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Abstract: The moment formulas that globally characterize the zero-dispersion limit
of the Korteweg-deVries (KdV) equation are known to be expressed in terms of
the solution of a maximization problem. Here we establish a direct relation between
this maximizer and the zero-dispersion limit of the logarithm of the Jost functions
associated with the inverse spectral transform. All the KdV conserved densities
are encoded in the spatial derivative of these functions, known as Weyl functions.
We show the Weyl functions are densities of measures that converge in the weak
sense to a limiting measure. This limiting measure encodes all of the weak limits
of the KdV conserved densities. Moreover, we establish the weak limit of spectral
measures associated with the Dirichlet problem.

1. Introduction

This paper presents a global interpretation of the moment formulas that characterize
the zero-dispersion limit of the Korteweg-deVries equation (KdV) and which were
first described in [18,19]. The problem is to determine the limit

limue(x,t), (1.1)

where ue solves the initial-value problem

dtu
e - 6uedxu

e + e2dxxxu
e = 0 , (1.2a)

ue(x,0) = v(x)9 (1.2b)
for v of scattering class and independent of e. More generally, the limit (1.1) can
be considered for ue(x,t), the simultaneous solution of the whole KdV hierarchy of
commuting flows with initial data given by (1.2b). Here t = (to,t\ • •) denotes an
infinite vector of times corresponding to the KdV flows where all but finitely many
of the tm are zero.
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Basing their analysis on the WKB asymptotics of the associated inverse spectral
problem for the Schrodinger operator

-s
2dxxf

e + ue(x,t)f£ = k2r, (1.3)

Lax and Levermore [18,19] established the limit (1.1) for the case of smooth
nonpositive initial data v(x) that vanishes sufficiently rapidly as |x| —• oo. More pre-
cisely, they modify (1.2b) so that the initial data «£(JC,O) is a reflectionless approxi-
mation to v(x) that converges strongly to v in I? as e —> 0. The limit is characterized
through a maximization problem parameterized by (jc,t) whose unique solution is
a Lebesgue integrable function rj »-> i/r*(yy,jc,t) over an interval rj G [0,7/max]. Weak
limits of functional of ue and its derivatives can be expressed in terms of derivatives
of moments of the measure \l/*(f],x9t)dri. For example,

4 tynax

= lim W
e(x,t) = - / rjdxr(rj,x9t)drj. (1.4)

£ + o n

Subsequently, Venakides found similar formulas for other classes of smooth initial
data, including nonnegative data that vanishes sufficiently rapidly as |JC| —• oo [25]
and periodic data [27].

This paper begins with an appropriately normalized solution fe(k,x,t) of (1.3),
the Jost function. We establish a direct relation between the maximizer ^*(«,jc,t)
and the zero-dispersion limit of the logarithm of the Jost functions. More specifi-
cally, we find that over all complex k outside the imaginary interval [—irjmax, irjmax]
one has

lineielog/UM) = - * * + PdKt) - - / log - j — ^ (tffo) - (̂»J,
e>o n Q \ik + rij

(1.5)

uniformly over compact subsets of (&,x,t), where </>(*/) is the Weyl asymptotic
density of the eigenvalues for the Schrodinger operator (1.3) and /?(• ,t) is the odd
polynomial given by

P(rj9t)= £ tm4mrj2m+l. (1.6)

Expanding both sides of (1.5) about k = oo then allows us to generate all the weak
limit formulas in terms of moments of if/*. In the course of proving (1.5), we will
be led to calculate the limit of certain spectral measures d<re(rj; JC, t) associated with
the Dirichlet problem for (1.3). More specifically, we shall show that

limdae(rj;x,t) = ^(ijfx,t)</iff (1.7)
£—•0

uniformly over compact subsets of (x,t), thereby giving i/f* a direct spectral inter-
pretation.

The paper is laid out as follows. Section 2 reviews the relevant facts about the
KdV hierarchy and, by doing so, introduces our notational conventions. Section 3
poses the zero-dispersion limit problem and describes some strengthening of the
main results of the Lax-Levermore theory. Section 4 introduces the Jost and Weyl
functions and establishes the limit (1.5) for those imaginary k for which \k\ > rjmax.
Section 5 develops the necessary background on Dirichlet spectrum, extends (1.5)
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to all complex k outside of the imaginary interval [—iqmax>fyniax]> and derives (1.7).
Section 6 discusses the limit as e —> 0 of the Weyl functions

# , M ) = zdxlog fe(k,x,t), (1.8)

and derives information about the limiting form of the KdV conserved densities.
Section 7 concludes with comments and discussion.

2. The KdV Hierarchy

The initial-value problem for the Korteweg-deVries (KdV) equation is

+ s2dxxxu = 0, (2.1a)

(2.1b)

In this section e > 0 will be considered to be a fixed constant, and hence, no
implicit £ dependence will be indicated. This problem was first solved by Gardner,
Greene, Kruskal and Miura [11] for initial data v(x) that decays sufficiently rapidly as
|JC| —• oo. Their critical observation was that the KdV equation (2.1) is the solvability
condition for the linear system

= -E2dxxf + uf = Xf, (2.2a)

= -4s2dxxxf + 3(udx + dxu)f, (2.2b)

where X is an eigenvalue of the Schrodinger operator S£(t). Then given the potential
M(X,0) of -S?(0), the asymptotics of the eigenfunctions / as |JC| —• oo, referred to as
the scattering data, can be calculated in principle. The evolution of the scattering data
is determined explicitly and the potential u(x9t) of £?(t) is then obtained through
the knowledge of the large |JC| asymptotics of / using inverse scattering theory [7].

More specifically, for every u in the scattering class the Z,2-spectrum of the
Schrodinger operator (2.2a) consists of the nonnegative semi-axis A ^ 0 along with
a finite set (possibly empty) of negative simple eigenvalues Ai,...,A#. The asymp-
totic behavior of an eigenfunction / = f(k,x) corresponding to a X = k2 > 0 in the
continuous spectrum is given by

/(*,*)'
< * ) •

exp! ) , for x —• - o o ,

(2.3)

where T(k) and R(k) are the so-called transmission and reflection coefficients. The
asymptotic behavior of a real unit normalized eigenfunction / = fj(x) corresponding
to a discrete eigenvalue Xj = -rjj < 0 is given by

fj(x) ~ exp(tljX +Xj\ for;c->+oo. (2.4)

The inverse theory prescribes that the fundamental scattering data consist of the
reflection coefficient R(k), the eigenvalues Xj9 and the norming exponents Xj- The
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transmission coefficient T(k), as well as all other asymptotic information, can be
computed from this fundamental set.

