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Abstract: The necessary criteria are pointed out for the existence of Hamiltonian and
bi-Hamiltonian non-degenerate structures for a nonlinear system of partial differential
equations of first order. The results are formulated in terms of the new invariants of
the intrinsic geometry, introduced in this paper, connected with the Nijenhuis and
Haantjes tensors of a (1,1) tensor field.

1. Introduction

This paper is devoted to the investigation of the intrinsic geometry of systems of
nonlinear partial differential equations of first order

. n .
up = YA, (1.1)
Jj=1

As it is known, systems (1.1) arise in numerous classical problems of gas dynamics
and mathematical physics [1-4, 7-9, 12-15].

Riemann pointed out in his classical work [1] that the system (1.1) is closely
connected with the (1,1) tensor field A}(ul,...,u") defined on the Euclidean space
R" with the coordinates u',...,u".

Geometry of the vector fields of eigenvectors of the operators A;(ul,...,u") has
been studied in famous papers by Nijenhuis [S5] and Haantjes [6].

Hamiltonian systems (1.1) and the associated structures of the Poisson brackets
were investigated in [7-9, 14, 15] along with their applications to the theory of the
Whitham equations.

Tensor fields A(u',...,u") were considered in [5, 6] as vector-valued differen-
tial 1-forms and also as fields of operators defined on the tangent bundle 7 (M").
The Nijenhuis tensor ]\/jfk(ul,...,u”) and the Haantjes tensor H},(u',...,u") were
considered as the vector-valued differential 2-forms.
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We consider in this paper the Nijenhuis and Haantjes tensors as the laws of
alternating bilinear multiplications in the tangent bundle. Therefore the Nijenhuis
and Haantjes tensors define on the tangent bundle T (M") the deformations of the
structures of non-associative algebras, which appear to be Lie algebras for several
important systems (1.1). This point of view leads us to the definition of the ana-
logues of the Cartan-Killing form on the tangent bundle 7 (M"), countable sets
of differential 1-forms wy and 2-forms o and f; and (1, 3) tensors Jy and Jy
which we name the Jacobi tensors. These (1, 3) tensors characterize the deviation
of the algebraic structures defined by the Nijenhuis and Haantjes tensors from the
Lie algebra structures. We define also invariant polynomials Py (v) and Py (v) on
the tangent bundle and the associated fibrations of the algebraic submanifolds Vy
and Vy embedded into the tangent bundle 7 (M").

In terms of these constructions we point out several necessary criteria for the
existence of non-degenerate Hamiltonian or bi-Hamiltonian structures for a system
(1.1). For example, if system (1.1) has a non-degenerate Hamiltonian structure
then the invariant polynomials Py (v) are even, Py (v) = Py (—v) and the fibration
of the algebraic submanifolds Vy is invariant under the involution v — —v. For
n = 4 existence of a non-degenerate Hamiltonian structure implies that the Haantjes
tensor H (u, v) defines a deformation of Lie algebra structures in the tangent bundle
T (M*). For n = 3 these Lie algebras have to be either simple or commutative. The
corresponding Cartan-Killing form (u, v)y defines the metric on the manifold M?>
that has to be conformally flat and therefore has to satisfy the classical Weyl-
Schouten equations.

The existence of two non-degenerate Hamiltonian structures implies that the
Haantjes tensor is reducible and is necessarily zero if the two structures are in
general position. In the last case the Hamiltonian system possesses the Riemann
invariants and is integrable by the generalized hodograph transformation.

These necessary criteria can be checked by a direct calculation of the Haantjes
tensor for any system of partial differential equations (1.1).

The efficiency of the geometric methods of this paper is demonstrated for the
equations of classical gas dynamics, for the perturbations of the Benney equations
and for the certain matrix partial differential equations of the form (1.1).

