 .7255 .7533
−2 +∞ 1.0000

Analysis for τc = 1:
Case Characterization Aver. Princ. MC Simul. Rel. Error
βJ0 = .01 stable node at X̄AP = 2.2803 X̄MC = 2.2710 0.004
βJ0 = 2. stable node at X̄AP = .7255 X̄MC = .6502 .104
βJ0 = −2. stable node at X̄AP = +∞ X̄MC = +∞ −

Table 4.4. Example 2. Monte Carlo simulations versus averaging principle predictions for
scalar bifurcation example 2. Characteristic time here is set to τ = 5. In this case we would expect
agreement of results.

βJ0
Monte Carlo Simulations Summary Statistics
X̄ StDev(X) ¯̄σ StDev(σ̄)

.01 2.2711 .005 .7821 .013
2 0.6511 .003 .7529 .017
−2 +∞ − 1. −

βJ0
Averaging Principle Statistics

X̄ uβ

.01 2.2802 .7825
2 .7255 .7533
−2 +∞ 1.0000

Analysis for τc = 5:
Case Characterization Aver. Princ. MC Simul. Rel. Error
βJ0 = .01 stable node at X̄AP = 2.2802 X̄MC = 2.2711 0.0040
βJ0 = 2. stable node at X̄AP = .7255 X̄MC = .6511 .1055
βJ0 = −2. stable node at X̄AP = +∞ X̄MC = +∞ −
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Fig. 4.1. Example 1. Monte Carlo simulated coupled system (4.2, 2.1) solution and mean
coverage.
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Fig. 4.3. Example 2. Monte Carlo simulated coupled system solution and mean coverage.

−2 −1 0 1 2 3 4

384

386

388

390

392

394

396

398

400

402

404

Height Difference (rel to τ
c
): 15.1434τ

c
=1.5143

V(X
)

Space X.   (Ext. Pot. = −1X+1, τ
c
=0.1)

Energy Profile and Wells (γ
tilde

=0.025, b=4, β J
0
 = 0.01)

Initial Condition X = 1
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4.2. Saddle bifurcation. Contrary to the scalar bifurcation of the previous
example - where we always have at least one fixed point - we now examine a saddle
(fold) bifurcation example where two fixed points either appear or disappear. The
specific dynamical system which we simulate is,

⎧⎨
⎩

dX
dt = r(σ̄) + γ̃

τc
X2, where we let r(σ̄) = b

τc
(z − σ̄)

d
dtEf(σ) = ELf(σ, h(X))
X(0) = 1 and random initial σ, N = 1000, L = 20.

(4.4)

We apply the following type of external potential: h(X) = cX + h0. As usual all
parameters are provided at the tables which follow. The ODE in (4.4), depending on
the sign of r(σ̄) has the following stability profile: either 1 stable and 1 unstable node

at: ±
√

−r(σ̄))
γ̃ or no nodes exist. The averaged ODE, (3.6) for the saddle bifurcation
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becomes, {
d
dt x̄ = b

τc
[z − uβ,N(h(x̄)] + γ̃

τc
x̄2

x̄0 = x0 ≡ X(0)
(4.5)

Recall that following the discussion in Section 3.1, uβ,N is approximated by the min-
imizer of (3.7).

We now present the comparisons for the complete Monte Carlo simulations of
(4.4) against the solutions of (4.5) in Table 4.2. We apply a linear external potential
of the form

h(X) = cX + h0

with c = 5, h0 = −1. Our parameters for this example are as follows: τ ≡ τc =
.1, 1, 5, βJ0 = ±2, .01, b = 1, γ̃ = −.05, z = .5 and τI = 1. Note that the bifurcation
occurs for σ̄ = .5.

The saddle example summarized in Table 4.2 is in a way typical in that it en-
compasses most of our findings between the Monte Carlo simulations and averaging
principle predictions at once. We observe the following behavior between the two:
agreement for the case of τc = 5 as expected, uncertain agreement for τc = 1 and last
possible not agreement for τc = .1. In fact for this case of τc = .1 we clearly have
substantial discrepancies (see Table 4.2).

