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Abstract: The necessary criteria are pointed out for the existence of Hamiltonian and
bi-Hamiltonian non-degenerate structures for a nonlinear system of partial differential
equations of first order. The results are formulated in terms of the new invariants of
the intrinsic geometry, introduced in this paper, connected with the Nijenhuis and
Haantjes tensors of a (1,1) tensor field.

1. Introduction

This paper is devoted to the investigation of the intrinsic geometry of systems of
nonlinear partial differential equations of first order

ul,...,u»)uJ
y. (1.1)

As it is known, systems (1.1) arise in numerous classical problems of gas dynamics
and mathematical physics [1-4, 7-9, 12-15].

Riemann pointed out in his classical work [1] that the system (1.1) is closely
connected with the (1,1) tensor field Aj(u*9...9u

n) defined on the Euclidean space
Rn with the coordinates u\...,un.

Geometry of the vector fields of eigenvectors of the operators Aj(u\. ..,un) has
been studied in famous papers by Nijenhuis [5] and Haantjes [6].

Hamiltonian systems (1.1) and the associated structures of the Poisson brackets
were investigated in [7-9, 14, 15] along with their applications to the theory of the
Whitham equations.

Tensor fields Aj(ul
9...9u

n) were considered in [5, 6] as vector- valued differen-
tial 1 -forms and also as fields of operators defined on the tangent bundle T(Mn).
The Nijenhuis tensor Njk(u

l,...,un) and the Haantjes tensor Hjk(u
l
9...9u

n) were
considered as the vector-valued differential 2-forms.

* Supported by NSERC grant OGPIN 337



254 O. I. Bogoyavlenskij

We consider in this paper the Nijenhuis and Haantjes tensors as the laws of
alternating bilinear multiplications in the tangent bundle. Therefore the Nijenhuis
and Haantjes tensors define on the tangent bundle T (MM) the deformations of the
structures of non-associative algebras, which appear to be Lie algebras for several
important systems (1.1). This point of view leads us to the definition of the ana-
logues of the Cartan-Killing form on the tangent bundle T'(Mn), countable sets
of differential 1-forms ω^ and 2-forms oίk and βk and (1, 3) tensors JN and JH

which we name the Jacobi tensors. These (1, 3) tensors characterize the deviation
of the algebraic structures defined by the Nijenhuis and Haantjes tensors from the
Lie algebra structures. We define also invariant polynomials PN (v) and PH (υ) on
the tangent bundle and the associated fibrations of the algebraic submanifolds VN
and VH embedded into the tangent bundle T (Mn ).

In terms of these constructions we point out several necessary criteria for the
existence of non-degenerate Hamiltonian or bi-Hamiltonian structures for a system
(1.1). For example, if system (1.1) has a non-degenerate Hamiltonian structure
then the invariant polynomials PH (v) are even, PH (v) = PH (—v) and the fibration
of the algebraic submanifolds VH is invariant under the involution v —> — v. For
n = 4 existence of a non-degenerate Hamiltonian structure implies that the Haantjes
tensor H (u, v) defines a deformation of Lie algebra structures in the tangent bundle
Γ(M4). For n = 3 these Lie algebras have to be either simple or commutative. The
corresponding Cartan-Killing form (u, v)H defines the metric on the manifold M3

that has to be conformally flat and therefore has to satisfy the classical Weyl-
Schouten equations.

The existence of two non-degenerate Hamiltonian structures implies that the
Haantjes tensor is reducible and is necessarily zero if the two structures are in
general position. In the last case the Hamiltonian system possesses the Riemann
invariants and is integrable by the generalized hodograph transformation.

These necessary criteria can be checked by a direct calculation of the Haantjes
tensor for any system of partial differential equations (1.1).

The efficiency of the geometric methods of this paper is demonstrated for the
equations of classical gas dynamics, for the perturbations of the Benney equations
and for the certain matrix partial differential equations of the form (1.1).

2. Gauge Invarίance of the Haantjes Tensor

/. Let u and v be two vector fields on a manifold Mn with a (1, 1) tensor field Aj.

Let u and υ are values of the vector fields u and v in a point P. The Nijenhuis
tensor N(u, v) [5] is defined by the formula

N(u, v)=A2[u, v] + [Au, Av]-A([Au, v] + [u, Aϋ}\ (2.1)

where [f, y] is the commutator of vector fields f and y. The Nijenhuis tensor does
not depend on a choice of vector fields u and v extending the tangent vectors u and
v in the point P. Obviously the Nijenhuis tensor is alternating and has the following
entries (in a local map jc1,...,*"):

dA\ dA*: dA°ί . dA? .
N]k = ίpΛ? - -^-Al + —f 4 - =±A1

Λ . (2.2)Jk dx* J dx« k dxk α dxJ α
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The Haantjes tensor H(u, v) [6] is defined by the formula

H(u9 v) = A2N(u, v) + N(Au, Av) - A(N(Au, v) + N(u9 Av)) (2.3)

and also is alternating. Haantjes tensor has the following entries:

Hjk = A^Nfk + NiβAjA* - A^N^j - Ai

0ίNfβA
β

k , (2.4)

where one must substitute formulae (2.2).
The Nijenhuis and Haantjes tensors define the alternating products in the tangent

space which lead to structures of non-associative algebras in the tangent space. Thus
in the tangent bundle T(Mn) we have a deformation of structures of non-associative
and alternating algebras.

II. We define two linear operators Nu and Hu depending on vector u which are
analogues of the operator adu for the Lie algebras:

Nu(v) = N(u, v), Hu(v} = H(u, v). (2.5)

These two operators in view of formula (2.3) are connected by the relation

Hu = [NAu-ANu,A]. (2.6)

From (2.6) we get
ΊτHu = 0, Ύr(HuA

k) = 0 (2.7)

for all integers k.
We define two symmetric scalar products (u, V)N and (u, V)H which are ana-

logues of the Cartan-Killing forms for the Lie algebras:

(u, v)N = Ύτ(NuNυ), (u, υ)H = Ίr(HuHυ). (2.8)

///.

Proposition 1. If two (1, 1) tensor fields Aj and A1^ are connected by the relation

A'J(X) = f(x)A}(x) + g(x)δi

j, (2.9)

where f(x) and g(x) are arbitrary functions on the manifold Mn then the
corresponding Haantjes tensors and scalar products (u, V)H are connected by the
formulae

H(u, v) = f\x)H(u, v), (2.10)

(u, v)# = f*(x)(u, υ)H . (2.11)

Proof. Let us first assume that A(x) = f(x)A(x). From the definition of the
Nijenhuis tensor (2.1) we have

Nu(v) = f2Nu(υ) + f(Au)( f)Av - fu( f)A2v - f(Aυ)( f)Au + fv( f)A2u .
(2.12)

Hence we get

Mu = NAu - ANU = f\NAu -ANU) + f\A2u)( f)A - 2f2(Au)( f)A2 + f2u(

This expression leads to the equality
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Hu = [MU9A] = f\NAu - ANU9A] = f4Hu ,

that proves (2.10) in the case A = fA.
Let us suppose now that A = A + gl. From (2.7) we get

Nu(v) = Nu(v) + (Au)(g)υ - u(g)Av - (Aυ)(g)u + υ(g)Au . (2.13)

Hence we obtain

Mu = Nλu - ANU = NAu - ANU + (A2u)(g)\ - 2(Au)(g)A + u(g)A2 .

Thus the equality follows

Hu = [MU,A\ = [NAu - ANU,A] = Hu .

Therefore the formula (2.10) is proven for the general case (2.9).
The formula (2.11) follows from (2.10) and the definition of the scalar product

(«, v)H = Ίτ(HuHv).
The derived formula (2.10) means that the Haantjes tensor H(u, v) in the con-

trast with the Nijenhuis tensor N(u9 v) possesses the gauge invariance (2.10) under
the transformations (2.9) of the (1,1) tensor field Aj(x).

IV. Let ek(x) and es(x) are smooth vector fields of eigenvectors of the operator
Aj(x)9 corresponding to the eigenvalues λk(x) and λs(x). The known Nijenhuis for-
mula [5] follows straightforward from the definition (2.1),

N(ek,es) = (A- λk)(A - λs)[ek,es] + (λk - λs)(ek(λs)es + es(λk)ek) . (2.14)

The formulae (2.3) and (2.4) imply

H(ek,es) = (A- λk)
2(A - λs)

2[ek,es] . (2.15)

For the bilinear tensor

M(u, υ) = N(Au, υ) - AN(u, v) , (2.16)

we obtain from (2.14)

M(ek,es) = -(A - λk)\A - λs)[ek,es] + (λk - λs)
2ek(λs)es . (2.17)

The gauge invariance of the Haantjes tensor easily follows from the formula
(2.15) for a (1, 1) tensor field Afa) having n real and distinct eigenvalues. Indeed,

operator Aj(x) (2.9) has the same eigenvectors e\(x)9 ...,en(x) with the eigenvalues

Therefore we obtain from the formula (2.15)

H(ek9es) = (A- λrf(Ά - λs)
2[ek,es] - f*

For the general case of complex eigenvalues and non-diagonal Jordan normal form
of Aj(x) one needs the direct proof given above.

V. We denote Nβ(u9 v) and HB(U, v) the Nijenhuis and Haantjes tensors determined
by an operator tensor field Bj(x). Let
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00 ,

R = R(A9λ(x)) = (λ(x)-AΓl = Σ^TΓ (2.18)

be the resolvent operator for an operator Aj(x).

Proposition 2. The relations hold

NA-ι(u, v)=A-2NA(A-lu,A~lv), (2.19)

MA-ι(u9 v) = -A~3MA(A-2u,A-lv), (2.20)

HA-ι(u9 v)=A~4HA(A-\ A~2v), (2.21)

HR(u9 v) = R4HA(R2u, R2v). (2.22)

Proof. Let us first prove (2.19)-(2.21) for an operator tensor field A(x) having
real and distinct eigenvalues λ\9...9λn. The inverse operator A~l has the same
eigenvectors e\9...9en and eigenvalues Af1,...,!"1. From the Nijenhuis formula
(2.14) we obtain

NA-ι(ek9 es) = (A~l - λ^l)(A~l - λ~l)[ek, es]

+ a,'1 - λ-l)(ek(λ-l)es + es(λ~l)ek)

= A2λ^λλ~l(A - λk)(A - λs)[ek9 es]

Formula (2.19) follows from (2.23) in view of the bilinearity of the Nijenhuis tensor
N(u9 v). Formula (2.19) was derived by an indirect method in [5].