2. Gauge Invariance of the Haantjes Tensor

I Let @ and 7 be two vector fields on a manifold M” with a (1, 1) tensor field A;

Let u and v are values of the vector fields # and ¢ in a point P. The Nijenhuis
tensor N(u, v) [5] is defined by the formula

N(u, v) = A%[ii, 5]+ [Aii, A7] — A([A#L, §] + [d, A]), 2.1)

where [X, 7] is the commutator of vector fields X and y. The Nijenhuis tensor does
not depend on a choice of vector fields # and ¥ extending the tangent vectors u and
v in the point P. Obviously the Nijenhuis tensor is alternating and has the following
entries (in a local map x',...,x"):

R R S RV
e = kA — AL+ Al — kA (2.2)
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The Haantjes tensor H(u, v) [6] is defined by the formula
H(u, v) = A2N(u, v) + N(Au, Av) — A(N(Au, v) + N(u, Av)) (2.3)
and also is alternating. Haantjes tensor has the following entries:
e = ALAGNY, + Nig34f — AiNj AL — ALN%AD (24)

where one must substitute formulae (2.2).

The Nijenhuis and Haantjes tensors define the alternating products in the tangent
space which lead to structures of non-associative algebras in the tangent space. Thus
in the tangent bundle T(M") we have a deformation of structures of non-associative
and alternating algebras.

II. We define two linear operators N, and H, depending on vector u which are
analogues of the operator ad, for the Lie algebras:

Nu(v) = N(u, v), Hy(v) = H(u, v). (2.5)
These two operators in view of formula (2.3) are connected by the relation
Hy, = [Ngy — AN,, A]. (2:6)

From (2.6) we get
TrH, =0, Tr(H,A4*)=0 2.7)

for all integers k.
We define two symmetric scalar products (u, v)y and (u, v)y which are ana-
logues of the Cartan-Killing forms for the Lie algebras:

(u, v)v = Tr(NN,), (4, v)g = Tr(H,H,). (2.8)

IIT.
Proposition 1. If two (1, 1) tensor fields /1; and Aj- are connected by the relation

A(x) = f)Ax) + g(x), (2.9)

where f(x) and g(x) are arbitrary functions on the manifold M" then the
corresponding Haantjes tensors and scalar products (u, v)y are connected by the
formulae

H(u, v) = f*x)H(u, v), (2.10)
(u, v)g = f3)w, V) - (2.11)

Proof. Let us first assume that A(x)= f(x)4(x). From the definition of the
Nijenhuis tensor (2.1) we have

Ny(v) = f2Nu(0) + f(Au)( [)Av = fu( A0 — f(Ao)( )Au + fu( f)Az(uz'lz)
Hence we get ‘

M,=Nj,— AN, = fP(Nau — AN,) + f2(A7u)( )4 =21 Au)( )4+ fPu( )4 .

This expression leads to the equality
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H,=[M,A] = [*[Na — AN, A1 = [*H,

that proves (2.10) in the caseN/Z = fA.
Let us suppose now that 4 = 4 4 g1. From (2.7) we get

Nu(v) = Ny(v) + (Au)(g)v — (g)Av — (Av)(9)u + v(g)Au . (2.13)
Hence we obtain
M, =Ny, — AN, = N4y — AN, + (A2u)(g)1 — 2(4u)(g)4 + u(g)4* .
Thus the equality follows
H, = [My,A] = [Ny, — AN, A1 = H, .

Therefore the formula (2.10) is proven for the general case (2.9).

The formula (2.11) follows from (2.10) and the definition of the scalar product
(u, V) = Tr(H,Hy).

The derived formula (2.10) means that the Haantjes tensor H(u, v) in the con-
trast with the Nijenhuis tensor N(u, v) possesses the gauge invariance (2.10) under
the transformations (2.9) of the (1, 1) tensor field Aj»(x).