As u evolves according to the KdV equation (2.1a) then for every X = k2 in
the continuous spectrum there is a solution f(k,x,t) of the linear system (2.2) that
evolves as

expf —

1 (-ikx-4ik3t\ R(k) (ikx + 4ik3i
exp1 ' ' ~™f

for x —» —oo,

/—/ATJC - 4ik3t\ R(k) (ft

{ 1 ) + W)^K
(2.5)

while the eigenvalues Ay = — rj2 remain fixed in time and there is a solution //CM)
of (2.2) that evolves as

— f- - J ,— f- - J , forx-++oo, (2.6)

where the T(k\ R(k), and Xj &£ ^ e initial scattering data. Comparing (2.5) and
(2.6) with (2.3) and (2.4), the time evolution of the scattering data for u(x,t) can
be read off as

*(*,/) = *(*) exp ( i — ) • (2.7)
\ 8 /

Hence, given R(k), r\j9 and Xj computed from the initial data M(JC,O), the solution
u(x,t) of the KdV equation (2.1) is then determined by inverse scattering from the
R(kJ)9 rjj, and Xj(O given by (2.7).

Given the solution f(k,x,t) of system (2.2) that satisfies the asymptotics (2.5),
we introduce the Weyl function, m(k,x,t), by

m = 8dxlogf. (2.8)

A direct calculation starting from (2.2a) shows that m satisfies the Ricatti equation

- 8 dxm = k2 - u + m2 . (2.9)

Proceeding from (2.2b) while using (2.9) to eliminate all explicit occurrences of u
yields

- e dt log / = -6^/w - 2/w3 + 82dxxm . (2.10)

Cross-differentiating (2.8) and (2.10) shows that m satisfies the modified KdV equa-
tion [12]

dtm + dx(-6k2m - In? + f?dxxm) = 0. (2.11)

This single local conservation law depends on the parameter k. The analytic depen-
dence of the Jost function on k [3] gives the expansions

m = 8dxlogf = -ik+ £ 7^^7> (2.12a)

-6k2m-2m3 + 82dxxrn = -edt\ogf= i4k3 + £ ,^[M . (2.12b)
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Placing these expansions into the modified KdV equation (2.11) then yields

0»v, = O, for/= 0 , 1 , . . . , (2.13)

thereby indicating that the KdV equation (2.1a) may possess an infinite family of
nontrivial local conservation laws with densities pt and fluxes v/.

The densities p/ are computed in terms of u by formally substituting the ex-
pansion (2.12a) into the Ricatti equation (2.9). The first five densities are found to
be

Po = -u,

p2 = J-f?dxxu, (2.14)

p3 = 4eudxu-e3dxxxu,

p4 = -2w3 + 6e?udxxu + 5e?(dxu)2 - e4dxxxxu.

In general, the coefficients pi satisfy the recursion relation

P/+i = 51Pt-jPj-i+*dxPt, for t = 1,2,... . (2.15)
y=i

Notice that p \ and P3 are perfect derivatives, a property shared by all the densities
with odd indices. This can be seen by decomposing m into me and mo, its even and
odd components as a function of k, and observing that the odd component of the
Ricatti equation (2.9) gives the relation

me = — -&dx\o%mo. (2.16)

Hence, only the densities pin, for n = 0 ,1 , . . . , can give nontrivial local conservation
laws, which in fact they do [17]. Of course, any of these densities could be modified
by a multiplicative constant or an additive perfect derivative without changing any
of the essential mathematics, but the normalization adopted here in terms of the
expansions (2.12) is the most natural for our purposes.

Associated with each of the nontrivial locally conserved densities pm is a con-
served functional Hn that can be expressed as

\ 9 forn = 09l (2.17)

The first three conserved functionals Hn so obtained from (2.14) are simply

HQ = -J l-udx, Hx = / in 2 dx, H2 = - / «3 + \<?{dxuf dx.
—oo ^ —oo ^ —oo ^

(2.18)
The KdV equation (2.1a) can be recast in the Hamiltonian form

0, (2.19)
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where the Hamiltonian is H2 given in (2.18). The infinite family of conserved
functional Hn are independent and satisfy the Poisson commutation relation

0 = {Hn,Hm}= J^-dx^dx9 far*,m = ( U , . . . , (2.20)

and are therefore in involution [10,32]. Each Hm except HQ is a Hamiltonian which
generates a member of the so-called KdV hierarchy of commuting flows [17]. Let
tm denote the time variable associated with the m* KdV flow as generated by Hm+\
through the equation

^ i O , form = 0,1, . . . . (2.21)
ou

Recalling Hx and H2 from (2.18), for m = 0 Eq.(2.21) is the flow of positive
jc-translation by to while for m = 1 it is the KdV flow (2.19) with t\ being identified
with t. This observation motivated the introduction of the \ into (2.17). By the
Poisson commutation (2.20), every Hn is conserved by each of these flows.

Because these flows commute, they may be solved simultaneously for u = u(x91)
where, for the moment, the time vector t = (*o,fi,...) is understood to have all but
finitely many tm zero. Associated with each such t is the odd polynomial /?(*,t)
defined by

(2.22)

The simultaneous evolution of the scattering data is then given by

Xj(t) = xj + PinjM * ( M ) = * ( * ) e x p ( ~ 2 / * M ) ) , (2.23)
\ b /

and w(x,t) is determined by inverse scattering. This solution may be extended to all
those time vectors t in the class

* = { t : lim | ^ | i = o | , (2.24)
I m—•oo )

which corresponds to extending the class of mappings rj H-> p(rjyt) to those that are
entire, odd, and have real symmetry.

Under the m* flow the density pin satisfies the local conservation law

Stmp2n + Sxv2m,2n = 0 , for /w,« = 0 , 1 , . . . . (2.25)

The flux v2m,2n f° r Ae density p2n under the m* flow is determined by the expansion

- edtm log/ = -4">(ikf»+l + g ^ g ^ . (2.26)

Note that for m = 0, corresponding to the jc-translational flow, one has voy = p ,̂
while for m = 1, corresponding to the KdV flow, one has v2j = v̂  as determined
by (2.12b). By setting n = 0 in (2.25) one recovers the m* flow (2.21) in the KdV
hierarchy.