Formula (2.17) leads to the equality

MA-\(ek9 es) = -(A~l - λj~l)2(A~l - λ~l)[ek9 es]

= A~3λ^2λ~l(A - λk)
2(A - λs)[ek9 es]

= -A~3MA(A~2ek, A~les), (2.24)

that implies the formula (2.20).
From the formula (2.15) we get

HA-ι(ek9 es) = (A~l - λ^)2(A~l - λ~l)2[ek, es]

= A~4λ^2λ~2(A - λk)
2(A - λs)

2[ek, es]

and hence formula (2.21) follows.
Operators A(x) with distinct and real eigenvalues form a domain 0 in the

space of all linear operators. The expressions (2.19)-(2.21) analytically depend
on the entries Afa) and their derivatives. Therefore the validity of the formulae
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(2.19)-(2.21) in the entire domain (9 of the operators A(x) implies their validity
for arbitrary operators A(x).

Formula (2.22) follows from (2.21) and from the gauge invariance (2.10) of
the Haantjes tensor

HM-A(u9 υ) = HA(u, Ό) (2.26)

for any smooth function λ(x).

Remark 1. From (2.22) we obtain that the Haantjes tensor for the resolvent operator
R(A,λ(x)) (2.18) depends analytically on the function λ(x) and does not depend on
its derivatives. Formula (2.22) after the substitution of the power series (2.18) leads
to an infinite family of identities connected with the Haantjes tensor HA(u, v).

3. Jacob! Tensors and Lie Algebra Structures

/. We define the following alternating functions of pairs of tangent vectors u and
v G Tx(Mn), values of which are linear operators on the tangent space Tx(Mn) :

JN(u, v) = NN(UίV) - [NU9 Nυ] , (3.1)

JH(u9v)=HH(Uίϋ)-[HU9Hυ]. (3.2)

Obviously JN and JH form (1,3) tensors

JN(u, v)w = J^wVV, JH(u, υ)w = Jflijku
iυjwk . (3.3)

Tensor JH is gauge invariant as well as the Haantjes tensor, see (2.10). After
any transformation (2.9) one gets

JH(u9 v) = f\x)JH(u9 v ) . (3.4)

Formulae (3.1) and (3.2) are similar to the definition of the Riemann tensor in
the Riemannian geometry

R(u,v) = VM-(Vu,Vv]. (3.5)

The tensors JN and JH have another meaning: they characterize the deviation of the
algebraic structures defined by the tensors TV and H from the Lie algebra structures.
Indeed, from (3.1) and (3.2) we get

JN(U, v)w = N(N(u, v), w) + N(N(υ, w), u) + N(N(w, u), ι;), (3.6)

JH(u, v)w = H(H(u, v), w) + H(H(υ, w), u) -I- H(H(w, u), v ) . (3.7)

Thus if tensor JN = 0 then (3.6) is the Jacobi identity and hence tensor N(u9 v)
defines the Lie algebra structure in the tangent space. Therefore we name tensors
JN and JH the Jacobi tensors. These tensors have the following symmetries:

J(u, υ)w = —J(v, u)w , (3.8)

J(u, f)w = J(v, w)u — J(w, u)v . (3.9)

In the index form equality (3.7) implies

Jϊϊijk = HijH*k + HfiHoLi + HktHctj (3.10)
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Symmetries (3.8) and (3.9) lead to the general equality

) , (3.11)

where σ is an arbitrary permutation of the indices ij and k (the same for
From the identity ΎτHu — 0 and the formulae (3.2) and (3.11) we obtain that

all contractions of the Jacobi tensor JH vanish:

JHij,=Jm*j=JHβlj = 0 (3.12)

Contractions of the Jacobi tensor J^.k define the differential 2-form α^o(w, ι;)

JNIJU. — ~JNΪOLJ = JNXΪJ = ^NQΪJ - (3.13)

II. For a (1,1) tensor field Alj on a manifold Mn of small dimension we prove
the following facts.

Proposition 3. For n = 2 the Jacobi tensor vanishes JN = 0 and the Haantjes
tensor H = 0 (hence JH = 0). For n = 3 the Jacobi tensor JH = 0 and the Jacobi
tensor JN = 0 if the differential form α#o(w, v) = 0.

Proof. For n = 2 the equalities J^..k = 0 follow from the symmetry properties (3.11)

as well as equalities //* = 0 follow from //£ = -//j and H& = 0.
For n = 3 the equalities Js

Hikj = 0 follow from (3.11) and (3.12) and the equal-
ities J^jk = 0 follow analogously from (3.13) if (XNO(U, v) = 0.

Corollary 1. A manifold Mn with a (1,1) tensor field Alj(x) for n = 2, 3 possesses
a deformation of Lie algebra structures in the tangent bundle T(Mn) defined for
n = 2 by the Nijenhuis tensor N j and for n = 3 by the Haantjes tensor H j.

For n — 3 let e\(x)9e2(x)9e^(x) be the eigenvectors of the operator Aj(x). From
the formula (2.15) we obtain

H(e\,e2) = h^e^ H(e2,e3) = h\e\, H(e^e\) = h2e2 . (3.14)

These formulae describe, in view of the relations (2.7) ΎrHu = 0, the canoni-
cal form of the commutators of all 3 -dimensional Lie algebras, determined by the
Haantjes tensors H(u, v).

III. We define two bilinear symmetric tensors

Lι(u, υ) = N(Au, v) - N(u, Av) ,

L2(u, υ) = H(Au, v) - H(u, Av) . (3.15)

These tensors define two deformations of structures of commutative but not asso-
ciative algebras in the tangent bundle T(Mn).

Tensors
v) + N(u,Av)9 (3.16)

L4(u, v) = H(Au, v) + H(u, Av) . (3.17)

are alternating.
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We define two bilinear tensors

K(u, v) = N(u, Aυ) - AN(u, v) , (3.18)

M(u, v) = -K(υ, u) = N(Au, v) - AN(u, v) . (3.19)

The following relations hold:

K(Au, v) - AK(u, v) = H(u, v), (3.20)

M(u, Av)-AM(u, v) = H(u, v) . (3.21)

Thus for the corresponding linear operators Ku(v) = K(u, v) and Mu(v) = M(u9 v)
we obtain

Ku = [NU9 A], KAu - AKU = Hu , (3.22)

Mu = NAu - ANU, [MU9 A]=HU. (3.23)

If the Haantjes tensor H(u9v) = 0 then we get from (3.22) for any polynomial

KP(A}U=P(A)KU. (3.24)

Thus if P(A)u = 0 then P(A)KU = 0. Also when H(u,v) = 0 we get from (3.23)
that all operators Mu commute with the operator A.

4. Differential Forms and Conservation Laws

/. We define the following diίferetial 1 -forms

ωk(u) = Ίτ(AkNu\ k^Q (4.1)

and differential 2-forms

(4.2)

(4.3)

βNk(u, v) = Ίτ(Ak[NU9Nv])9 k^ 1 , (4.4)

βffk(u9 v) = Ίr(Ak[Hu,Hv]\ k^ 1 , (4.5)

It is also useful to define the generating forms depending on an arbitrary parameter
λ, for the countable families of forms (4.1)- (4.5), for example 1-form w(u9 λ)

oo

ω(κ, λ) = Ύr((λ -AΓ1NU) -

Remark 2. A necessary criteria for the Nijenhuis or Haantjes tensors to determine
a Lie-algebraic structure in the tangent bundle T(Mn) consist of the vanishing of
the forms OCM — βm = 0 (for N) and βHk = 0 (for H) for all k^O. Indeed, these
vanishings follow from (3.1) and (3.2) if JN = 0 or JH = 0. Hence we get in view
of Proposition 3 and formulae (2.7) that for n = 3 differential 2-forms βHk(u,v) = 0
for all k and if the differential 2-form aNQ(u, v) = 0, then α^Cw, v) = βm(u, v) for
all k.
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Proposition 4. Differential \-form ω^ satisfies the relation

for any tangent vector v. If the differential form ω# vanishes then all solutions
ul(t,x) of the system (1.1) satisfy the conservation law

(4.8)
dt U+l '̂••"" >) dχ U + 2

Proof. Expression (4.7) after the substitution of the formulae (4.1) and (2.2) turns
into an analytic relation between the entries of the operator Aj(ul

9...9u
n) and their

derivatives. Therefore it is sufficient to prove formula (4.7) for the domain of oper-
ators ^.(W I,.. .,M / I) having real and distinct eigenvalues λ\9...9λn. Let e\,...9en be
the corresponding eigenvectors. From the Nijenhuis formula (2.14) we obtain

) = £(!,- - λ,)βj(λ,)λ*
s=\

(4.9)

Formula (4.7) is a consequence of the formula (4.9) for an arbitrary tangent
vector v = v le\ + . . . + vnen.

We represent the expression (4.8) for an arbitrary solution ul(t,x) of the system

(1.1) u\ =Aίj(u\...,un)uJ

x in the form

- (4.10)
v 'dul k+\ v } dt dul

= ωJ t(«Λ). (4.11)

Therefore if the differential form ω^ vanishes then any solution ul(t,x) satisfies the
conservation law (4.8). Proposition 4 is proven.

Corollary 2. If all differential forms ω^ vanish (for example when the Nijenhuis
tensor N(u9υ) = 0) then for any solution uj'(t9x) of the system (1.1) the eigenvalues
λi(u) of the operator Aj(u1,. ..,un) satisfy the equations

λit = λiλix . (4.12)

Indeed, in this case we obtain from (4.8),

n n

/ Λj AH = y Jλi λix .
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The validity of these equations for all k implies the validity of Eq. (4.12).