IV. Let ex(x) and es(x) are smooth vector fields of eigenvectors of the operator
A'(x), corresponding to the eigenvalues J;z(x) and A,(x). The known Nijenhuis for-
mula [5] follows straightforward from the definition (2.1),

N(ex,es) = (A — XA — As)ler, es] + (A — AsNew(ds)es + es(M)er) . (2.14)
The formulae (2.3) and (2.4) imply
H(ey,e) = (A — 1 )X(A — A ) lex,es] - (2.15)
For the bilinear tensor
M(u, v) = N(4u, v) — AN(u, v) , (2.16)
we obtain from (2.14)
M(ep,e5) = —(A — W (A = A)ler, es] + G — A5 ) ex(As e - (2.17)

The gauge invariance of the Haantjes tensor easily follows from the formula
(2.15) for a (1, 1) tensor field A;(x) having » real and distinct eigenvalues. Indeed,

operator fi;(x) (2.9) has the same eigenvectors ej(x),...,e,(x) with the eigenvalues

Ax(x) = fO0)(x) +g(x) .
Therefore we obtain from the formula (2.15)
H(e,e;) = (4= WY (A = AsYlew e] = fH(0)H(exe5) -

For the general case of complex eigenvalues and non-diagonal Jordan normal form
of Aj(x) one needs the direct proof given above.

V. We denote Np(u, v) and Hp(u, v) the Nijenhuis and Haantjes tensors determined
by an operator tensor field Bj(x). Let
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R = R(4,4()) = (3(x) — 4) ™ = S A (218)
k=0

be the resolvent operator for an operator A;(x).

Proposition 2. The relations hold

Ny—1(u, v) = A72Ng(A 'u, A7), (2.19)
My-1(u, v) = —A3My (A7 2u, 47 v) , (2.20)
H—1(u, v) = A *Hy(A™u, A %), (2.21)

Hg(u, v) = R*H,(R*u, R*v) . (2.22)

Proof. Let us first prove (2.19)—(2.21) for an operator tensor field A(x) having
real and distinct eigenvalues Ay,...,4,. The inverse operator 4~! has the same
eigenvectors e,...,e, and eigenvalues /1“1,...,1; . From the Nijenhuis formula
(2.14) we obtain
Ny-i(ex, e) = (A7 = 4 DA = 27 Dler, &]
+ g = 27 D er (A e + ey er)
= A0 27N A = A (A = As)ex, e
+ (i — A0 en(Ae)A e + A5 eg(A) A )
= A IN(A ey, A7 ey) . (2.23)
Formula (2.19) follows from (2.23) in view of the bilinearity of the Nijenhuis tensor
N(u, v). Formula (2.19) was derived by an indirect method in [5].
Formula (2.17) leads to the equality
My(ews ) = —(A7" = LA™ = 27 Dlew, €]
+ = A7 er(A5 e
= A7320 A = WA = A)lew, @]
— (k& — A4 *e(A)A e
=AMy (A %e;, A7 'ey), (2.24)
that implies the formula (2.20).
From the formula (2.15) we get
Hyi(er &) = (A7 = P47 = 27 e, e]
= A7 (A = (A = A lens €]
= A H (4 %er, A7 %), (2.25)
and hence formula (2.21) follows.
Operators A(x) with distinct and real eigenvalues form a domain @ in the

space of all linear operators. The expressions (2.19)—(2.21) analytically depend
on the entries 4j(x) and their derivatives. Therefore the validity of the formulae
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(2.19)—(2.21) in the entire domain @ of the operators A(x) implies their validity
for arbitrary operators A(x).
Formula (2.22) follows from (2.21) and from the gauge invariance (2.10) of
the Haantjes tensor
Hjxy—a(u, v) = Hy(u, v) (2.26)

for any smooth function A(x).

Remark 1. From (2.22) we obtain that the Haantjes tensor for the resolvent operator
R(4,A(x)) (2.18) depends analytically on the function A(x) and does not depend on
its derivatives. Formula (2.22) after the substitution of the power series (2.18) leads
to an infinite family of identities connected with the Haantjes tensor Hy(u, v).