There is a deep relation [8] between the coefficients in the expansion (2.12a)
and the coefficients in the expansions in (2.26). After some rescaling this relation
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is equivalent to

(2n + 1) p2n - v2w,o = a perfect x-derivative. (2.27)

As stated earlier, because an additive perfect derivative does not alter the essential
mathematics of the conservation laws, (2n -f 1) Pin and V2W,o are densities for the
same conserved quantity.

3. The Zero-Dispersion Limit

The problem of the zero-dispersion limit for the KdV considers the solution ue(x,t)
of the whole KdV hierarchy (2.9) as a function of s for some initial data v(x) that
is independent of a, and tries to determine the limiting behavior of the conserved
densities pe

n and fluxes v^ n as e tends to zero. Lax and Levermore [18,19] analyzed
the limiting behavior of the scattering and inverse scattering transform using a WKB
analysis of (2.2) and a kind of steepest descent argument to obtain a characterization
of the (weak) limits in terms of the solution of a variational problem. Below we
recall those aspects of this theory that are relevant to this investigation.

For simplicity, we present only the case when the initial data v(x) is a single
nonpositive well with a minimum value of — rj*^ as depicted in Fig. 3.1. Possible
extensions of our results to other classes of initial data will be discussed in the
conclusions.

For small e approximate scattering data of v(x) may be computed using the
WKB method. The WKB turning point analysis yields eigenvalues A*j = — rf2 that
are distributed within the open interval (—^^,0) so as to be consistent with the so-
called Weyl asymptotic density <p(rj) with respect to the spectral variable rj, which
is given by

cp(rj)= J \ dx, (3.1)
x-Of) V -v(x) - rf

where x-(rj) < x+(rf) are determined by v(x±) = — rj2 as shown in Fig. 3.1. Speci-
fically, r\ — rjj is the unique positive solution of

- * ( * ) = . / - - L fary = l,...,tf', (3.2)
7to Z.

where <P(rj) is defined by

«(!,)= J > ( 0 ^ = / y/-v(x)-^dx, (3.3)

Fig. 3.1 A typical initial data v = v(x) considered here. The defining relations for the functions
x = x±(rj) are also indicated
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and Ne is defined by

W£ = Int [—*(0)| =
[ne J

Int
oo

— / yj—v(x)dx
ne jcx>

(3.4)

Here Int[«] rounds its argument to the closest integer value, with half-integers
rounded down. So determined, the WKB eigenvalues are strictly ordered as

- f m a x < A f < • - • < % < • • • < % . < 0 . (3.5)

The corresponding norming exponents obtained from the WKB analysis are

X*=X(rij\ for y = l , . . . ,JV, (3.6)

where the so-called asymptotic norming exponent xivi) is defined by

7M) = ffjc+(i|) + / (if - v V + "(*)) dx. (3.7)

Finally, the reflection coefficient is found to be zero to all orders.
Motivated by this calculation, we choose to replace the exact initial data v(x)

by the reflectionless potential if(x) corresponding to the above WKB scattering
data. While this device is not the best one might hope for, it is partially justified
a posteriori by the result that ve converges strongly to v. The solution t^(x9t) of
the whole KdV hierarchy corresponding to this reflectionless initial data can be
constructed from the approximate scattering data by the Kay-Moses formula [16]

we(jc, t) = -2e2dxx log te(jc, t ) , (3.8)

where the so-called tau-function T ĴC, t) is the Ne x Ne determinant

te(jc, t) = det(7 + Ge(x, t ) ) . (3.9)

Here the matrix Ge has the form

where
fl(ty,jt,t) = — rjx + p(rj,t) + x(?l)- (3.11)

Associated conserved densities and fluxes are given by [8,22,31]

c,t) = -62ax/fllogT£(x,t), (3.12a)
2

2/w+1 ,
—2—V2«,2m(^ *) = e 5/,/« !og te(x, t ) . (3.12b)

It is important to understand that these are not the same densities and fluxes as
were defined in (2.12a) and (2.26) respectively. They do, however, give the same
integrated conservation laws as a consequence of (2.27).
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The Kay-Moses formula (3.8) is the special case of (3.12a) obtained by setting
n — 0 while using (2.14) and the fact that dtQ*f = -dxT8. Moreover, a comparison
of (3.12a) with (3.12b) when m = 0 yields

(In + l )pL == -2e2dxtH logr£(x,t) = 2e2dhttt logT£(*,t) = ve
2n0.

This is equivalent to (2.27) modulo the freedom to add a perfect x-dervative to the
conserved densities which does not alter the essential content of the conservation
laws.

The class of t for which the above constructions are valid may be extended from
the class & of (2.24) to the real-valued weighted fx space

* = {* £ \*m\4mnS£l < 00} . (3.13)

The space F shall be considered as a representation of the dual space of Co, the
space of sequences that converge to zero, and, as such, to be endowed with its
weak-* topology. With this topology for P the matrix Ge and the function T£ are
clearly continuous over R x f ,

At this point we make the important observation that for each s > 0 the function

(x,t) t-¥ logt£(x,t) is smooth, positive and convex . (3.14)

These properties are all consequences of the fact that the matrix G£(x,t) of (3.10)
is Hermitian positive [19], which by (3.9) immediately gives that te(x,t) > 1. The
regularity and positivity are then obvious. The convexity was first noticed in the
context of the semiclassical limit of the nonlinear Schrodinger equation [14,15], but
the proof applies to the KdV case without change. Indeed, this convexity will hold
for any tau-function, T£(x,t), that is a linear combination of real exponentials with
positive coefficients.