5. Invariant Polynomials and Fibrations of the Algebraic Submanifolds

7. We define on the tangent space Tx (Mn ) two invariant polynomials

PN(u, λ) = det(Nu -λ) = ΣpNk(u}λk , (5.1)

PH(u, λ) = det(//M -λ)= ΣpHk(u)λk , (5.2)
k=Q

which are homogeneous functions of all arguments u and λ of degree n. Coefficients
Pm(u) and pm(u) are homogeneous polynomials of u of degree n — k. From the
equalities

Nu(u) = 0, Hu(u) = 0, HU = [MU,A]

we get

PNn(u) = (-\γ, PNn-l(u) = (-lT-1ω0(u), PNO(u) = detNu = Q , (5.3)

Pπn(u) = (-If, pHn-ι(u) = Tr/4 = 0, pHO(u) = detHu = 0 . (5.4)

Let λ\(u), . . ., λn(u) be eigenvalues of an operator Nu. The equalities hold

ωo(w) = Tr7VM = ^λ/, (u, u)N = Ύr(NuNu) —
i=\ i=\

Hence we obtain

PNn-2(u) = —^—ωl(u) Ϊ~(U> U^N > ^5<7)

and analogously

Polynomials (5.1), (5.2) for n = 2 have the form

PJV («, λ) = λ2- ωo(«μ, Λ, (11, A) = A2 . (5.9)

For n = 3 we get from (5.3)-(5.8),

PN(u, λ) = -λ3 + ωϋ(u)λ2 - l- (<4(u) - (u, u)N)λ , (5.10)

PH(u, λ) = -λ3 + ^(u, u)nλ. (5.11)

Operators Nu and Hu in view of (5.1) and (5.2) satisfy the algebraic equations

PN(u, NU) = Q, PH(u,Hu) = 0. (5.12)
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For n — 3 these equations have the form

NU(NU - ω,(u)Nu + ω(u) - (κ, u)N) = 0 , (5.13)

Hu(H2-^(u,u)H) = 0. (5.14)

//. We define in the tangent space Tx(Mn) two algebraic submanifolds VN and VH

by the equations
VN : PN(u, 1) = det(Nu - 1) = 0 , (5.15)

VH : PH(U, 1) = det(#M - 1) = 0 . (5.16)

The manifolds VN and F// are affine parts of the project! ve manifolds VN and VH

defined by the homogeneous characteristic equations

VN : det(Nu - A) = 0, VH : άet(Hu - λ) = 0 . (5.17)

Thus we have two fibrations of algebraic manifolds Fjy and VH embedded into the
tangent bundle T(Mn ) or into its project! vization. Complex forms of these manifolds
are embedded into the complexification of the tangent bundle T(Mn).

For n = 2 manifolds VN are straight lines ΎΐNu = 1 (VH are empty). For n = 3
manifolds VN and VH are quadrics:

VN : (M, u)N - a>l(u) + 2ω0(w) = 2 , (5.18)

F t f : (u9u)H=2. (5.19)

F// is invariant under the reflection u — » — w.
Let G/ft be the group of all linear automoφhisms of the Haantjes tensor H (in

a point Λ; G Mn ), so ^ G G//^ if for any u, v e Tx (Mn ) we have

H(gu, gυ) = gH(u, υ) . (5.20)

Polynomial PH(U) and algebraic manifold VH obviously are invariant under the
action of the group of automorphisms G/& in Tx (Mn ).

The Haantjes tensor H (or N) is called reducible if all operators Hu (or Nu)
have an invariant subspace L\ C Tx(Mn). This means that H(Tx(Mn), L\) CL\.
In this case the polynomial PH(U) can be factored PH(U) — PH\(u)Pπ2(u) and
the algebraic manifold VH has two components, determined by equations PH\(U) —
0 and PH2(u) = 0.

If there exists filtration of different subspaces

Li C L2 C L3 C . . . C Lk = Tx(Mn) , (5.21)

invariant with respect to all operators HU9 or H(Tx(Mn}, Lα) C Lα for all α =
1, . . . , A : , then polynomial PH(U) can be factored into a product of A: factors
PH(U) = PH\(U) = PH\PHI - - Pπk and algebraic manifold VH has k components.

If tensor H (or N) has nontrivial central subspace Lc of dimension d, i.e.,

then the polynomial PH(U, 1) (5.2) has degree at most n — d.
We call tensor H (or TV) nilpotent, if for any u we have H% = 0 for some

k. Obviously the complexification of the manifold VH is empty and polynomial
PH(U) = (— l)n if and only if tensor H is nilpotent.
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We call vector v E Tx (Mn ) 7V-nilpotent (analogously //-nilpotent) if operator
Nv is nilpotent, TV" = 0. The set ZN of all TV-nilpotent vectors is determined by the
system of n — 1 homogeneous equations

pm (M) = 0, . . . , pNn-ι (M) = 0 . (5.22)

Indeed, for vectors u, satisfying (5.22) we get from (5.12),

If polynomial PN(U, λ) can be factored into a product of n linear factors

PN(u9 λ) = (-If λγ[ (λ - fk(u)) , (5.23)
k=\

then the set ZN is a linear subspace

/ι(tt) = 0,...,/ I I_ι(ιι) = 0. (5.24)

This is the case for the Benney system, studied in Sect. 9.
If all operators Nu (or Hu) have a common eigenvector e then e is Λf -nilpotent

and therefore satisfies all Eqs. (5.22). Indeed, from the condition

Nue = N(u, e) = λ(u)e

we obtain
N*u = Ne(N(e, M)) = -λ(u)N(e, e) = 0 .

Polynomial PN(U, λ) in this case has a linear divisor λ — λ(u).

If the two operator tensor fields Aj and Aj are connected by the gauge transfor-
mation (2.9) then in view of (2.10) their Haantjes operators Hu are connected by the
equality Hu = f4Hu. Therefore the corresponding polynomials (5.2) are connected
by the relation

Pβ(u,λ) = PH(f\λ). (5.25)

///. Let (v, w) = gaβV^wP be a bilinear form in the tangent space Tx(Mn), which
can be indefinite and non-symmetric, but it must be non-degenerate.

Lemma 1. If all operators Hu are skew-symmetric with respect to a bilinear form
(v, w) :

(Huυ, w) + (υ, Huw) = 0 , (5.26)

then the polynomial PH(U} is even and the algebraic manifold VH is invariant
under the reflection u — > — u. Eigenvalues of the operator Hu are symmetric with
respect to zero and its image has an even dimension in a general case.

Proof. Let e\ , . . . , en be a basis in a tangent space Tx (Mn ), scalar products
(e/, βj) = BΪJ and Hu(et) = Huikek. Then the expression (5.26) is equivalent to the
matrix equation

HUB = -BH*U . (5.27)

For the polynomial PH(U, λ) we have
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pH(u, λ) = det(Hu - λ} = det(B~}HuB - λ) = det(-/ζ - λ)

(-U) -λ) = PH(-u, λ) . (5.28)

Thus the polynomials PH(U, λ) and PH(U) are even and hence the algebraic man-
ifold VH is symmetric under the reflection and eigenvalues of an operator Hu are
symmetric with respect to zero. Therefore the image space Hu(Tx(Mn)) has even
dimension.

Lemma 2. If all operators Hu are skew-symmetric (see (5.26)) then the Jacobi
tensor JH(U, v) for any u, v satisfies the relations

(JH (u, υ)x, y) + (x, JH (u, v}y) = 0 , (5.29)

(JH(u9 υ)x9 y) = (v, JH(x, y)u) . (5.30)

Proof Equality (5.29) follows from (5.26) after the substitution of the formula
(3.2). Equality (5.30) follows from (5.29) and properties of symmetry of the Jacobi
tensor (3.8) and (3.9).

Remark 3. For the symmetric scalar product (x, y) in (5.26) equalities (5.29) and
(5.30) coincide with the classical identities for the Riemann tensor

(R(u9 υ)x9 y) + (R(u9 υ)y9 x) = 0 , (5.31)

(R(u9 υ)x9 y) = (R(x9 y)u9 v) . (5.32)

Remark 4. We define in the space Tx (Mn ) + Tx (Mn ) an algebraic submanifold WH

by the equation

WH : QH(U, v) = dst(JH(u9 v) - 1) = 0 . (5.33)

Such a manifold is defined also in the space Ld of bi-vectors ξ = u/\v, having
dimension d = n(n — l)/2. If the equalities (5.26)) are valid for any u and v, then
as in Lemma 1 we get that polynomial QH(U, v) and the manifold WH for any
point x G Mn are invariant with respect to two reflections u — > — u and v — > — v.

IV. Let us suppose that the Haantjes tensor H determines a structure of Lie algebra
s/x in the tangent space Tx (Mn ), and let Gx be the corresponding Lie group. In
this case the polynomial P^(u) and the manifold V^ are invariant with respect to
all automorphisms of the Lie algebra jtfX9 e.g. under the adjoint representation of
its Lie group Gx. Thus the manifold V^ contains together with any point u all its
orbit Adcx(u).

If F : s$\ — > j/2 is a homomorphism of two Lie algebras, then F(V^λ ) C K^.
If Lie algebra s#x is semi-simple then operators Hu = adw are skew-symmetric

with respect to the Cartan-Killing form. Thus in view of Lemma 1 the corresponding
polynomial PH(U) is even and the manifold VH is invariant under the reflection
u — > —u.

Remark 5. Let T be a linear representation of a Lie algebra j/ in a linear space
L. We define an algebraic manifold Vτ C jtf by the equation

Vτ : Pτ(u) = det(7» - 1) = 0 . (5.34)
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It is easy to show that if two representations T\ and TΊ are equivalent then
the corresponding polynomials PH\(U) and Pπ2(u) and the algebraic manifolds
VT\ and VTΊ coincide. If a representation T is reducible, then the algebraic manifold
VT is reducible too.

6. Necessary Criteria for Existence of a Non-Degenerate Hamiltonian Structure

7. Let us consider a class of Hamiltonian systems (1.1) corresponding to the Poisson
brackets

where a skew-symmetric operator / = (Iij) has the form

A connection

naturally arises from (6.2). Skew-symmetricity of the Poisson brackets (6.1) implies
[7-9] the symmetry condition for the metric, gij (u) = gji(u\ and the compatibility
condition of the connection (6.3) with the metric g^ :

In [7-9] it is shown that the Poisson brackets (6.1)-(6.2) with a non-degenerate
metric gij'(u) satisfy the Jacobi identity if and only if the torsion and the curvature
of the connection (6.3) are zero. That means the metric QIJ(U) is flat and therefore
the operator Iij(u) in appropriate coordinates (w1, .. .,un) takes the form

• - d
IlJ(u) = <fδlj— (6.5)

with some constant coefficients ql.
A Hamiltonian system (1.1) with a Hamiltonian /(w1, .. .,un) has the form

In view of (6.5) any Hamiltonian system (6.6) can be transformed to the canonical
form

II. Let us consider a general system (6.6) with symmetric connection (6.3)

Γ'jk = Γ\j . (6.8)

Metric g^ (that is not necessarily flat and is not necessarily compatible with the
connection (6.8)) defines the bilinear form
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(», w) = flβ/j^w", v,we TX(M" ) . (6.9)

System (6.6) is connected with the operator tensor field

The symmetricity of the operator A

(Aυ, w) = (ϋ, Aw) (6.11)

follows from the condition (6.8). Indeed, (6.11) is equivalent to the equation

Σ0αX(ι^-ί;/V) = 0. (6.12)
*,β,y

The last one after substituting the formulae (6.10) and (6.3) takes the form

Σ

and the statement follows. In particular we obtain that the operator A (6.10) for a
Hamiltonian system (6.6) is symmetric with respect to the scalar product (6.9) [9].