3. Jacobi Tensors and Lie Algebra Structures

I. We define the following alternating functions of pairs of tangent vectors u and
v € T,(M"), values of which are linear operators on the tangent space 7x(M") :

In(u, 0) = Ny, v) — [Nu> Ny, (3.1)
Ju(u, v) = Hyq, vy — [Hy, Hy] . (3.2)

Obviously Jy and Jy form (1,3) tensors
In(u, V)W = Ty v/ Wk, Ty (u, v)w = JgutvIwh (33)

Tensor Jy is gauge invariant as well as the Haantjes tensor, see (2.10). After
any transformation (2.9) one gets

Tu(u, v) = f3(x)Ju(u, v) . (3:4)

Formulae (3.1) and (3.2) are similar to the definition of the Riemann tensor in
the Riemannian geometry

R(u, v) = Vi — [V, Vol 3.5)

The tensors Jy and Jy have another meaning: they characterize the deviation of the
algebraic structures defined by the tensors N and H from the Lie algebra structures.
Indeed, from (3.1) and (3.2) we get

Iy(u, v)w = N(N(u, v),w) + N(N(v, w),u) + N(N(w, u),v), (3.6)
Ju(u, v)w = H(H(u, v),w) + H(H(v, w),u) + H(H(w, u),v) . (3.7)

Thus if tensor Jy = 0 then (3.6) is the Jacobi identity and hence tensor N(u, v)
defines the Lie algebra structure in the tangent space. Therefore we name tensors
Jy and Jy the Jacobi tensors. These tensors have the following symmetries :

J(u, v)w = —J(v, u)w, (3.8)

J(u, vy w =J(, wu =J(w, u)v. 3.9)
In the index form equality (3.7) implies

bk = HijHyy + HyHy + HEHy (3.10)
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Symmetries (3.8) and (3.9) lead to the general equality

e = Sig0(0) oy jyoth) » (3.11)

where ¢ is an arbitrary permutation of the indices i,j and & (the same for Jy).
From the identity TrH, = 0 and the formulae (3.2) and (3.11) we obtain that
all contractions of the Jacobi tensor Jy vanish:

Jtije = Jhinj = Jfij = 0 - (3.12)
Contractions of the Jacobi tensor Jy; define the differential 2-form oyo(u, v)

JID\;ijoz = —Jﬁiaj = J]o\;ozij = ONOij - (3.13)

II. For a (1,1) tensor field A; on a manifold M” of small dimension we prove
the following facts.

Proposition 3. For n =2 the Jacobi tensor vanishes Jy =0 and the Haantjes
tensor H = 0 (hence Jy = 0). For n =3 the Jacobi tensor Jy = 0 and the Jacobi
tensor Jy = 0 if the differential form oyo(u, v) = 0.

Proof. For n = 2 the equalities i =0 follow from the symmetry properties (3.11)
as well as equalities Hf = 0 follow from Hf = —H} and H}, = 0.

For n =3 the equalities Jy,;; = 0 follow from (3.11) and (3.12) and the equal-
ities Sy =0 follow analogously from (3.13) if oyo(u, v) = 0.

Corollary 1. A manifold M" with a (1,1) tensor field Aj-(x) for n=2,3 possesses
a deformation of Lie algebra structures in the tangent bundle T(M") defined for
n =2 by the Nijenhuis tensor Nf and for n =3 by the Haantjes tensor Hy,.

For n = 3 let e;(x), ex(x), e3(x) be the eigenvectors of the operator Aj.(x). From
the formula (2.15) we obtain
H(ei,e2) = ses, H(ey,e3) = e, H(es,e1) = he; . (3.14)

These formulae describe, in view of the relations (2.7) TrH, = 0, the canoni-
cal form of the commutators of all 3-dimensional Lie algebras, determined by the
Haantjes tensors H(u, v).