There is a plausible explanation regarding some of the results and expected dis-
agreements of solutions for the case of τc = .1 to be found in Figures 4.5 - 4.10. The
relative height differences between the potential wells depicted in these figures are
.001, 1.05 and 1.11 for βJ0 = .01, 2 and −2 respectively. It is therefore not surprising
for the case of βJ0 = .01 and τc = .01 that we observe the jump to the node at −∞
(see Figure 4.11) instead of the averaging principle predicted solution of X = .13.
Why are we not observing this “jump” for the remaining eight examples in that Ta-
ble? First the jump does not occur for the remaining two cases of βJ0 = .01 since
as we can easily see in Figures 4.11 and 4.12 the noise level is reduced as we increase
τc (see Table 5.1 for further comments on this behavior). The reason however that
we do not observe this jump for the remaining six cases of βJ0 = 2 and −2 is mainly
due to the increased depth (in relative heights) of their respective potential wells as
can be seen in Figures 4.8 and 4.10 when compared to the potential well depicted in
Figure 4.6.

However is this really the complete picture? We claim not! We therefore extend
our (long equilibrated) simulations in time even further for the case of βJ0 = .01 and
τc = 1 in hope of observing a rare event - a jump from one potential well at .13 to the
well at −∞ given enough time. Indeed this is the case as can be seen in Figure 4.13
where such a jump is finally observed. Note that the choice of βJ0 = .01 is important
since the noise is greatest for this case and therefore we have better hope of observing
such a jump in due time. In fact our claim is that given enough time we can observe
a similar jump even for the case of τc = 5. Currently however, we have not observed
this rare event (see Figure 4.14). See Section 5 for further comments and remarks
regarding these observations.



M.A. KATSOULAKIS, A.J. MAJDA, AND A. SOPASAKIS 277

Table 4.5. Monte Carlo simulations versus averaging principle predictions for saddle bifurca-
tion example. Note the remarkable agreement for the case of the averaging principle ODE regime
τc = 5. Also note the expected not so good agreement for the opposite regime of τc = .1

βJ0
Char.
time

Monte Carlo Simulations Summary Statistics
X̄ StDev(X) ¯̄σ StDev(σ̄)

.01
τ = .1
τ = 1
τ = 5

−∞ − .5 .015
.1 .062 .5 .015
.12 .019 .5 .015

2
τ = .1
τ = 1
τ = 5

.1 .032 .5 .022

.103 .009 .5 .022

.103 .003 .5 .021

−2
τ = .1
τ = 1
τ = 5

.3 .017 .5 .01

.29 .005 .496 .01

.29 .002 .49 .01

βJ0
Averaging Principle Statistics

X̄ uβ

.01 .131 .499
2 .099 .499
−2 .297 .495

Analysis for τc = .1:
Case Characterization Aver. Princ. MC Simul. Rel. error
βJ0 = .01 stable node at X̄AP = 0.13 X̄MC = −∞ ∞
βJ0 = 2. stable node at X̄AP = 0.09 X̄MC = 0.1 .1
βJ0 = −2. stable node at X̄AP = 0.29 X̄MC = 0.3 .71

Analysis for τc = 1:
Case Characterization Aver. Princ. MC Simul. Rel. error
βJ0 = .01 stable node at X̄AP = 0.13 X̄MC = 0.1 .87
βJ0 = 2. stable node at X̄AP = 0.09 X̄MC = 0.103 .04
βJ0 = −2. stable node at X̄AP = 0.29 X̄MC = 0.29 0

Analysis for τc = 5 (Averaging Principle regime):
Case Characterization Aver. Princ. MC Simul. Rel. error
βJ0 = .01 stable node at X̄AP = 0.13 X̄MC = 0.12 .08
βJ0 = 2. stable node at X̄AP = 0.09 X̄MC = 0.103 .04
βJ0 = −2. stable node at X̄AP = 0.29 X̄MC = 0.29 0
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Fig. 4.9. Saddle ODE: Stability of (4.5). Parameters: b = 1., γ̃ = −.05, τc = 1. and βJ0 = −2.
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Fig. 4.10. Saddle ODE: Potential for (4.5). Parameters: b = 1., γ̃ = −.05, τc = 1. and βJ0 = −2.
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Fig. 4.11. Saddle ODE example: Solutions of both Monte Carlo and averaged ODE (4.5).
Parameters: b = 1., γ̃ = −.05, βJ0 = 2 and τc = .1, 1, 5 from top to bottom respectively. Another
interesting point which becomes clear in these figures is the noise reduction with increasing τc (see
also Table 5.1 regarding this observation).
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4.3. Hopf Bifurcation. For our last major example we examine the system
comprised of the following Hopf bifurcation ODE and stochastic model:⎧⎨
⎩

d �X
dt = 1

τc
[A �X − | �X|2 �X], with �X(t0) = �X0 =

(
1
1

)
d
dtEf(σ) = ELf(σ, h(X)), N = 1000, L = 20 and random initial σ.