Theorem 1. The operators Hu (2.5) for the Hamiltonian system (6.6) are skew-
symmetric with respect to the bilinear form (6.9):

(Huυ, w) + (ϋ, Hu-w) = 0 . (6.14)

Proof. The condition (6.14) is invariant. Thus it is enough to check (6.14) for the
canonical form (6.7) of the Hamiltonian system. The system (6.7) is a special case
of the system of conservation laws [2, 3]

«! = /i = f£?? (6.15)

We denote partial derivatives by low indices: /^ = dfl/dua, fln = d2f/duΆdu^ etc.

System (6.15) is connected with the (1, 1) tensor field A^(μ) = df/du*. The
corresponding Nijenhuis tensor (2.2) has the following entries:

Λ^ = /L /;-/}«/£• (6.16)

A direct calculation of the Haantjes tensor (2.4) for the system of conservation
laws (6.15) gives the formula

Hjk — /α fβ fγk fj ~ foe f°β fyj f

ήβfjf
β

γfl (6.17)

The system (6.7) is embedded into (6.15) where fl = qldfldul. Therefore for
the system (6.7) we get from (6.16)
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tfk = *V ( /«*« Λy - fi/a /«*) - (6.18)

The Haantjes tensor for the system (6.7) in view of (6.17) is determined by the
formulae

Hjk = (fHljk , (6.19)

(6.20)
σ α/ty

where summation is taken over all permutations σ of indices /, j, k. Coefficients fil

jk

are skew-symmetric with respect to the transpositions of any two indices /, y, k.
The condition of the skew-symmetricity of the operators Hu (6.14) is equivalent

to the equations

(6.21)

for all j — 1, . . .,n. Substituting here the formula (6.19) and 0αy — (^α)-1 <% we
obtain the equations

These equations hold indentically in view of

H*jβ = -ffj« (6-22)

Theorem 1 is proven.

IV. For the Jacobi tensor Js

Hίjk we denote Jmjks — JR^U™-

Corollary 3. The Jacobi tensor JH for the Hamiltonian system (6.6) has the
following properties:

JH(u, v)w = -JH(V, u)w,

JH(u, v)w = JH(v, W)M = JH(w, u)v ,

(JH(U, v)x, y) -h (x, JH(u, v)y) = 0 ,

(JH(u, v)x, y) = (JH(x, y)u, υ) , (6.23)

equivalent to the relations

Jffijks — sign(σ)J//σ(z )σ(7 )σ(^)(T(J) (6.24)

for all permutations σ of four indices /, 7, A:, s.

Proof. The equalities (6.23) follow from the general symmetries (3.8) and (3.9)
of the Jacobi tensor and from Lemma 2 based on Theorem 1 for the Hamiltonian
system (6.6). The equivalence of (6.23) and (6.24) is simple to verify.

The Haantjes tensor H(u, v) for n = 3 for any (1, l)-tensor field Aj(x) defines

the structure of the Lie algebra in each tangent space TX(M3), see Corollary 1. Thus
in the whole we have the deformation of the structures of the Lie algebras in the
tangent bundle Γ(M3). For the Hamiltonian system (6.6) this is obvious because
of the vanishing of the Jacobi tensor (3.7) for n = 3 in view of (6.24).
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Theorem 2. For the Hamiltonian system (6.6) for n = 3 the following alternative
is true:

1) The Haantjes tensor H(u, v) is zero. Then the system (6.6) possesses the
Rίemann invariants and is integrable by the generalized hodograph transformation.

2) The Haantjes tensor H(u, v) is non-zero. Then the arising Lie algebra for
each tangent space TX(M3) is simple, so it is isomorphic either to so (3) or si (3).
The Car tan- Killing form (u, V)H — Tr(HuHv) defines the non-degenerate metric hij
on the manifold M3 that has to be conformally flat and therefore has to satisfy
the classical Weyl-Schouten equations:

Rijk = Ry,k ~ Rikj - -(hikRj - hijRk) = 0 . (6.25)

Proof. 1) The existence of the Riemann invariants provided that the Haantjes ten-
sor H(u, v) — 0 is proven in our paper [11]. The integrability by the generalized
hodograph transformation follows from the Tsarev theorem [19].

2) The Haantjes tensor (6.19), (6.20) for the Hamiltonian system in the canon-
ical form (6.7) has only the following non-zero components:

H\2 = -Hl=<?c(X), H^ = -Hl2=qlc(X\ H& = -H\3 = q2c(x) , (6.26)

where c(x) = Hu(x) (constants ql, q2, q3 are nonzero because the metric g^ is
nondegenerate). Therefore the Lie algebra in TX(M3) is simple if c(x)Φθ and is
commutative if c(x) = 0.

From (6.26) we get for the metric (u, v)H '•

hij(x) = ΣHfβH}Λ = (-c(x)qlq2q3)gij(x) .
«,β

Thus the metric hij(x) is conformal to the flat metric gtj(x). That follows also from
the fact that the Lie algebra in Tx (M3) is simple and its operators adw = Hu are
skew-symmetric with respect to the two metrics hij(x) and #(/00

Any conformally flat metric hij(x} satisfies the Weyl-Schouten equations (6.25)
[18] where Ry is the Ricci tensor and R is the scalar curvature of the metric /^
the Rijtk and Rj are their covariant derivatives.

Theorem 2 is proven.

Theorem 3. The Haantjes tensor H(u, v) for the Hamiltonian system (6.6) for
n = 4 defines the structure of the Lie algebra j/4(;c) in each tangent space TX(M4).
The Cartan-Killing form htj = (et, e/)// is degenerate. If h^ = 0 then the Haantjes
tensor Hl

 k = 0. Thus the Lie algebra s/4(x) can be neither simple nor nilpotent.

Proof. The Jacobi tensor JH for a Hamiltonian system (6.6) for n = 4 has in view
of (6.24) only the following nonzero components

«///σ(l)σ(2)σ(3)σ(4) = Sign(σ)Jff 1234

In the coordinates w1, u2, u3, u4, where the system (6.6) has a canonical form (6.7),
we have
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a3 + #23 #αl + #3*1 Ha2 ) (6-27)

After the substitution of the formulae (6.19), (6.20) we find that each summand in

(6.27) is equal to zero because symbol Hjk (6.20) is equal to zero when any two of
the indices /, j, k coincide. Therefore the Jacobi tensor JH vanishes and hence the
Haantjes tensor H in view of (3.7) defines the structure of the Lie algebra ^(x)
in each tangent space TX(M4).

As known, the Cartan-Killing form for any 4-dimensional Lie algebra is degen-
erate. Thus rank r of the form hy = (et, βj}π has to be 0^r^3.

The Haantjes tensor Hl

 k in the canonical coordinates (6.7) has the form (6.19),
(6.20). For n = 4 we denote

~ 4 ~ 1 ~ 2 ~ 3
7/23 =Cι, H34=C2, H4l=Cι, H U = C 4 .

All entries Hi are the linear combinations of c\, c2, £3, £4. Substituting these ex-
pressions and (6.19) into the formula

we obtain the relations

h'j = ~2^ ' hii = -—qtqj q

where

Hence it follows that if the metric htj = 0, then all Ck — 0, and therefore the Haantjes
tensor Hl

 k = 0. Theorem 3 is proven.

Remark 6. If the Haantjes tensor H(v, w) defines the structure of the simple Lie
algebra in each tangent space Tx(Mn) then the bilinear form (6.9) is proportional
in view of (6.14) to the Cartan-Killing form (v, w)// = Ύr(HυHw). Therefore the
metric /fy (jc) defined on the manifold Mn by the form (ι;, w)// must be conformally
flat, or the Weyl tensor of the conformal curvature Cl

 ke(x) for the metric /z//(x) for
n > 3 must be zero (for n = 3 this tensor is zero identically [18]).

V. The properties of a Hamiltonian system (6.6) for n — 3, 4 described by Theo-
rems 2 and 3 do not depend on the metric gtj and are the properties of the Haantjes
tensor only. Therefore these properties are the definite necessary conditions for the
general system (1.1) for n — 3, 4 to be Hamiltonian. In the following Theorem 4 we
describe invariant necessary conditions for the existence of a Hamiltonian structure
for a system (1.1) for all n.

Theorem 4. If a system (1.1) possesses some Hamiltonian structure (6.6) then
the following necessary conditions are fulfilled in any point x G Mn and for any
vectors u, υ, w e Tx(Mn}:

1) The polynomial PH(U) = det(//w — 1) is even.
2) The algebraic manifold VH C Tx(Mn) is invariant under the involution

u -» — u.
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3) The eigenvalues of an operator Hu are symmetric with respect to zero and
the dimension of its image Hu(Tx(Mn)) is even in a general case.

4) The function ω(u, v, w) = Ύr(HuHvHw) is skew-symmetric with respect to
the transpositions of u, υ, w.

5) The differential 2-forms βHk(u, υ) = Tr(Ak[Hu, HΌ]) = 0.
6) The following transvectίons are equal to zero

f ) = 0, i + m = 2s + 1 .

Proof. The conditions 1), 2) and 3) follow from Lemma 1 in view of Theorem 1.
Condition 4) is equivalent to the equality

Ύr(Hu(HvHw + HwHυ)) = 0 . (6.28)

The proof of the equality (6.28) and the conditions 4), 5) and 6) is based on the
following lemma known in the linear algebra.