IIT. We define two bilinear symmetric tensors
Li(u, v) = N(4Au, v) — N(u, Av),
Ly(u, v) = H(Au, v) — H(u, Av) . (3.15)

These tensors define two deformations of structures of commutative but not asso-
ciative algebras in the tangent bundle T'(M").
Tensors
Ls3(u, v) = N(4u, v) + N(u, Av), (3.16)

L4(u, vy = H(Au, v) + H(u, Av) . (3.17)

are alternating.
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We define two bilinear tensors

K(u, v) = N(u, Av) — AN(u, v), (3.18)
M(u, v) = —K(v, u) = N(4Au, v) — AN(u, v) . (3.19)
The following relations hold:
K(Au, v) — AK(u, v) = H(u, v), (3.20)
M(u, Av) — AM(u, v) = H(u, v) . (3.21)

Thus for the corresponding linear operators K,(v) = K(u, v) and M,(v) = M(u, v)
we obtain

K, = [Nu, A]’ Ky —AK, = H, , (322)
My = Ngy — ANy, [My, Al =H, . (3.23)

If the Haantjes tensor H(u,v) =0 then we get from (3.22) for any polynomial
P(4),
Kpayu = P(A)K, . (3.24)

Thus if P(4)u = 0 then P(4)K, = 0. Also when H(u,v) =0 we get from (3.23)
that all operators M, commute with the operator 4.

4. Differential Forms and Conservation Laws

I. We define the following differetial 1-forms

wp(u) = Tr(A*N,), k=0 (4.1)
and differential 2-forms
i (14, 0) = (N (u,0)) = Tr(A* Nyupy), k20, (4.2)
o1, 0) = 0 (H(u,0)) = Te(A Npyup), k20, (43)
Bri(u, v) = Te(4* [N, N,]), k=1, (4.4)
Bur(u, v) = Tr(4'[H,, H,)), k21, (4.5)

It is also useful to define the generating forms depending on an arbitrary parameter
A, for the countable families of forms (4.1)—(4.5), for example 1-form w(u, A)

1) = TH((A— A)'N,) = 52 )
o, £) = Te(( =)' = 55

(4.6)

Remark 2. A necessary criteria for the Nijenhuis or Haantjes tensors to determine
a Lie-algebraic structure in the tangent bundle 7'(M") consist of the vanishing of
the forms o — By = 0 (for N) and Bux = 0 (for H) for all £=0. Indeed, these
vanishings follow from (3.1) and (3.2) if Jy = 0 or Jy = 0. Hence we get in view
of Proposition 3 and formulae (2.7) that for n = 3 differential 2-forms Sy (u,v) =0
for all £ and if the differential 2-form ayo(u, v) = 0, then oy (u, v) = Bn(u, v) for
all %.
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Proposition 4. Differential 1-form wy satisfies the relation

1 1
= ——TrA*t ) — k+2 .
wr(v) = Av (k—l—l T > v<k+2TrA “4.7)

Jfor any tangent vector v. If the differential form wy vanishes then all solutions
u'(t,x) of the system (1.1) satisfy the conservation law

ﬁ 1 k+1g, 1 8 1 k42,1 n
at<k+1TrA @,....u" T ) (4.8)

Proof. Expression (4.7) after the substitution of the formulae (4.1) and (2.2) turns
into an analytic relation between the entries of the operator 4’(u',...,u") and their
derivatives. Therefore it is sufficient to prove formula (4.7) for the domain of oper-
ators A}(ul,...,u”) having real and distinct eigenvalues 4;,...,4,. Let e,...,e, be
the corresponding eigenvectors. From the Nijenhuis formula (2.14) we obtain

wile;) = Tr(4*N,) = il(z,- — Jy)e (A )k

LI
— Ao k1) k+2
_Ae] (zk_i_lj's ) e]( 1k+2)'S >
— de; 1 k1) k+2
= Ade; (k+ I 4 ) e; <k 2 4 . 4.9)

Formula (4.7) is a consequence of the formula (4.9) for an arbitrary tangent
vector v =v'e| + ...+ v'e,.

We represent the expression (4.8) for an arbitrary solution #/(¢,x) of the system
(1.1) u} = Ak’ ..., u")us in the form

0 1 d 1 ul
o (mT A (y )) ~ 5 <k+2T A2 (y )) (4.10)

0 1 .0 1
i ] k+1 k+2
= Aju o (k m 1TrA (u)> au" (k mn 2TrA (u))
= wp(uy) . (4.11)

Therefore if the differential form w; vanishes then any solution u/(,x) satisfies the
conservation law (4.8). Proposition 4 is proven.