The Lax-Levermore theory [18,19] establishes the existence of the limit

g ( , ) 9 ( , t ) , (3.15)
£—•0

where the limit is uniform over compact subsets of (x,t) i n R x J . Moreover, the
limit q{x,t) is characterized by the maximization problem

, (3.16)

(3.17)

where the admissible set s4 is

j / = {*

2

defined by

€l1([0,ta,]):0

and the quadratic functional Q(i//'9x,t) is defined

2
n
T
0

1 '/max tymax

*2 0 0

n -
rj +

: 4

VII

by

yi

n

(3.18)



128 N.M. Ercolani, CD. Levermore, T. Zhang

with a(rj9x9t) given by (3.11). The initial data v(x) enters this problem through the
Weyl asymptotic density q>(rj) defined by (3.1), which determines the admissible
set <$/ in (3.17), and through the asymptotic norming exponent x(v) defined by
(3.7), which arises in the a{r\9x9t) appearing in (3.18). For every (x,t) € 1R x gr
the functional Q(\l/;x9t) is bounded above and strictly concave over i// £ st. Hence,
its maximum value q{x9t) is attained at a unique ^ = î *( • ,jc,t) in the admissible
set sf that depends continuously on (x,t) when identifying s/ as a set of densities
endowed with the weak topology of measures. Moreover, this value is nonnegative
because (3.17) shows 0 to be in the admissible set stf.

The uniqueness and continuity of if/* imply [19] that the maximum q(x9t) is
a continuously differentiable function of (x,t) with

dxq(x9t) = — f tiri^x^drj, (3.19a)
n

9 Imax

dtq(x9t)=- / ptWrtoxrfdri, (3.19b)
n 0

where pt(ri) = dtp(rj9t) is independent of t. It is an elementary, but nontrivial, fact
that the regularity and convexity of both the approximating functions E2 logre (3.14)
and the limiting function q in (3.15) imply [15] that

lim e?dx log T£(*, t) = dxq(x91),
(3.20)

hm e?dt log x\x91) = dtq(x91),
e * 0

where again the limits are uniform over compact subsets of (x,t) i n E x J . Hence,
the convergence of e2 logre to q in (3.15) is in Cl(R x $~). In deriving the main
result of the next section, we will make full use of this C1 convergence.

Because the map (x,t) »—• q{x9t) is realized as a supremum of linear functions
of (x,t), it is convex. The regularity and convexity of the function q also imply that
its Hessian matrix of distributional second derivatives is a measurable function that
is given by a Hessian matrix of classical derivatives almost everywhere. Its values
in terms of \j/* are given by

dxxq(x9t) dxtq(x9t)fdxxq(x9t) dxtq(x9t)\

\dtxq(x9t) dttq(x9t))

'/max '/max

- \ I r\Sx^{r\9x9i)dr\ - \ J rjdt\l/\rj9
o o

'/max '/max

\ f Pt(ri)dx\l/*(rj9x9t)drj \ J pt(rj)dt\l/*(rj9x9t)dri
\ o o /

(3.21)

where the derivatives on \//* are understood in the sense of distributions.



Behavior of Weyl Function in Zero-Dispersion KdV Limit 129

Combining (3.20) and (3.21) with (3.12) leads to the weak limits

In + 1 2 i
l i | ( t ) ^ ( t )p|n( ,) ^ ( , )
B—•0 7l

2 / 1 + 1 2 ninax

l i ( O ^ ( t ) /

(3.22)

for the conserved densities and fluxes associated with the solution w£(x,t). The above
limits for p^ are weak with respect to the x variable, while those for v|m ln are
weak with respect to the tm variable. In particular, (3.22) gives

= -2dxxq(x,t) = - /%^*0/,*,t)<fy, (3.23)
n

in the sense of ^-distributions, which resolves the question raised in (1.1). We
remark that the general limit formulas for all conserved densities and fluxes (3.22)
are not found in [18,19], but first appeared in the context of the semiclassical
limit of the defocusing nonlinear Schrodinger equation [13-15]. However, these
generalizations are straightforward given (3.12) once the strong limit of ^logt* is
established as was done in [19].

The significance of this result is that it provides a global characterization of the
zero-dispersion limit for all the conserved densities and fluxes of the KdV hierarchy
as a function of the initial data through the maximization problem (3.16). Of course,
the story of the zero-dispersion limit goes far beyond this characterization. The
variational problem associated with (3.16) was transformed into a Riemann-Hilbert
problem and systems of hyperbolic equations were found that locally describe the
evolution of the zero-dispersion limit [18,19,21]. These so-called Whitham modu-
lation equations were found independently by Flaschka, Forest and McLaughlin [9]
by the averaging of families of quasi-periodic KdV solutions, thereby generalizing
the early work of Whitham [29,30]. While this modulation approach provides a far
better picture of what the KdV solution might look like for e small, it is intrinsically
local in nature and cannot connect regions in (jc,t)-space that are governed by the
averaging of different families of KdV solutions. In particular, it does not relate
the dynamics back to the initial data. On the other hand, the global nature of the
Lax-Levermore solution does provide a prescription of how the modulation equa-
tions arising from averaging different families partition (x,t) space [19]. Venakides
[26-28] helped bridge the gap between these two approaches by developing a theory
of the microstructure of solutions based on quantizing the Lax-Levermore variational
problem. All of these results and more are surveyed in [4,20].

4. The Behavior of the Jost Function

Given any solution of the KdV hierarchy w£(jt,t), there is a unique eigen-
function /e(fc,jt,t) of the associated Schrodinger operator J§?e(t) that is analytic in the
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upper-half complex fc-plane and satisfies

se\i)f = -e2dxxf
e + ue(x,t)fe = tff, (4.1)

and has the large k expansion of

>)( g | f i ^ > ) . (4.2)

This function is known as the Jost function of i?e(t) [3].
When ue is the reflectionless potential given by (3.8), the Jost function can be

expressed in terms of the scattering data [3] as

where the tau-function t?(x9t) is given by (3.9) and the ^-dependent tau-function
Te(ik9x9t) is defined by the NexNe determinant

xe(ik9x9t) = det(/ + De{ik)G\x9 i)D\ik)) = det(/ + D\ik)2G\x91)), (4.4)

with G\x9t) as in (3.10) and the diagonal matrix D*(ik) defined by

(4.5)

Here the square root is taken on the sheet where y/\ = 1 and with its branch
cut on the negative real axis so that D*(ik) is analytic off the imaginary interval

Clearly, (4.4) shows xe{ik9x9t) to be a rational function of k which has the
asymptotic value of Te(jc,t) as k —> oo and possesses the symmetry