Lemma 3. If an operator A is symmetric and an operator B is skew-symmetric
with respect to a non-degenerate bilinear form (v, w) = g^v^wP:

(Aυ, w) = (υ, Awl (Bv9 w) - -(υ, Bw) , (6.29)

then Ύr(AB) = 0.

Indeed, from (6.29) one gets

(ABυ9 w) = -(υ, BAw) .

This equality implies

ABg = -g(BA)'9 g~lABg = -(

Hence
Ίr(AB) = Ίr(g-lABg) = Tr(-(&4)') = -Ύτ(AB) ,

and the claim follows.
If a system (1.1) is Hamiltonian and so has the form (6.6) then the corresponding

operator A j ( x ) is symmetric with respect to the bilinear form (6.9), see (6.11).
Operators Hu are skew-symmetric in view of Theorem 1, see (6.14). Operators
JH(U, v) are skew-symmetric in view of the Corollary 3, see (6.23). Therefore the
conditions 4), 5), 6) and the equalities (6.28) follow from Lemma 3.

Theorem 4 is proven.

Remark 7. It is easy to derive from Lemma 3 the vanishing of many other transvec-
tions, for example

Ύ τ ( H £ [ H l 9 H Z ] ) = 0 , k + I + m = 2s ,

Ίτ(Ak[Hl

u9 H?]) =0, / + m = 2s,

Ίr(H*(Hl

υH™ + H%H1

Ό)) =0, t + / + m = 2s + 1 . (6.30)
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These equalities are also the necessary conditions for a system (1.1) to be Hamil-
tonian.

VI. Let us consider the bilinear tensor M(u, υ) (3.23).

Theorem 5. Linear operators Mu = NAu — ANU for a Hamiltonian system (6.6) are
symmetric with respect to the bilinear form (6.9):

(Muυ, w) = (υ, Muw). (6.31)

Proof. The condition (6.31) is invariant. Therefore it is enough to prove it for the
canonical form (6.7) of a Hamiltonian system (6.6). Tensor Mjk is connected with

the Nijenhuis tensor Nl

 k in view of (3.23) by the formulae

Mjk = N^AJ - N*^ . (6.32)

This expression for a general system of conservation laws (6.15) in view of (6.16)
takes the form

M>k = &/$/! - faβfjf
β

k - Γkβf*fa + fjpftf, . (6.33)

Hence we obtain after the substitution fl = qldf/dul for the canonical form (6.7):

Mjk = <fM*jk , (6.34)

M]k = Σ^ <ί ( film foiβ fβj ~ fiaβ faj f βk ~ fkaβ faj f βi + fjaβ fou f βk ) - (6.35 )
α,/?

Symmetricity condition (6.31) is equivalent to the equations

jβ = gβyM]a , gMj = Mjg (6.36)

for all α, β and j = 1, ...,«. Substituting here the formulae (6.34) and gay =

(^α)-1(5α we obtain the equations

Ml

jk = Mk

β , (6.37)

which hold obviously for the coefficients (6.35).
Theorem 5 is proven.

Remark 8. The operators Hu are the commutators Hu — \MU, A ] , see (2.6) and
(3.23). Therefore the skew-symmetricity of the operators Hu (Theorem 1) follows
from the symmetricity of the operators A and Mu (Theorem 5).

Corollary 4. If metric gtj for a Hamiltonian system (6.6) is positively (or nega-
tively) defined then the scalar product

(u, v)M = Ύr(MuMv) (6.38)

is non-negatively defined and the scalar product

(u, υ)H = Ίτ(HuHv)
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is non-posίtίvely defined.

Indeed, for the canonical form (6.7) we have in view of (6.34) and (6.37),

αjff α,0

because q*q$ > 0. Analogously in view of (6.19) and (6.22) we get

(«, u)H = ΣίVtf^L = -Σ?V (tf^O .
α,β QL,β

Theorem 6. If a system (1.1) possesses some Hamiltonian structure (6.6) then
the following necessary conditions are satisfied in any point x G Mn and for any
vectors u, v, w in the tangent space Tx(Mn):

1 ) The polynomials

Pk(ύ) =det([MU9A
k]-l),

Q(u,v) =

R(u, υ) = det([HU9 Hΰ]-l), (6.39)

and the corresponding algebraic manifolds are invariant with respect to two invo-
lutions u — >• — u and v — -» — v.

2) The eigenvalues of the operators

[Mu, A
kl [Mu, MΌ], {Hu, Mv] = HUMV + MΌHU (6.40)

are symmetric with respect to zero.

3) The differential 2-forms vanish

γk=Ύτ(Ak[Mu,Mv]) = 0. (6.41)

The proof of these necessary conditions is based on the fact that operators (6.40)
are skew-symmetric with respect to the bilinear form (6.9) and on Lemma 1.

A wide variety of necessary conditions for a system (1.1) to be Hamiltonian
can be derived analogously to (6.30) from the fact that the operators A and Mu

are symmetric and the operators Hu are skew-symmetric with respect to the bilinear
form (6.9).

VII. The properties of symmetry of the Nijenhuis tensor with respect to the bilinear
form (6.9) are described by the following theorem.

Theorem 7. The Nijenhuis tensor N for a Hamiltonian system (6.6) satisfies the
three identities

(N(u9 v), w) + (N(υ9 w), u) + (N(w, u\ v) = 0 , (6.42)

(AN(u,υ),w) + (AN(υ,w)9u) + (AN(w,u),υ) = 0 , (6.43)

(A2N(u, u), w) + (A2N(υ, w), u) + (A2N(w, u),v) = (H(u, v\ w) , (6.44)

for any vectors u,υ,w G Tx(Mn).
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Proof. These identities are invariant. So it is enough to prove them in the coordi-
nates where metric #// is diagonal and system (6.6) has the canonical form (6.7).
The identities (6.42)-(6.44) are equivalent to the following tensor relations:

= 0 ,

These relations are valid identically after the substitution of the formulae (6.18)
—(6.20) and Al

a = #'//« for the canonical form (6.7).
The identity (6.44) can also be derived in a pure algebraic way as a consequence

of the two identities (6.42) and (6.43), the relation (2.4) connecting the Haantjes
and the Nijenhuis tensors and the symmetricity relation (6.11) for the operator A.
Theorem 7 is proven.

Remark 9. The property of the symmetricity of the operators Mu — NAu — ANU

(6.31) follows from the identities (6.42) and (6.43). Indeed, substituting into (6.42)
Au instead of u and subtracting from the obtained expression the identity (6.43) we
get in view of (6.11)

((NAu - ANu)υ, w) - ((NAu - ANu)w9 v) = 0 ,

that coincides with (6.31). This relation for the tensor M(u,v) (3.19) takes the form

(M(u,υ),w) = (M(u,w)9v) .

The Haantjes tensor for a Hamiltonian system (6.6) satisfies in view of the
formulae (6.19), (6.20) the identities

These relations are also the immediate consequence of the identity (6.44) along
with the skew-symmetricity of the operators Hu.

Remark 10. The three identities (6.42)-(6.44) are equivalent to the general identity

(P(A)N(WW + (P(A}N(υ^\u) + (P(A)N(^u\υ} = (H(u,υ)9w) , (6.45)

where P(A) is the quadratic polynomial

P(A)=A2 + pA + q

with arbitrary coefficients p and q.

If two vectors u and v belong to the kernel of the operator P(A ), or

P(A)u = Q9 P(A)υ = 0, (6.46)

then the identity (6.45) yields

H(u, v) = P(A)N(u9 v) . (6.47)

The formula (6.47) under the conditions (6.46) generalizes the Haantjes formula
(2.15) for the Hamiltonian system (6.6).
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Remark 11. The Haantjes tensor H(u,v) for the Hamiltonian system (6.6) satisfies
the following identity

(T(u9 υ)9 w) + (T(v9 w), u) + (Γ(w, u\ υ) = 0 ,

where the bilinear tensor T(u,v) is

)u9υ) - (P(A)

and .P(v4) and β(^4) are arbitrary polynomials of A (could be also arbitrary symmet-
ric operators). This identity easily follows from the symmetricity of the operator A
and skew- symmetricity of the operators Hu.

VIII. Let an operator tensor field A(x) have a multiple eigenvalue λk(x) with a
multiplicity nk^2. Let Lfa C Tx(Mn) be the field of the corresponding eigenspaces
(A — λk)Lk = 0 and e(x)9g(x) G L^ be arbitrary eigenvector fields.

Theorem 8. If the operator A(x) corresponds to a Hamiltonian system (1.1) then

1) The relations hold

N(Lk,Lk)Clk, M(Lk,Lk) = 09 H(Lk,Lk) = 0 , (6.48)

(A-λk)
3[e(x)9g(x)] = 0. (6.49)

2) If the Jordan normal form of the operator A(x) is diagonal then the field
of eigenspaces Lk is integrable and N(Lk, Lk) = 0.

Proof. For the eigenvector fields e(x),g(x) G L^ we have

Me = NAe - ANe = (λk ~A)Ne. (6.50)

Operators Mu for a Hamiltonian system (1.1) are symmetric with respect to the
nondegenerate bilinear form (6.9). Thus from (6.11), (6.31) and (6.50) we obtain

(Meg9υ) = (g9Meυ) = (g9(λk - A)Nev) = ((λk -A)g9Neυ) = 0 , (6.51)

where υ G Tx(Mn) is an arbitrary vector. Equality (6.51) obviously implies

) = 0. (6.52)

Hence the relations (6.48) follow.
The equality (6.49) follows from (6.52) after substituting the Nijenhuis formula

(2.14) for λk = λs:

N(e(x)9g(x)) = (A - λk)
2[e(x)9g(x)] . (6.53)

If the Jordan normal form of the operator A(x) is diagonal then from (6.49) we
obtain

[e(x)9g(x)]eLkx (6.54)

and therefore the field of eigenspaces Lkx is integrable. From (6.54) and (6.53) we
obtain N(e, g) = 0. Theorem 8 is proven.

IX. A vector w G Tx(Mn) is called central vector for the Nijenhuis tensor if the
operator Nw = 0, or N(w,u) = 0 for all u. Linear subspace of all central vectors is
called the central subspace Z.
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Proposition 5. If the Nίjenhuίs tensor N(u,v) for a Hamίltonίan system (6.6)
has a central subspace Z of a dimension k then all vectors N(u9 v) belong to a
proper subspace L of the dimension n — k, the image AN(u, v) belongs to the same
subspace L.