(4.6)

where A =
(

a(σ̄) + γ −ω
ω a(σ̄) − γ

)
, | �X|2 = X2 +Y 2 and a(σ̄) = b(σ̄− z) with b = 4

and z = .5. We apply a linear external potential

h( �X) = c(X + h0)

with c = .5, h0 = −1. and choose the remaining parameters as follows: ω = 1, τI =
1, γ = .9. The stability behavior for this system depends on the sign of a(σ̄) in the
following manner,

• Stable node at (X, Y ) = (0, 0) for a(σ̄) < .5.
• Limit cycle for a(σ̄) ≥ .5 with radius depending on the size of σ̄ (non-

symmetric limit cycles occur for values of σ̄ approaching 1).
We display in Figures 4.15-4.16 the stability behavior of the uncoupled Hopf ODE for
the following fixed values of the noise parameter σ̄ = .2, .5 and .9.

The equivalent averaging principle equation (3.6) becomes,⎧⎨
⎩

d
dt x̄t = 1

τc
[(a(uβ,N(h(x̄t))) + γ)x̄t − ωȳt − x̄3

t − x̄2
t ȳt]

d
dt ȳt = 1

τc
[ωx̄t + (a(uβ,N(h(x̄t))) − γ)ȳt − x̄2

t ȳt − ȳ3
t ]

�̄x0 = �x0

(4.7)

where all parameters a, ω, γ, �X0 as provided already. Recall that following the dis-
cussion in Section 3.1, uβ,N is approximated by the minimizer of (3.7). We examine
the agreement between (4.6) and (4.7) under the following cases of τc = .1, 1, 5 and
βJ0 = ±2, .01.

In Tables 4.3, 4.3 and 4.3 we present comparisons of both the numerical Monte
Carlo solutions of (4.6) and averaging principle solutions of (4.7). Although repre-
senting averages in these tables is a very crude comparison it still provides one more
indicator of the similarities or differences between the stochastic model and the aver-
aging principle system. Notice also that in Table 4.3 comparisons include the cases
of τc = 50 and 20 so as to further emphasize the range of validity of the averaging
principle theory.

As expected there is remarkable agreement for the case of the averaging principle
regime τc = 5 (or higher) which for example can be seen in Figure 4.17. Notice
however the progressive deterioration in agreement in the comparisons depicted in
Figures 4.17, 4.21 and 4.22 as τc varies through 5, 1 and .1 respectively. The structure
of the solutions becomes clear when we look at their respective orbits and probability
density functions in Figures 4.18 and 4.23. Further information about the structure
of these solutions can be obtained by studying the long time averages in Figures 4.19
and 4.20 and correlations in Figures 4.24 and 4.25. Additional comments are found
in the discussion Session 5.
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Table 4.6. Monte Carlo versus averaging principle. Although this is a very crude comparison
it is displayed here as another indicator of the similarities or differences between the stochastic model
and the averaging principle system. This is a Hopf bifurcation example for βJ0 = −2.

Char.
time X̄ StDev(X) Ȳ StDev(Y )

¯̄σ
uβ

StDev(σ̄)
StDev(uβ)

τ = 5 MC: −.0019 .11 0.011 0.11 .50 .025
AP: −.0008 .07 0.005 0.07 .50 .014

τ = 1 MC: −.011 .19 0.031 0.18 .50 .034
AP: −.015 .17 0.033 0.16 .50 .033

τ = .1 MC: −.054 .54 −0.08 0.33 .49 .047
AP: −.21 .60 −0.18 0.37 .53 .11

Table 4.7. Monte Carlo versus averaging principle. Although this is a very crude comparison
it is displayed here as another indicator of the similarities or differences between the stochastic model
and the averaging principle system. This is a Hopf bifurcation example for βJ0 = 2

Char.
time X̄ StDev(X) Ȳ StDev(Y )

¯̄σ
uβ

StDev(σ̄)
StDev(uβ)

τ = 50 MC: −.030 .95 −.036 .86 .914 .071
AP: −.088 .97 −.068 .87 .92 .075

τ = 20 MC: −.01 .95 −0.02 0.88 .91 .088
AP: −.07 .97 −0.05 0.87 .92 .073

τ = 5 MC: −.01 .95 −0.02 0.86 .91 .071
AP: −.07 .97 −0.05 0.87 .92 .075

τ = 1 MC: −.02 .97 −0.03 0.85 .91 .065
AP: −.07 .98 −0.05 0.87 .92 .076

τ = .1 MC: −.03 1.05 −0.05 0.85 .91 .027
AP: −.15 1.04 −0.09 0.88 .92 .081

Table 4.8. Monte Carlo versus averaging principle. Although this is a very crude comparison
it is displayed here as another indicator of the similarities or differences between the stochastic model
and the averaging principle system. This is a Hopf bifurcation example for βJ0 = .01