(4.6)

thereby taking on real values along the imaginary axis everywhere it is defined. Its
denominator has simple zeros which are fixed at k = irjj for j = 1,... ,Ne for every
(jc,t). Hence, after removing any removable singularities, xe(ik,x,t) can have at most
Ne simple poles. Less obvious is the fact that the Ne zeros of its numerator, which
depend on (x,t), always lie on the imaginary interval [—irjmaxJVmsa]' This is because
fe(k,x,t) can only vanish for those k that lie inside the interval [—wjmax>w?m«]. To
see this last fact, first note that, so long as A: is not a pole, the asymptotic behavior
of fe(k9x,t) for large values of x is given by

• ( -

. -ikx + p{ik9t)\
exp ( -^ J , for x -> - o o ,
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When k is nonzero and real it follows from (4.7) that f£ and fe are a pair of
linearly independent solutions of the Schrodinger equation (4.1) with Wronskian

iT{f\Te) = f8(k,x,t)dxp(k9x,t) - Tefrx9t)dxf
e(k,x,t) = — . (4.8)

In that case it is clear from (4.8) that p{k9x9t) can never vanish. On the other
hand, if fe(kO9xO9to) = 0 for some ko that lies outside the interval [-/>fmax>fymax]
and inside either the lower or the upper open half-plane then k2 will be an eigen-
value with eigenfunction fe(kO9x9to) for the Schrodinger operator with potential
u(x9to) and a Dirichlet boundary condition at xo considered over L2([xO9oo)) or
L2{{—OO,JCO]) respectively. These operators are selfadjoint, so k2 must be real and,
hence, ko must be imaginary. However, for every k that is imaginary and lies out-
side the interval [—irjmsoi9irimax]9 the diagonal matrix D*{ik) will have positive en-
tries and, therefore, Ge(x9t) will be Hermitian positive. It then follows from (4.4)
that re(ik9x9t) > 1. Hence, fe(k9x9t) can only vanish for those k that lie inside the
interval [-/f/max,«?max].

The Jost function can be related directly to the conserved densities and fluxes
of the KdV hierarchy through the large k asymptotics of its logarithmic derivatives.
Specifically,

oo / 1 \

s dx log /*(*,*, t) = - * + £ pffc t) —
\2ik

Therefore, the limiting form for all these quantities will be encoded in the limiting
form of s log/e(£,x,t). By the argument in the previous paragraph, this function
is analytic over all complex k outside the imaginary interval [—*>/max> "7mu]> that
is, in Q = {k e C: £$[-fymax>fymax]}. As will be shown below, the limit of this
function can be evaluated in terms of the maximizer il/*(rj9x9t).

The contribution of the middle factor on the right side of (4.3) to the limit of
e log/e(£,jt,t) can be evaluated in two steps. The first step is to express Tfi(/Jt,jc,t)
given by (4.4) in terms of te(x,t) given by (3.9). Upon fixing log(z) on the sheet
where log(l) = 0 and with its branch cut on the negative real axis, for every r\ €
[0,̂ max] and complex k with \k\ > m̂ax one has the convergent expansion

1 /j£ yt\ OO 2 / 1
- log! — ) = ~Z) ̂  7 \ T^ ) 4n?f/l+ = s(ik) • /?t(̂ ?) » (4.10)
2 \ik + rjj n=o2n+l\2ikJ

where /?t0/) is defined after (3.19) and s(/&) = (s\(ik)9S2(ik)9...) is defined by

for n = 0 ,1 , . . . . (4.11)

In particular, expansion (4.10) holds over all k in the set Qj = {k £ Q: k is
imaginary}, in which case s(/fc) is both real and in F. Hence, by (4.10),

a(rj9x9t) + fi- logf \—- ) = a(rj9x9t) + es(ik) • pt(r\) = a(ri9x9t + ss(ik)) .
2 \iK-\-r\J

(4.12)



132 N.M. Ercolani, CD. Levennore, T. Zhang

This then allows T£(/£,jt,t), given by (4.4), to be expressed as

xe(ik,x,t) = xB(x,t + ss(ik)) . (4.13)

This identity has played an important role in past work [2,23,24], just as it will
here.

The second step is to pass to the limit. The convexity (3.14) of logT^fot) over
t € 3~ provides the basic estimate

e2s(ik) • dt log T£(JC, t) ^ e log T£(JC, t + 8 s(ik)) - e log T£(JC, t)

S s2s(ik) • dt log re(jc, t + es(ik)) . (4.14)

However, by the C1 convergence asserted in (3.20), one has

Hm823tlogTe(x,t + 8S(/A:)) = dtq(x,t) = lime2dtlogTe(jc,t) , (4.15)
£—•0 £—•()

where the limits are uniform over compact subsets of (k,x,t) in Qj x R x 3~ and
q(x,t) is given by (3.16). Applying this result to (4.14) then using (3.19b) and
(4.10) yields the limit

Jim elogf ^ t ' } j = •(*) • hq(x,t) = - / s(/*) • pt(r,) V(ri,x,t)dt,,

(4.16)

where again the limits are uniform over compact subsets of (k,x,t) in Qj x R x 9~.
Now turning toward the contribution of the third factor on the right side of (4.3)

to the limit of £ \o% f\k,x,i), it follows directly from the definition (3.2) of the rf
that

< 4 i 7 )

where (f)(rj) is the Weyl asymptotic density defined in (3.1).
Finally, by combining (4.16) and (4.17) with (4.3) we establish the limit an-

nounced in (1.5) of the introduction, but restricted to those k that are imaginary.

Proposition 4.1. The Jost function fe defined in (4.3) satisfies

lim 8 log f\K x, t) = -ikx + /?(/£, t)
£—•0

-« f log irzi (^>-rin,x,i))dti, (4.i8)

where the limit is uniform over subsets of(k,x,t) that are compact in fi/xtx«f.
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The limiting function above extends to an analytic function of k over Q, all com-
plex k lying outside the imaginary interval [—w/max> fymax]- Theorem 5.3 of the next
section will show that the limit (4.18) is in fact uniform over subsets of (k9x,t) that
are compact in fi x R x «f.