Corollary 2. If all differential forms wy vanish (for example when the Nijenhuis
tensor N(u,v) = 0) then for any solution u/(t,x) of the system (1.1) the eigenvalues
Ai(u) of the operator A}(ul,...,u") satisfy the equations

Ait = Aidiy (4.12)
Indeed, in this case we obtain from (4.8),

Sk = SSARH

i=1 i=1
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The validity of these equations for all £ implies the validity of Eq. (4.12).

5. Invariant Polynomials and Fibrations of the Algebraic Submanifolds

I. We define on the tangent space T,(M") two invariant polynomials

Pr(u, 2) = det(Ny — 1) = 3 pa () 7% (5.1)
k=0

Prr(u, 1) = det(H, — 2) = 3 pra(u) 2* , (52)
k=0

which are homogeneous functions of all arguments u and 4 of degree n. Coefficients
pne(u) and ppr(u) are homogeneous polynomials of u of degree n — k. From the
equalities

Nu(u) =0, H,(u)=0, H,=[M,, 4]

we get
pn(u) = (=1, pyn—1(u) = (—1)”_1w0(u), prvo(u) =detN, =0, (5.3)

prn(u) = (=1)", ppn—1(u) =TrH, =0, pgo(u) =detH,=0. (54)
Let A1(u), ..., 4,(u) be eigenvalues of an operator N,. The equalities hold

Pn—2(u) = (—1)”;&-/1]- , (5.5)
i+j
n n
wo(u) = TrN, = YA, (u, u)y = Tr(N,N,) = 307 . (5.6)
i=1 i=1
Hence we obtain
-1 —1)
P2 = S0t - T w (57)
and analogously
—1y
prn2) =~ wn (58)
Polynomials (5.1), (5.2) for n =2 have the form
Py(u, 1) =22 —wo(u)d, Py(u, 2)=1%. (5.9)
For n =3 we get from (5.3)—(5.8),
Py (u, 2) = =23 4+ wo(u)A* — %(wg(u) — (4, WN)A, (5.10)
1
Pu(u, )= -2+ 5(u, Wy . (5.11)

Operators N, and H, in view of (5.1) and (5.2) satisfy the algebraic equations
Py(u, Ny)=0, Py(u, H,)=0. (5.12)
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For n = 3 these equations have the form

N,,(Nu2 — wo(u)N, + %a)(z)(u)— %(u, u)y)=0, (5.13)

Hy(H} — 5 1) = 0. (5.14)

II. We define in the tangent space T,(M") two algebraic submanifolds Vy and Vg

by the equations
Vy: Py(u, 1)=det(N,—1)=0, (5.15)

Vir: Py(u, 1) =det(H, —1)=0. (5.16)

The manifolds Vy and Vy are affine parts of the projective manifolds Vy and Vy
defined by the homogeneous characteristic equations

Vy: det(N,—A)=0, Vy: det(H,—2)=0. (5.17)

Thus we have two fibrations of algebraic manifolds ¥y and Vy embedded into the
tangent bundle 7 (M") or into its projectivization. Complex forms of these manifolds
are embedded into the complexification of the tangent bundle T'(M").

For n = 2 manifolds Vy are straight lines TrN, = 1 (Vy are empty). For n = 3
manifolds ¥y and Vy are quadrics:

Vi (u, u)y — 0} (1) + 2aw0(u) = 2, (5.18)
Vig o (u, w)y =2 (5.19)

Vy is invariant under the reflection u — —u.
Let Gy, be the group of all linear automorphisms of the Haantjes tensor H (in
a point x € M"), so g € Gy if for any u, v € T,(M") we have

H(gu, gv) = gH (u, v) . (5.20)

Polynomial Py (1) and algebraic manifold Vy obviously are invariant under the
action of the group of automorphisms Gp, in T, (M").

The Haantjes tensor H (or N ) is called reducible if all operators H, (or N,)
have an invariant subspace L; C T, (M"). This means that H (T, (M"), L) C L;.
In this case the polynomial Py (u) can be factored Py (u) = Py (u)Pgs(u) and
the algebraic manifold 7y has two components, determined by equations Pg;(u) =
0 and Pyr(u) = 0.