Proof. Let Z be a subspace orthogonal to the central subspace Z. Obviously L
has dimension n — k. For any central vector w £ Z the identities (6.42) and (6.43)
imply

(N(u,v),w) = 0, (AN(u,v),w) = 0 . (6.55)

Hence we obtain

N(u, v) E L, AN(u, v)eL. (6.56)

7. Necessary Criteria for the Existence of Two
Non-Degenerate Hamiltonian Structures

7. Let us suppose that system (1.1) has two Hamiltonian structures (6.6) with two
non-degenerate metrics (#//)ι and (0/7)2- In this case we have the (1, 1) tensor

field B\ = g\i^g^ on the manifold Mn. Two Hamiltonian structures are in general

position if all eigenvalues of the operator B = g\g^λ are distinct (eigenvalues of
the operator B can be complex).

Theorem 9. If a system (1.1) has two linear independent non-degenerate Hamίl-
tonίan structures then

1) All operators A,MU and Hu commute with the operator B = g\g^1-
2) Tensors M(u, v) and H(u, v) are reducible, or all operators Mu and Hu have

a non-trivial invariant subspace. The polynomials defined on the tangent space
Tx(Mn)

λ ) 9 (7.1)

λ), (7.2)

are reducible.
3) If operator B has k distinct (complex) eigenvalues then polynomials (7.1)

and (7.2) have at least k (complex) divisors.
4) If two Hamiltonian structures are in general position then the Haantjes

tensor vanishes: H(u,v) = 0 and all operators Mu and A reduce to the diagonal
form simultaneously. The polynomial (7.1) decomposes into a product of n linear
factors.

Proof. 1) If a system (1.1) is Hamiltonian with respect to two Hamiltonian struc-
tures then in view of Theorem 1 and Theorem 5 operators A,MU and Hu satisfy the
following identities with respect to the two bilinear forms (u9υ)\ and (u9v)2:

(Aυ,w)ι = (v,Aw)ι, (Aυ,w)2 = (v,Aw)2 ,

(Muυ,w)ι = (υ,Mu w)\, (Muv,w)2 = (v,Muw)2 ,

(HU9v,w)\ = -(υ,Huw)\, (Huv,w)2 = -(υ,Huw)2 .



Necessary Conditions for Existence of Non-Degenerate Hamiltonian Structures 277

Hence we get for the corresponding matrices the equalities:

9ΪlAg\ = A'9 gϊlAg2 = A* ,

g^Mugλ = Ml g^lMug2 = Ml

u , (7.3)

gϊlHug{ = -Hi g2

lHug2 = -Hl

u .

These equalities lead to the commutativity relations with B —

AB = BA9 MUB = BMU , HUB = BHU . (7.4)

2) - 3) In view of (7.4) it is obvious that the reducibility of the tensors M(u,v)
and H(u,v) follows from the classical Schur's lemma [17]. Let Pβ(λ) be the char-
acteristic polynomial of the operator B

PB(λ) = det(£ - λ\ PB(B) = 0 . (7.5)

Polynomial Pβ(λ) has the form

-W9 (7.6)

where λι are the eigenvalues of the operator B and «/ are their multiplicities. Let
Li C Rn = Tx(Mn) be a maximal subspace annihilated by the polynomial

= 0. (7.7)

Obviously we have dimZ/ = nt and

Lϊ+L2 + ...+Lk=Rn, m+n2 + ... + nk = n. (7.8)

Operators A, Mu and Hu commute with operator pt(B) (7.7) and thus the equalities
follow:

Pi(B)(A(L,)) = 0, ptBXMM) = 0, Pi(B)(Hu(Li)) = 0 . (7.9)

Hence
cLh Mu(Lt)C.Li9 Hu(Lt) C Lt . (7.10)

Therefore all operators MU,HU and A have a block-diagonal structure in the de-
composition (7.8). If operator B has k ̂ 2 distinct eigenvalues then the operators
MU9 Hu and A have k diagonal blocks in the decomposition (7.8). In this case the
polynomials (7.1) and (7.2) are reducible and have k divisors.

Let k = 1 and thus

then operator B must have nontrivial Jordan blocks otherwise the two Hamiltonian
structures would be linear dependent. In this case operator p\\(B) = B — λ\ annihi-
lates subspace L\ having dimension dim(Zι) — n\ < n. Thus all operators MU9 Hu

and A also have invariant subspace L\. Therefore tensors M(u9v) and H(u,v) are
reducible and the polynomials (7.1) and (7.2) are reducible too. We note that the
polynomial (7.2) always has factor λ because det/4 = 0.
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Obviously we have a filtration of invariant subspaces (which can coincide)

Li CL2C...CLn=Rn , (7.11)

where Lk is annihilated by the operator

pιk(B) = (B- λrf, pik(B)(Lk) = 0 . (7.12)

Filtration (7.12) is invariant also under the operators A, Mu and Hu and hence it
leads to a more fine factorization of the polynomials (7.1) and (7.2).

4) Suppose the operator B = g\g^1 has n distinct eigenvalues that means two
Hamiltonian structures are in general position. Let e\9...9en be the basis of its
(complex) eigenvectors. All operators A,MU and Hu commuting with operator B are
diagonal in the basis on its eigenvectors. Thus all operators A,MU,MV commute one
with another and hence Hu = [MU9A] = 0. Therefore the Haantjes tensor vanishes:
H(u,v) = 0. The polynomial (7.1) is decomposed in this case into a product of n
linear factors.

Theorem 9 is proven.

II.

Corollary 5. If a system (1.1) has two Hamiltonian structures in general position
and operator A has n real distinct eigenvalues then the system has n Riemann
invariants and is integrable by the generalized hodograph transformation.

Proof. The system (1.1) under these conditions has in view of the Theorem 9
zero Haantjes tensor. Therefore in view of Theorem 1 of [11] the system possesses
n Riemann invariants and is transformed to the diagonal form after some change
of coordinates. Thus in this case the integrability by the generalized hodograph
transformation follows from the Tsarev Theorem [19].

Remark 12. Bi-Hamiltonian systems were studied in many papers, where the main
method to prove their integrability was based on the Magri scheme [10]. The proof
of Corollary 5 is independent on the Magri approach.

Theorem 10. If a system (1.1) has two non-degenerate Hamiltonian structures
and all eigenvalues λ\ of the operator B = gtg^1 have multiplicities A W / ^2 then
the Haantjes tensor Hl

jk = 0. If the multiplicities A W / ̂  3 then the Haantjes tensor

defines the structure of the Lie algebra in each tangent space Tx(Mn). This Lie
algebra is a direct sum of the commutative one Rk and the 3-dimensίonal Lie
subalgebras 3/3 with the commutators (3.14).

Proof. The generalized eigenspaces Z,/ of the operator B = g\g^1 belonging to the
eigenvalues Λ,/ are invariant with respect to the operators A and Hu in view of
(7.4). The Haantjes tensor H(u, v) is zero on each Z,/ if dimZ,/ = 2 in view of
(6.47). If dimZ,/ = 3 then the Haantjes tensor H(u9v) defines the structure of the
Lie algebra in the Z,/ with the commutators (3.14), in view of the formula (2.15)
and Hu = [MU,A].

Theorem 10 is proven.
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8. An application to the equations of gas dynamics

We consider the equations of one-dimensional gas dynamics

1 1
vt = -vvx - -ppρx - -pssx ,

Pt = -pvx - vρx ,

st = -vsx, (8.1)

where v(x,t) is the velocity of the gas, p(x,t) is the density of mass and s(x,t) is the
density of entropy. Pressure p is determined by an equation of state p = p(p, s).

The corresponding (1,1) tensor field Aj defined on the manifold M3 with the co-
ordinates i?, p,s has the following eigenvalues λ\, λ2, λ^ and eigenvectors e\, e2, e^\

λι=-v, eι=p.l-ppl, (8.2)

-.

In the hyperbolic case pp^Q it is easy to calculate the Haantjes tensor H(u,v)
in the basis of eigenvectors (8.2) using the formula (2.15). Thus we obtain:

H(eι,e2) = h(p,s)e3, H(eι,e3) = h(p9s)e2, H(e2,e3) = 0 , (8.3)

where

h(ρ,s) = Pp ( pppps - psppp - -Ppps } = ρ2p} ( -^- } . (8.4)
\ P / \P PP/ p

Proposition 6. The necessary and sufficient condition for the existence of Rίemann
invariants for the equations of gas dynamics (8.1) is

=° (8 5)

This is also the necessary condition for the existence of a Hamiltonian structure
of the type (6.6) with a nondegenerate metric gij .

Proof. Condition (8.5) in view of (8.3), (8.4) is the condition of vanishing of
the Haantjes tensor H(u,v). Therefore the statement concerning the existence of
Riemann invariants follows from Theorem 1 of [11].

If system (8.1) is Hamiltonian in the sense (6.6) then in view of Theorem 2
of this paper the Haantjes tensor H(u,v) defines a deformation of structures of
Lie algebras in the tangent bundle Γ(M3) which are simple or commutative. Lie
algebras defined by the formulae (8.3) are solvable if h(p,s)ή=Q. Thus we get the
necessary condition h(p,s) — 0, or (8.5) for the existence of a Hamiltonian structure
(6.6). Proposition 6 is proven.

The operator Hu for a tangent vector u — x\e\ + x2e2 +^3^3 has the form
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Hu(e\) = -hx3e2 - hx2e3, Hu(e2) = hx\e$9 Hu(e3) = hxλe2 . (8.6)

The corresponding metric on the tangent space TX(M3) is degenerate

(u9u)H = Ύτ(HuHu) = 2hi^. (8.7)

The algebraic manifold VH C TX(M3) is defined by the formula

PH(u) = det(Hu - 1) = h2x\ - 1 = 0 , (8.8)

and thus consist of two parallel planes jci = diΛ"1.

9. On Perturbations of the Benney Equations

I. The Benney equations [12] have the form

/ n \

uit = -UiUix - [ Σ ^ j x ] » C9-1)
V=ι /

ηit = -ηiuix - Ufηix .