The limiting form for all the conserved densities and fluxes can now be recovered
formally. Comparing weak limits of (4.9) with the appropriate derivatives of (4.18)
and passing limits formally through sums yields the relations

if'
, , (4.19)

\^Y (ik-r\\ „ _ °° • £ / I Y
n{ \ik + ri) tm ' ' ^=0

 £-+° 2mJ ' \2ik)
Here again, the derivatives on \//* are to be understood in the sense of distributions.
Using the expansion (4.10) of the logarithm on the left side above and comparing
coefficients of like powers of 2ik allows one to read off the weak limits

4 4/1 ^max

lim p\Jx, t) = — f rj + dx\l/*(rj,x91) drj ,
e-*o n 2n -f 1 A

4 An tjmsr

for « = 0 ,1 , . . . from the odd powers of 2ik and

\impe
2n+x(x,t) = 0, J i m v ^ ^ f r t ) = 0 , (4.21)

for n = 0 ,1 , . . . from the even powers. Formulas (4.20) for the weak limits of the
conserved densities and fluxes agree with those given earlier in (3.22) and (3.23).
This result shows that the maximizer ij/* can be viewed as a generating function
that encodes all information about the zero-dispersion limit through relations (4.19).

5. The Limit of Spectral Measures

In this section we will extend the validity of the limit described in Proposition 4.1
to all of Q, the complement of the imaginary interval [—irjmsix, irjmsa] in the complex
A>plane. In the course of doing so we will also interpret e log/*(£,*, t) in terms of
a spectral measure associated with the Dirichlet eigenvalue problem over half-lines
for the Schrodinger operator J£?e(t) defined in (4.1).

We will begin by recalling the basic ingredients involved in describing solutions
of the Dirichlet eigenvalue problem. By the remarks following (4.6) the Jost function
/ e can be written in the form

where k — i£j(jt,t) are the N£ zeros of the numerator of T£(/£,Jt,t). The remarks
following (4.8) show that each ^ lies in the interval [—rjmax, */max] and that each
nonzero Hj(y9t) = — £j2(j>,t) is an eigenvalue for the Schrodinger operator j£?e(t)



134 N.M. Ercolani, CD. Levennore, T. Zhang

considered over either L2([y9oo)) or L2((-oo,x |) with a Dirichlet boundary con-
dition at x = y depending on whether £j(y, t) is negative or positive, respectively.
The set of whole-line eigenvalues {Aj} is strictly ordered as in (3.5) while classical
spectral theory [3] states that those {//j(M)} that are half-line Dirichlet eigenvalues
are simple and can be ordered so as to interlace with the {Aj}:

->/max<^l ^ tf(*,t) S '•• ^ % ^ fi}(x9t) ^ . . . ^ X%. ^ fle
N,(x,t) ^ 0 ,

(5.2)
where equalities may occur at a given (jc,t) only as triple coincidences of the form

This convention determines the labeling of the {^(jc,t)}; however, it should be noted
that the ordering of the labels does not correspond to the numerical ordering of the
{£j(jc,t)}. The relative ordering (5.2) of the Dirichlet and whole-line eigenvalues
with respect to each other will play a crucial role in what follows.

The main result of this section is the following characterization of \l/*(rj,x,t) in
terms of the limiting density of the {^(jc,t)}:

Theorem 5.1. In the sense of weak convergence of Borel measures over [0,f/max]
one has

lim en £ S(rj + {J(x,t))<*f = r(rj9x,t)drj, (5.3)
s-*0 J=l

where the limit is uniform over subsets o/(jc,t) that are compact inWLx3T.

Only terms that have support in [0, f/max] will contribute to the sum on the left side
of (5.3). More specifically, only those terms for which €j(x,t) is nonpositive will
contribute.

An important ingredient we will use is the notion of a Herglotz function over
the domain Q. A function h = h(k) that is analytic in the domain Q will be called
Herglotz if it has a representation of the form

(5-4>

where p(k) is a polynomial that is real-valued when k is imaginary while da is
a nonnegative, finite, regular Borel measure that is supported within the interval
[—*/max>*/max]- It is relatively easy to show that a function that is Herglotz has
a unique representation of the form (5.4). This definition differs slightly from that
usually given [1] in that we allow a general polynomial behavior and that it is
formulated for the domain Q rather than for the upper-half plane.

The first result of this section will be to show that

Proposition 5.2. The function elog fe(k,x,t) is Herglotz in Q with the represen-
tation

- f m
myl^x> , (5.5)

11 lk ~ *l
where dcre(rj;x9t) = we(rj;x9t)dri with

'/max Ne

= f en £ [Stf - n)) - S{( + {Jfct))]« . (5.6)
i
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Proof. Note that the ordering of the eigenvalues (5.2) ensures that for every (jc,t)
the w* given by (5.5) is nonnegative and vanishes identically for those rj outside
the interval [-ffmax,f/max]. Moreover, it also implies that w\r\\x9i) is bounded above
uniformly in (x,t) by

tlm*x Ne

we(ri) = J en £ [<5(£ - fjj) ~ %t + ifj)K , (5.7)

which is bounded above by snNe, which itself is clearly bounded uniformly in
e by the definition (3.4) of Ne. The associated measure (k^{r\\xyt) is therefore
a nonnegative, finite, regular Borel measure that is supported within the interval
[-f/max, ffaiaxL so the right side of (5.5) is a representation of the form (5.4). All
that remains to be shown is that (5.5) holds.

It can be seen from the representation of / e given by (5.1) that

fc ej(jc, t)) -
7=1

1 fmax

- f log(ik-rt)dwe(ri;x,t), (5.8)
'/max

where we(rj;x9t) is given by (5.6). Integration by parts then yields (5.5), thereby
establishing the proposition. D

Next, we observe that the Jost function limit given on the right side of (4.18)
can be recast in a Herglotz form similar to (5.4). The first step is to extend the
functions \j/*( • ,jc,t) and <t>{ • ) , which are defined over [0,̂ max], to the whole real
line as odd functions with their support contained within [—1/,^, */max]. By invoking
first this odd symmetry and then integrating by parts, the integral in the last term
on the right side of (4.18) can be written as

lk ll\ tftnax

irri Wa) - **(*,*,t»«ai = / logo* -0

= f — — , (5.9)

where dcr(rj;x,t) = w(ri;x,t)cfri with

(5.10)
n

Hence, the Jost function limit (4.18) becomes

Urn8 log/UM) = -ikx + p(ik9t)+-J ™J} , (5.11)

where the limit is uniform over subsets of (k,x,t) that are compact in ft x R x J .
Here again Qj denotes the intersection of Q with the imaginary axis - in other words,
the complement of the interval [—irjmui9 ///max] in the imaginary axis. Because, by
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(3.17), ^*(fy,jc,t) ^ <t>(ri) over [09fimn]9 for every (x,t) the w given by (5.10) is
nonnegative and vanishes identically for those Y\ outside the interval [—f/max* fynax]-
Moreover, it also implies that we(rj;x,t) is bounded above uniformly in (jc,t) by the
even extension of &(rj) over [—rjmax,tymaxL where <P(ri) was defined in (3.3) and is
bounded above by #(0). The associated measure dG(rj;x,t) is therefore a nonnega-
tive, finite, regular Borel measure that is supported within the interval [— m̂ax, fynaxL
so the right side of (5.11) is a representation of the form (5.4) over Q.