Char.
time X̄ StDev(X) Ȳ StDev(Y )

¯̄σ
uβ

StDev(σ̄)
StDev(uβ)

τ = 5 MC: −.0002 .10 −.0004 0.10 .50 .01
AP: −.0002 .09 −.0003 0.09 .50 0.00

τ = 1 MC: 0.0 .18 0.0 0.16 .50 .01
AP: −.0001 .17 0.0001 0.15 .50 0.0

τ = .1 MC .0003 .56 0.0 .35 .50 .015
AP −.0013 .56 .0011 .34 .50 0.0
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Fig. 4.12. Saddle ODE example: Solutions of both Monte Carlo and averaged ODE (4.5).
Parameters: b = 1., γ̃ = −.05, βJ0 = −2 and τc = .1, 1, 5 from top to bottom respectively. Once
again notice the noise reduction with increasing τc (see also Table 5.1 regarding this observation).
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reduced averaged ODE. Parameters: b = 1., γ̃ = −.05, τc = 1 and βJ0 = .01. Note the jump attained
by the system to the node at −∞. The size of noise is substantial so that given enough time we
observe the rare event.
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Fig. 4.14. Saddle ODE example: Extended time runs. Solutions of both Monte Carlo and
reduced averaged ODE. Parameters: b = 1., γ̃ = −.05, τc = 5 and βJ0 = .01. We have run further
this simulation (not presented here) but even for very long runs we have not observed the rare event
although it is expected theoretically. It is important to note that the noise is less than the case of
τc = 1 and this creates an added hurdle in order to observe the jump to the node at −∞.
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Fig. 4.16. Direction fields for fixed σ̄ = .5 and .9 respectively.
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Fig. 4.17. Hopf ODE case: Comparisons between the solutions of the averaged ODE (4.7) and
the coupled system (4.6). Parameters τc = 5 and βJ0 = 2.
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Fig. 4.19. Hopf ODE case: Monte Carlo system (4.6) averages in time. Parameters: τc = 5
and βJ0 = 2.
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Fig. 4.20. Hopf ODE case: Eq. (4.7) averages in time. Parameters: τc = 5 and βJ0 = 2.
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Fig. 4.21. Hopf ODE case: Comparisons between the solutions of the averaged ODE (4.7) and
the coupled system (4.6). Parameters τc = 1 and βJ0 = 2.
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Fig. 4.22. Hopf ODE case: Comparisons between the solutions of the averaged ODE (4.7) and
the coupled system (4.6). Parameters τc = .1 and βJ0 = 2.

5. Discussion of the results
We presented a number of numerical comparisons of Monte Carlo simulations of

the full coupled system (2.1), (2.2) against the numerical solution of the reduced ODE
(4.3) as obtained by averaging principle theory (for τ = τc/τI → ∞). However we also
include examples which are not in the range of τ >> 1 so as to further understand
the extent of validity of the theoretical predictions. Our simulations were designed to
correspond to the regime where phase transitions do not occur.
(A) Brief analysis of scalar results: in the two numerical examples shown (and several
others not presented here) which were compared with the averaging principle theory
predictions we have observed the following behavior:
-Overall agreement of Monte Carlo simulations with the reduced averaged equation;
however in other simulations not presented here we have also established disagreement
for the cases of τc = .1 as we would expect.
(B) Brief analysis of saddle results: we observe complete agreement between the
Monte Carlo simulations and the averaging principle predictions for the range of
validity of the averaging principle theory and non-agreement otherwise.
-The averaged solution saddle bifurcation converges to finite stable nodes which are
in complete agreement for both the Monte Carlo and averaging principle systems for
the case of τc >> 1.
-Non-agreement for the case of τ = .1 and 1 (see Table 4.2 and Figure 4.13).

Naturally, we observe the greatest noise for the case of τc = .1 (see Figures 4.11
and 4.12, Table 5.1 and Remark 5.2). It is remarkable that with the noise induced in
this case, the Monte Carlo simulation can “jump” over potential wells of the ODE and
reach the other nodes (something not possible for a deterministic solution). Overall
this result is not surprising however since, once again, the case of τc = .1 is beyond
the validity of the averaging principle theory (τc >> τI) as was established in Section
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Fig. 4.23. Hopf ODE case: Monte Carlo system orbits and PDFs. Parameters: τc = .1 and
βJ0 = 2.