On the corresponding manifold M2n we consider the local coordinates MI, . . . , MΛ,
η\9 ...,ηn. In the tangent space Tx(M2n) we have a basis of 2n vectors

The operator tensor field Aj defined by the Benney system (9.1) has the form

Aβi = -Uiβi - r\iQi, Agt = -(e\ + . . . + en) - u^i . (9.3)

A direct calculation of the Nijenhuis tensor N(v,w) (2.1) leads to the formulae

N ( e ί 9 e j ) = 0, N ( g i 9 g j ) = QJ - gt ,

N(ei9gj) = -N(gJ9eί) = -ei. (9.4)

Hence for any two tangent vectors

n n

V = Σ(xiei + yt9i\ α = Σ(*iei + βiθi) >
i=l i=\

we have
Nυβi = N(v9 βi) = ω(υ)ei9 Nvgj = ω(v)gj - v , (9.6)

Nva = N(υ9 α) = ω(u)α - ω(α)ϋ . (9.7)

Here ω is the differential 1-form

ω(ϋ) = 71 + - - + JΊi, ω(α) = J»ι + . . . + βn . (9.8)

From (9.3) we get

n n

Av = Σ(-χiui ~ ω(ϋ)X - Σ(xtfi + ̂ ι«ι)^ι (9 9)
/=! /=!
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From (9.7) and (9.9) we obtain

Mvoί = (NAv - ANv)a = -ω(v)Aoί - ώ(v)a , (9.10)

Mυ = -ω(v)A-ώ(v)\ , (9.11)

where

&(υ) = Σfaηi - ytUi) . (9.12)
/-i

The Haantjes tensor H(v,w) for the Benney system (9.1) is identically equal to
zero, that follows from (9.11) and (2.6),

HΌ = [MΌ9 A] = 0. (9.13)

This gives in view of Theorem 1 of the work [11] another proof of the existence
of the Riemann invariants for the Benney equations.

//. Let us show that the Nijenhuis tensor (9.7) for the Benney equations defines
the structure of the Lie algebra in each tangent space Tx(M2n). Indeed, let L2n~l

be the hyperplane of the tangent vectors, satisfying the condition ω(υ) = 0, and g
be the tangent vector

0= -(0ι +... + 0,ι). (9.14)

Obviously ω(g) = 1. In view of (9.7) for any two vectors v9 w e L2n~l we have

N(υ, w) = 0, N(g, v) = υ . (9.15)

The Jacobi identity for any three tangent vectors u,v,w E Tx(M2n)

N(N(u9 v\ w) + N(N(v, w), u) + N(N(w, u\ υ) = 0 (9.16)

follows easily from the formulae (9.15). Thus each tangent space Tx(M2n) has the
structure of the solvable Lie algebra ja/, determined by the Nijenhuis tensor (9.7).
The hyperplane L2n~l is the maximal commutative ideal:

[L2n-\L2n~l] - 0, |X, <£/] =L2n~l . (9.17)

Obviously the structure of the Lie Algebra stf in Tx(M2n) does not depend on the
point* eM2n.

The invariant scalar product (u, v)N (2.8) coincides with the Cartan-Killing form

(u, υ)N = Ύr(NuNv) = (2n - l)ω(u)ω(υ) . (9.18)

Thus we have

(L2n-\L2n~l)N = 0, (L2n~\g)N = 0, (g, g)N = 2n - I . (9.19)

The algebraic manifold VN G Tx(M2n) for the Benney system is determined by the
equation

PN(υ) = det(Nv - 1) - (ω(t ) - I)2""1 = 0 . (9.20)

Thus the manifold VN is the hypeφlane ω(ί ) = 1, parallel to the plane L2n~l .
Plane L2n~l is the set ZN of all 7V-nilpotent vectors, see (5.22)-(5.24).
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///. We consider the following natural perturbations of the Benney equations:

uit = -UiUix -
k=\

ηlt = -ηίUίx -Uiηix , (9.21)

where fk(?\k) are arbitrary smooth functions. System (9.21) for fk(nk) =const is
equivalent to the Benney system (9.1).

The corresponding to (9.21) (1,1) tensor field Alj has the form

Aet = -met - v\iQi, Agt = -ftE - mgi , (9.22)

where
Λ Λ

*/=*- ' #< = ^> E = eι+... + en. (9.23)
OUj Oϊ\ι

For any tangent vector υ (9.5) we have

n n

- ω(v)E , (9.24)
k=\

where ω(ι ) is the differential 1-form

ω(ιO=Σ/*(>/*);>*. (9.25)
k=\

The Nijenhuis tensor for the system (9.21) has the form

N(ei9 βj) = 0, N(gi9 #/) = //^ - /y& , (9.26)

N(9j, £i} = -N(ei9 QJ) = fjβi - ηj fjδ^E, fj = j ^ .

Hence for any two tangent vectors v, α (9.5) we obtain

N(v, α) = NQ(V, α) + a>o(v9 a)E , (9.27)

where
NQ(v, α) = ω(v)oί - ω(α)ϋ , (9.28)

^ . (9.29)
k=\

Tensor NQ(V, α) (9.28) is analogous to (9.7) and therefore satisfies the Jacobi iden-
tity (9.16). Tensor N(v, α) (9.27) satisfies the Jacobi identity only if ω0(^, α) = 0,
or f k ( η k ) =const, i.e., only for the Benney system (9.1).

From (9.27) and (9.24) we get

Myα = (NAV -ANv)oc

= <X>Q(AV, a)E — ωo(ϋ, a)AE — ω(υ)Aoc — ώ(t;)α , (9.30)

where

k=\

Hence the formula for the operators Hv follows
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7/,α = [MV9 A]a = ωQ(υ9 u)A2E + ω\(v, a)AE + ω2(v,oί)E , (9.31)

where
ωι(w, α) = ωoG4α, ύ) + ω0(α, Λw) , (9.32)

ω2(w, α) = ωo(Au, Aa). (9.33)

Thus we get that operators HΌ for the system (9.21) are not zero and transform a
tangent space Tx(M2n) into 3-dimensional subspace generated by vectors

E, AE, A2E . (9.34)

Vectors (9.34) are linear independent and for a general vector v three 1-forms
defined by the formulae (9.29), (9.32) and (9.33)

ω0(t>, α), o)ι(ϋ, α), ω2(v, α) (9.35)

are linear independent too. Thus the dimension of the image Hv(Tx(M2n)) for the
general vector v is odd. Therefore in view of the Theorem 3 of this work (the
necessary condition 3) is not fulfilled) and Theorem 1 of the work [11] we obtain
the following result.

Proposition 7. Any perturbation (9.21) of the Benney equations (9.1) with non-
constant functions fk(ηk) has no Riemann invariants and has no Hamiltonian
structure of the non-degenerate type (6.6).

IV. Let K c Tx(M2n) be the kernel of the operator Hv and h\9...9h2n-3 be a basis
in K. Operator HΌ in the basis of 2n vectors

E9AE9A
2E9hi9...9h2n-3 (9.36)

has nonzero entries only in the up-left 3 x 3 block. Therefore the polynomial

PH(v) = det(HΌ - I) (9.37)

has the form

PH(v) = -det
v, E) — I Cθ2(v9 AE) a)2(v9 A E)

ω\(v9 E) co\(v, AE) — 1 co\(v9 A2E)
ωo(t;, AE) ωQ(v, A2E) -

(9.38)

This polynomial has degree 3 and the corresponding algebraic manifold F// C
Tx(M2n), determined by the equation PH(V) = 0, is not invariant under the reflec-
tion v —» —v. Thus the necessary conditions 1) and 2) from Theorem 3 for the
existence of a Hamiltonian structure are not fulfilled for the perturbation of the
Benney equations (9.21).

10. An Application to the Certain Matrix Partial Differential Equations

7. We consider for an arbitrary Lie algebra j/ the partial differential equation for
a vector function a(t9 x) G J/ having the Lax form

at = [a9ax]. (10.1)
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The Casimir functions /(fl), constant on the orbits of the adjoint representation
of the corresponding Lie group G, are the pointwise first integrals of (10.1):
/(<!(/, X)), = 0.

The manifold Mn corresponding to the system (10.1) coincides with the Lie
algebra <stf. The corresponding operator tensor field is A — adα. Let u, v G Ta(^) be
two tangent vectors in a point a G A. The operator tensor field A is skew-symmetric
with respect to the Cartan-Killing form

(u, v) = Tr(adwady), (Au, v) + (u, Aυ) = 0 . (10.2)

We consider the constant extensions u, v as the vector fields on the manifold Mn =
s0 . The Nijenhuis tensor is determined by the formula

N(u, v)=A2[u, v]g + [Au, Aϋ]g-A([Au, ϋ]g + [u, Av]g) , (10.3)

where [α, β]g is the geometric commutator of the vector fields α, β.
Let c\j be structure constants of Lie algebra <$/ in the basis

/-) r\

eι = d^' 'e"=δa^' ίe»eΛ = Cijek (10 4)

Then we have

Au = adau = E c a V --r, Aϋ = CM - , (10.5)
ί,j,k Ca ΐ,j,s oa

and the formulae follow

[Au, Av]g = [a, [u, υ]]9 [u, v]g = 0 ,

[Au, v]g = [u, v], [u, Av]g = [u, v] .

substituting these formulae into (10.3), we obtain

N(u, v) = -[a, [u, v]], Nu = -adαadw . (10.6)

Hence we obtain for the operators Mu\

Mu = NAu - ANU = N[atU] + ad^adM = adfladwadα . (10.7)

Therefore for the Haantjes operators Hu we get the expression

Hu = [MU9 A] = adαad[w,α]adα . (10.8)

From the formulae (10.2) (10.7) and (10.8) we obtain that all operators MU,HV

and A are skew-symmetric with respect to the Cartan— Killing form (10.2).

Proposition 8. Equation (10.1) for any simple Lie algebra stf considered as a
system of partial differential equations has no Riemann invariants and no Hamil-
tonian structure of the nondegenerate type (6.6).

Proof. If a system (10.1) for some Lie algebra stf is Hamiltonian in the sense of
(6.6), then all operators Mu and A are symmetric with respect to the bilinear form
(6.9) and all operators Hu are skew-symmetric. In this case analogously to Sect. 7
the non-degenerate operators Ba have to exist that anticommute with all operators
Mu (10.7) and A = adβ and commute with all operators Hu (10.8). For a simple Lie
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algebra «$/ such operators Ba do not exist in view of the explicit formulae (10.6)-
(10.8). Therefore Eq. (10.1) for any simple Lie algebra si is not Hamiltonian.