We can now extend the limit of (4.18) to all of Q.

Theorem 5.3. The Jost function given by (5.1) satisfies

lime log fe(k,x,t) = -ikx + p(ik,t) + - / " ^m^t) , (5.12)

uniformly over compact subsets of Q x R x <F. In particular^ the limit is an
analytic function in the k-plane outside the imaginary interval [—/tymax, tymax]-

Proof By comparing (5.4) with (5.11) one concludes that

holds uniformly over compact subsets of O/ x R x «f. By the Stone-Weierstrass
approximation theorem, the linear span of the family of functions {(ik — r\)~l: k €
Qj} is dense in the space of real-valued continuous functions over [—J/max, tymax]- It
follows that for any continuous function g(r\) one has the limit

lim / ^ )*»( iy ; jc , t ) = / «(if)A(»f;*,t), (5.14)
6->0 „

'/max Htasx.

where the limit is uniform over compact subsets of (g,x,t) in C([—rjmaX9rjmax]) x
R x « f . The limit (5.13) therefore holds uniformly over compact subsets of
Q x R x « f because the real and imaginary parts of the integrand will lie in a
compact set of C([-y/max,^max]) when k lies in a compact subset of Q. The theo-
rem then follows by passing to the limit in (5.5). D

The convergence of dae to da indicated in (5.14) is that of the weak convergence
of measures. This convergence can be strengthened through the following result
concerning the convergence of their densities, we to w, defined by (5.6) and (5.10).

Proposition 5.4. The measures dwe and dw defined by

dwe(rj;x9t) = —en

dw(rj;x,t) = -

satisfy

limdw\r\\x9i) = dw(ri;x9t) , (5.16)
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where the convergence is in the weak topology of Borel measures over [—fynax, faiax]
and is uniform over compact subsets of(x9t) in R x « f .

Remark. Theorem 5.1 follows immediately from this proposition upon restricting
the measures in (5.16) to [0,7/max] and using the consequence of definition (3.2)
that <t>(rj) is the limiting density of the rjj.

Proof For every g in C([—^max,̂ max]) we must establish
'/max tymax

lim / g(r,)dw%r,;x,t) = J g(t,)dW(t,;x,t), (5.17)
6—*U __M M

'/max '/max

where the limit is uniform over compact subsets o f ( x , t ) i n R x « f . However, it is
clear from (5.15) that the total variation of the dwe( • ;*>t) satisfies the bound

\\dw\ • ;x9t)\\jv ^ J enY:Wri-r1e) + S(ri + ?j(x9t))]dri = 2EnNe, (5.18)

which, by the definition (3.4) of Ns, is uniform in e and (*,t). Hence, by
a standard density argument, it suffices to establish (5.17) for an arbitrary g in
C1([—*/max>'/max])- For such a g integration by parts yields

Imsu fmax

f g(t,)dw*(r,;x,t) = - J w°(r,;x,t)g'(i,)dt,,

~T ~T (5-19)
ffeiax fmax V '

J g(rj)dw(rj;x9t)=- J w(ri;x9t)g
f(rj)dri.

~*lnmx ~rltaax.

The convergence (5.14) implies that
'/max '/max

lim / Mf(ri;x,t)g'(t,)dr,= J w(n;x,t)g'(Ti)dr,, (5.20)
— f/max —'/max

where the limit is uniform over compact subsets of (jc,t) in R x ,f. By (5.19), this
establishes (5.17) for every g in Cl([—J/max,*?max])- As was argued from (5.18), the
proposition then follows. D

6. The Behavior of the Weyl Function

At the end of Sect. 4 it was observed that Proposition 4.18 enables one to recover the
limiting form of the conserved densities and fluxes, at least in terms of distributional
derivatives of if/*. In this section we show that Theorem 5.1 allows us to strengthen
this characterization of the limit of the densities. Precisely, this limit is a measure
in x and the limit holds in the sense of weak convergence of measures in x.

This analysis is mediated by the scaled form of the Weyl function introduced in
(2.8), which, when fe is given by (5.1), becomes

m\k,x,t) = s3X log/U*,t) = -ik + e £ \ y }
 (6 ,}

y=l *£ -r <3j[X,Z)

We will first give a self-contained argument that me is Herglotz in Q and, in so
doing, construct the associated Weyl spectral measure do*x. We will then consider
the zero-dispersion limit of this measure which carries the limiting form of the
conserved densities.
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Proposition 6.1. The function m£(*,x,t) is Herglotz in Q with the representation

«-i,- (62)

where dc^(rj;x9t) = dxw
e{r\\x9t)dri with

dxw\t]'9x9t) = ETC £ dx?j{x,t)5(f, + {J(x,t» . (6.3)

Note that formulas (6.2) and (6.3) follow directly from (6.1), so all that needs to
be established is that d^(rj;x9t) is a nonnegative, finite Borel measure. By (6.3),
all of these properties will follow from the next lemma.

Lemma 6.2.

£ /40t,t)-;i?
edx£j(x9t) = (fij(x9t)-tf) n J —— ^ 0 . (6.4)

Proof The nonnegativity of the expression to the right of the equality in (6.4)
follows directly from the comparison inequalities (5.2), which show that the pre-
factor and each quotient in the product is nonnegative. Therefore, the lemma will
follow upon establishing the equality in (6.4).