3. In this case rare events drive the system out of a stable node and into another such
node, given enough time. This however is not, and could not possibly be, captured
by the averaging principle system (4.5).
(C) Brief Analysis of Hopf Bifurcation Results: the Hopf bifurcation ODE display
convergence to either the stable node at (0, 0) or a limit cycle. As expected the cases
of low values for τc = .1 are less in agreement with the averaging principle solutions
(see Figure 4.22). Therefore we have once again the expected disagreement due to
low τc values or high noise. Otherwise we observe remarkable agreement with the
averaged equation.
Remark 5.1. At times there is a slight but consistent error between the averaging
principle and Monte Carlo system solutions (the averaging principle solution appears
slightly higher than the Monte Carlo simulation). This is an expected artifact however
of the fact that we approximate uβ,N(h) through uβ(h) from (3.8).
Remark 5.2. It is important to underline here the effect of noise on the parameters
that influence the simulations and how exactly this influence is manifested.

• Naturally, noise is influenced via the value of βJ0 since β signifies inverse
temperature and therefore we would expect that as,

β → ∞ the noise decreases.

• Similarly we know that the number of lattice nodes affects noise since the
results are always averaged before presented (or used in the ODE). In that
respect,

noise decreases as N → ∞.

• Last, the characteristic times τc and τI also affect noise. We can see this
effect by considering limiting situations. For instance assume that τI → 0
which would imply that the stochastic equilibrates immediately. As such the
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Fig. 4.24. Hopf ODE case: Monte Carlo system correlations in time lag. Parameters: τc = .1
and βJ0 = 2. (Cross correlations are computed between X and σ̄.)

fluctuations on σ̄ would be minimal while �X would be similarly affected. The
opposite case, τI → ∞, would produce reverse effects with much higher noise
levels for σ̄ which would similarly influence X. Thus,

τI << τc =⇒ noise decreases

which is the case of application for the averaging principle theory.
In Table 5.1 we present numerical evidence of the remarks above by summarizing
corresponding results from our Monte Carlo simulations. Note in Table 5.1 that we
observe the highest noise levels for decreasing τc values as we expected.

Table 5.1. Numerical effect on noise due to τc and βJ0. Note that the standard deviation is
divided by at least 2 every time τc increases. Results taken from one of several examples (not shown
here) displaying a saddle bifurcation behavior.

Standard Deviation for X
τc βJ0 = .01 βJ0 = 2 βJ0 = −2
.1 .05 .03 .02
1 .02 .01 .006
5 .01 .004 .003

6. Conclusions
In the present work we have (a) developed mathematical prototype hybrid models

coupling stochastic and deterministic systems, (b) derived deterministic mesoscopic
models from the hybrid in various asymptotic limits and (c) evaluated the extent
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Fig. 4.25. Hopf ODE case: Averaging principle correlations in time lag. Although (4.7) is
deterministic we can calculate the correlations corresponding to the coupled system (4.6) as an-
other way of crudely comparing the results between the two systems (compare with Figure 4.24).
Parameters: τc = .1 and βJ0 = 2. (Cross correlations are computed between X and σ̄.)

of validity of theoretical predictions by extensive direct numerical simulations and
comparisons.

We are convinced, based on all examples presented in this work (and several
others not reported here) that in general the average principle predictions and the
Monte Carlo simulations completely agree for the parameter regimes for which this
theory holds (i.e. faster stochastic τI << τc → ∞). We also point out that in general
in most applications involving hybrid models the assumption of τc → ∞ is replaced
by a finite value of τc. In this case mean-field theory and in particular the averaging
principle could easily lead to false results as we have seen here with our examples.

There is a number of additional issues that are not addressed here which we
pursue further in a follow-up work [8]:

• Treatment of systems which include microscopic dynamics displaying phase
transitions. In this case we expect significant stochastic fluctuations and
agreement between the coupled and the averaged system only for τI << 1.

• Systematic derivations of stochastic mesoscopic models by employing coarse
grained Monte Carlo models [8]. We believe that implementation of the coarse
grained Monte Carlo systems will in fact be able to not only include the
results of the mean field equations (3.13) but also reproduce the stochastic
noise which as we have seen here is essential.

In summary we observe in [8] that the treatment of noise through Coarse Grained
Monte Carlo (CGMC) closures correctly represents the coupled system behavior for
all cases of relaxation values τ . The behavior of the coupled microscopic system is pre-
dicted through CGMC with the advantage of doing so in a fraction of computational
time. Furthermore the success of the method is also validated for the phase transition
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regime where metastability and hysteresis phenomena take effect thus validating the
CGMC closure presented for an even wider context encompassing complex stochastic
dynamics.
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