The nonexistence of the Riemann invariants follows from the nonvanishing of
the Haantjes tensor H(u, v) (10.8) and from Theorem 1 of [11]. Proposition 8 is
proven.

//. Let us consider an equation for a matrix a(t, x)\

at = λaax + μaxa , (10.9)

where λ and μ are some constants. Matrix entries aij' are coordinates in the space
MN of all matrices, N = n2. Tangent vectors etj = d/daij form a basis in a tangent
space Ta(MN) which is naturally identified with the space of matrices MN . Equation
(10.9) in the coordinates a^ has the form

dj = λct*als + μcί;aΛj . (10.10)

The corresponding operator A has the entries

All = λaίkδ{ + μδtkc?j, Av = λav + μva. (10.1 1)

A direct calculation by the formula (2.2) leads to an expression for the Nijenhuis
tensor

N(eij9 eb) = λμ(δs

i(a^ek, - a*keΛj) + <5)(Λαj - Λto)) .

Hence for any two tangent vectors u,v <G Ta(MN) we obtain

N(u, v) = λμ[a, [u, v]] . (10.12)

That provides forλ=l and μ = — 1 the second proof of the formula (10.6).

Proposition 9. Matrix equations

at=P(a)ax , (10.13)

at = axP(a)9 (10.14)

where P(a) is an arbitrary analytic matrix function split into n noninter acting
subsystems of partial differential equations in a neighbourhood of any matrix a
with real and distinct eigenvalues.

Proof. We prove at first that the Nijenhuis tensor vanishes for Eqs. (10.13) and
(10.14). Indeed, we get from (10.12) that equations

at=aaX9 (10.15)

at = axa (10.16)

have zero Nijenhuis tensor, because λμ = 0. If a matrix a has diagonal real Jordan
normal form, then operators A (10.11), corresponding to Eqs. (10.15), (10.16) also
have diagonal Jordan normal forms, because Av = av or Aυ = va. Operator ten-
sor fields, corresponding to Eqs. (10.13) and (10.14) are P(A). Let e\,... , eN be
eigenvectors of an operator A with diagonal Jordan normal form and λ\9... , λ^ be
the corresponding eigenvalues. Operator P(A) has the same eigenvectors e\9... , e^
with eigenvalues P(λ\), ...,P(λN). From the Nijenhuis formula
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N(ei9 ej) = (A- λ>)(A - λj)[ei9 ej] + (λt - λj)(ei(λj)ej + e^t) (10.17)

it follows that if the Nijenhuis tensor for the operator A is equal to zero then it is
equal to zero for all operators P(A) as well.

Eigenvalues of the operators P(A) corresponding to Eqs. (10.13), (10.14) are
equal to P(λi) where λ\ form n eigenvalues of the matrix a and have multiplicities
n. Therefore from the results of the work [16] in view of the vanishing of the
Nijenhuis tensor we obtain that Eqs. (10.13), (10.14) split into n non-interacting
subsystems of n equations (in each subsystem). These subsystems are tangent to
^-dimensional eigenspaces of the operator P(A) and have the form

λit = P(λi}λix, uίkt = P(λi)uikx, k =1,. . . , / ι - l . (10.18)

The arising n2 functions λ\,...9 An,M#, 1 :g / ^ «, 1 ^ k ^ n — 1 form another sys-
tem of coordinates in the space of matrices MN . Proposition 9 is proven.

///. We consider the matrix equation

at = aaxa. (10.19)

For the entries aίj of the matrix a we get the equations

all = aίcίa«βaβj . (10.20)

The corresponding operator A has entries

AΪs = aίkasj, Av = ava. (10.21)

The operator A is symmetric with respect to the bilinear form

(M, v) = Ίτ(uv), (Au, υ) = (u, Aυ) . (10.22)

A direct calculation by the formula (2.2) leads to the following expression for the
Nijenhuis tensor:

N(eij9 βks) = (<$χ + δka^a^as - δasaayί - b^aae^ . (10.23)

Hence for any two tangent vectors u9v G Ta(MN) we get

N(u, v) = a[a, [u, v]]a . (10.24)

Thus we have
Nu=Aadaadu. (10.25)

For the operators Mu we get the formula

Mu = NAu - ANU = Aada(adaua - Aadu) . (10.26)

Therefore for the Haantjes tensor Hu we obtain

Hu = [Mu, A] = Aada[aάaua - Aadu, A] = ̂ 2adflad[M,a]ada . (10.27)

Thus we get that the Haantjes tensor (10.27) is not equal to zero and so Eq. (10.19)
as well as Eqs. (10.1) has no Riemann invariants.
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Note added in proof

11. Necessary Conditions for Existence of a Non-Local Non-Degenerate Hamiltonian Structure

I. Let us consider a (1,1) tensor

<5; , (11.1)

where gυ is a non-degenerate metric of constant curvature K,f(u) is a smooth function and V,
are operators of covariant differentiation with respect to the metric 0,y. The (1,1) tensors Al

}(u)
(11.1) describe systems of partial differential equations (1.1) having non-local (Kή=Q) [20] or
local (K = 0) [7-9] non-degenerate Hamiltonian structures.
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Theorem 11. If a system (1.1) has a non-local or local non-degenerate Hamiltonίan structure
then the Nijenhuίs tensor NA(U,V) satisfies the algebraic identities (6.42)-(6.44) for the (1,1)
tensor Al (11.1). The corresponding operators Hu (2.5) are skew-symmetric with respect to the
bilinear form defined by the metric gtj :

(Huv,w)g = -(υ,Huw)g, (v,w)g = g«βv«wβ , (11.2)

The proof follows by a direct calculation using the classical formulae of differential geometry
for the metric of constant curvature.

Corollary 6. Theorems 3-10 hold true for the systems (1.1) possessing non-local and non-
degenerate Hamiltonian structures.

Indeed, Theorems 3-10 are direct consequences of the identity (6.14) and the algebraic iden-
tities (6.42)-(6.44). These identities hold true for the non-local Hamiltonian structures as well.

II. Let us assume that system (1.1) is hyperbolic. Then tensor Aj(x) (11.1) has real and distinct
eigenvalues λ\(x), ...,λn(x) corresponding to the eigenvectors e\(x\...,en(x\ Their commutator
relations have the form

O^W . (i 1.3)

Theorem 12. If a system (1.1) possesses a non-local or local non-degenerate Hamiltonian struc-
ture then the following necessary conditions are satisfied:

1) For any p + 1 distinct indices α, / , . . . , ̂  the following two products are equal

c£c* . . . clQ = (-1 ycί/4 . . . QC£ . (i ι.4)

2) For any p distinct indices i,j, ...,/ and p arbitrary indices α, β, . . .,σ different from
i,j, ...,/ the following two products are equal

Proof. The metric gtj is diagonal in the basis of eigenvalues

(*/(*), */(*))„=?/(*)«/, (11.6)

because the (1,1) tensor Aj(x) (11.1) is symmetric with respect to the metric gtj(x). The formulae
(2.15), (11.2) and (11.3) imply

r 7 O
-—*!—,, - "J a m 7ϊ

- q j ~ -^1' (1L7)

Multiplying the formulae (11.7) for p indices α, /?,. . . , <5 and p pairs of indices (i,j), (/, &),..., (/, /)
we obtain the equalities (11.4) and (11.5).

III. Symmetricity of the (1,1) tensor Aj(x) yields

k

(B(A)u,υ)g = (u,B(A)υ)g, B(A,x) = Σbm(x)Am(x) (11.8)

for an arbitrary polynomial B(A,x). We define a polynomial on the tangent bundle T(Mn}

PB(u,λ) = dQt(B(A)Hu - λ) (11.9)

and a fibration of algebraic varieties VB C T(Mn) defined by the equation PB(U, 1) = 0.
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Theorem 13. If a system (1.1) possesses a non-local or local non-degenerate Hamiltonian struc-
ture then the following necessary conditions are satisfied in any point x £ Mn and for any tangent
vector u £ TX(M") and for an arbitrary polynomial B(A,x) (11.8) :

1) The polynomial Pβ(u,λ) (11.9) is even with respect to u and is even or odd with respect
to λ whenever n is even or odd.

2) The fibration of the algebraic varieties VB C T(Mn) is invariant with respect to the
involution u — •> — u.

3) The set of eigenvalues of the operator B(A)HU is invariant with respect to the involution
λ -> -L

Proof of Theorem 13 follows from the identities (11.2) and (11.8) and the following two
Lemmas.

Lemma 4. The characteristic polynomials coincide for the operators BH and HB.

Lemma 5. If an operator B is symmetric with respect to a non-degenerate bilinear form
(see(ll.S)) and an operator H is skew-symmetric (11.2) then the set of eigenvalues of the
operators BH and HB is invariant with respect to the involution λ — »• — λ along with their mul-
tiplicities.

Proof. The relations (11.8) and (11.2) imply the matrix equations

Bg = gBf, Hg = -gH\ g~lBHg = -(HB)1 . (11.10)

Using the last formula we obtain for the characteristic polynomial

PβffW = dQt(BH - λ) = det(g~lBHg - λ) = det(-(#£)' - λ) (H H)

Applying Lemma 4 we derive the equality

PSH(λ) = (-l)nPBH(-λ), (11.12)

that proves Lemma 5.

Theorem 14. If two operators P and H are skew-symmetric with respect to a non-degenerate
bilinear form (see (11.2)) then all non-zero eigenvalues of the operator PH have even multί-
plicites.

Proof. We first assume that P = BHB where B is a symmetric operator (see (11.8)). Then PH =
(BH)2. The set of eigenvalues of the operator BH is symmetric with respect to the involution
λ — > —λ along with their multiplicities (Lemma 5). Therefore all non-zero eigenvalues of the
operator (BH)2 have even multiplicities. Thus Theorem 14 is proven for the pairs BHB.H. For
an arbitrary skew-symmetric pair P,H Theorem 14 follows by the continuity arguments because
the set of pairs BHB,H is open and dense in the set of all skew-symmetric pairs P,H.

Corollary 7. If a system (1.1) possesses a non-local or local non-degenerate Hamiltonian struc-
ture then non-zero eigenvalues of the operators H%H™ have even multiplicities when k and m
are odd and are symmetric with respect to the involution λ — > — λ when k + m is odd.

The methods of this paper lead to new geometric and algebraic constructions which will be
published elsewhere.