This identity is ascertained by comparing two different expressions for ml(k,x9t)9

the odd component of me as a function of k which was introduced in Sect. 2. The
first expression for me

o(k9x9t) follows directly from taking the odd component of
(6.1), namely

where once again /xj(jc,t) = —^2(jc,t). The second expression for /w*(jfc,x,t) de-
rives from the fact that f* = fe(k,x9t) and ft = /* ( -£ ,* , t ) are solutions of the
Schrodinger equation (4.1) whose Wronskian can be evaluated using the large x
asymptotics of fe given in (4.7) to obtain

iT(f^fl) = f\k,x9t)dxf\-k9x,t) - fe(-k,x,t)dxf
B(k,x9t) = — . (6.6)

It follows from (6.6) and (5.1) that

2 p(k,x,t)p(-k,x,t) M,

where once again Aj = - f / j 2 . The equality in (6.4) is established by equating the
residues of me

o(k,x,t) in expressions (6.5) and (6.7), thus completing the proofs
of both Lemma 6.2 and Proposition 6.1. Hence, (6.2) gives a representation of
me(k,x,t) in the form (5.4) and (6.3) gives the associated Weyl spectral measure

/; *, t) . D



Behavior of Wcyl Function in Zero-Dispersion KdV Limit 139

What can be said now about the zero-dispersion limit of the measures drj? We
have the following ingredients for the potential description of this limit.

As a consequence of Theorem 5.1, for any continuous g one has

'/max N '/max '/max

lime* / g(rt)E<K-ri-?j(x>t))di= I 9(i) I **«,*,t)«<*|, (6.8)

where the limit is uniform over compact subsets of (x,t) in R x f , and 0 is
the Heaviside function. Then for any compactly supported differentiable function
h = h(x) one has

lim / h\x) Y g(rj)8K £ 0(-rj - %(
8-*° - O O -flnmx j=\

= 7 h\x) f g{n) TriteQdtdndx , (6.9)
- O O

where one still has uniformity of the limit over subsets of t that are compact in P.
Integration by parts in the terms on the left side of (6.9) gives

7 *'(*) T 9(1)™ £ e(~n - Z%x,t))dridx = 7 Kx)dy%x,t)9 (6.10)
- O O -lima* 7 = 1 - O O

where the x-measure dye( •, t) is defined by

j ^ (6.11)

The total variation of dye( •, t) is bounded by

\\df( - 9t)\\w ^\\g\\mS7cNe, (6.12)

which is uniformly bounded in both e and t. Hence, the dye( • , t) lie in a set that
is compact in the weak topology of Borel measures. Hence, there exists a Borel
measure dy( • , t) such that

JJ h(x)dy(x9t) = lim ] h(x)df(x,t)
-oo e~*° - oo

'/max

/= J h\x) J g(rj) J \j/*(t;,x,t)d£dridx. (6.13)
— OO —'/max ff

From this we read off that

'/max '/max

— — S Gift) J dx&*(£,x,t)dt;dridx. (6.14)
-» /max »/
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This yields the following stronger version of the first formula in (4.19):

Theorem 6.3. As densities of the Lebesgue measure dx,

lim e dx log f\k,x, t) = -ik + lim f) pfe, t) ( - ^
£—•0 e—>o ^ = 0 \2IA:

fmax

/

f max l

- -*#v - - / 3*

where the limit is uniform over subsets of (k,t) that are compact in Qx«f.

In particular, this limit holds in the sense of weak convergence of Borel measures
in x; i.e., the first equality of (6.13) holds with h(x) any compactly supported
measurable function of x. This follows because differentiable functions are dense in
the class of measurable functions on compact sets. As a consequence it follows that
the integral

( 6 1 6 )

has a measure-valued jc-derivative.
One expects to have a similar improvement of the second formula in (4.19). In

fact, in a subsequent paper [6], we develop estimates on dtm£j which enable us to
control the limiting form of the fluxes in a similar manner.

7. Comments and Conclusions

In this paper we have given a complete description of a singular limit (the
so-called dispersive limit) of the logarithm of the Jost functions, in terms of
A>analyticity properties, for the class of operators described by (1.3) (Theorem 5.1
and Theorem 5.3). We have also given a precise statement of what we can say
about the limit of the spatial derivatives of these functions. Once again we may state
£-analyticity properties but for functions with values in x-measures (Theorem 6.3).
However, it is known [14,15] that the densities converge not in the weak topology
of measures, but in the weak-Z,1 topology. We therefore feel that the convergence
in Theorem 6.3 can be strengthened accordingly.

Getting better control on the densities would seem to require a better understand-
ing of the mechanism for the formation of singularities in the evolution of the weak
limit or the emergence of phase transitions in this limit at critical times t. We know
[19] that at those values of (#,t) where the zero-dispersion limit is weak, open gaps
exist in the support of dxij/*( • ,x,t), which generally consists of a finite number of
bands within the interval [0,^max] such as shown in Fig. 7.1. Numerical studies of
the solution, for small e, at such times when the number of bands is greater than
one, show the formation of modulated oscillations [20].

These bands may fission or fuse as t changes but there is not a good under-
standing of this process. Except in extremely special cases (such as monotone initial
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0 nnuu

Fig. 7.1 Typically the support of dx^*( • ,x,t) for some value of (*,t) is a finite number of bands
within the interval [0,^max] as depicted in bold above

data [4]) one cannot predict this evolution of band structure as a function of initial
data. Our results show that the bands are the regions of support for the limit of
the da8, where here by "support" we mean intervals in r\ over which the limiting
measure is independent of x. This makes it clear that the band structure is a con-
sequence of the limiting x-dynamics of the £y and changes in the band structure
are determined by how this dynamics changes as t is varied. So one natural line
of inquiry would be to systematically investigate the x — t dynamics of the £y- for
small values of e. It will be especially important to determine what aspects of this
dynamics triggers the spontaneous emergence of oscillations which are the signature
of the phase transitions.

Finally, we expect similar results to hold for any class of initial data for which
the KdV equation is now known to be completely integrable. The same story should
be true for the semiclassical limit of the defocusing nonlinear Schrodinger equation,
where structures similar to those for KdV exist [13-15]. It is less obvious, but
likely that similar results also hold for the semiclassical limit of the odd flows in
the focusing NLS hierarchy with real-valued data, a case that includes the mod-
ified KdV equation while excluding the NLS equation itself. This limit was es-
tablished in [5] even though the associated spectral problem is not self-adjoint, a
structural difference that makes the generalization of the present results to this case
interesting.
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