If there exists filtration of different subspaces

LiCLyCLyC ... CL=T,(M"), (5.21)

invariant with respect to all operators H,, or H(T (M"), L,) C L, for all a =

1, ...,k then polynomial Py(u) can be factored into a product of k factors

Py(u) = Py1(u) = Py Py . . . Pyy and algebraic manifold ¥y has & components.
If tensor H (or N) has nontrivial central subspace L. of dimension d, i.c.,

H(L, T;(M")) =0,

then the polynomial Py (u, 1) (5.2) has degree at most n — d.

We call tensor H (or N) nilpotent, if for any u we have H¥ =0 for some
k. Obviously the complexification of the manifold Vy is empty and polynomial
Py(u) = (—1)" if and only if tensor H is nilpotent.
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We call vector v € T,(M") N-nilpotent (analogously H-nilpotent) if operator
N, is nilpotent, N = 0. The set Zy of all N-nilpotent vectors is determined by the
system of n — 1 homogeneous equations

pni(m) =0, ..., pyp—1(u)=0. (5.22)
Indeed, for vectors u, satisfying (5.22) we get from (5.12),
Py (u, N,) =(—1)"N] =0.

If polynomial Py (u, 1) can be factored into a product of » linear factors
n—1
Py(u, )=(—1Y'2AT[ (A= fr(w)), (5.23)
k=1

then the set Zy is a linear subspace
Si@)=0,...,fn1(u)=0. (5.24)

This is the case for the Benney system, studied in Sect. 9.
If all operators N, (or H,) have a common eigenvector e then e is N-nilpotent
and therefore satisfies all Egs. (5.22). Indeed, from the condition

N,e = N(u, ) = Mu)e

we obtain
N2u = N,(N(e, u)) = —A(u)N(e, e) = 0.
Polynomial Py (u, 4) in this case has a linear divisor 4 — A(u).

If the two operator tensor fields /I} and 4’ are connected by the gauge transfor-
mation (2.9) then in view of (2.10) their Haantjes operators H, are connected by the
equality H, = f*H,. Therefore the corresponding polynomials (5.2) are connected
by the relation

Py(u, 2) =Py ( fiu, 2). (5.25)

I Let (v, w) = gaﬁv"‘wﬂ be a bilinear form in the tangent space 7,(M"), which
can be indefinite and non-symmetric, but it must be non-degenerate.

Lemma 1. If all operators H, are skew-symmetric with respect to a bilinear form
(v, w):

(H,v, w) + (v, Hw) =0, (5.26)

then the polynomial Py (u) is even and the algebraic manifold Vy is invariant
under the reflection u — —u. Eigenvalues of the operator H, are symmetric with
respect to zero and its image has an even dimension in a general case.

Proof. Let e, ...,e, be a basis in a tangent space T,(M"), scalar products
(e, €j) = B;j and H,(e;) = H,ixer. Then the expression (5.26) is equivalent to the
matrix equation

H,B = —BH . (5.27)

For the polynomial Py (u, A) we have
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Py (u, A) = det(H, — 1) = det(B~'H,B — 1) = det(—H_ — 1)
= det(H(_u) —A)=Py(—u, A). (5.28)

Thus the polynomials Py (u, 1) and Py (u) are even and hence the algebraic man-
ifold Vy is symmetric under the reflection and eigenvalues of an operator H, are
symmetric with respect to zero. Therefore the image space H, (7, (M")) has even
dimension.

Lemma 2. If all operators H, are skew-symmetric (see (5.26)) then the Jacobi
tensor Jy (u, v) for any u, v satisfies the relations

U (u, v)x, y)+(x, Jy(u, v)y)=0, (5.29)
(Ju (u, v)x, y) = (v, Ju(x, y)u) . (5:30)

Proof. Equality (5.29) follows from (5.26) after the substitution of the formula
(3.2). Equality (5.30) follows from (5.29) and properties of symmetry of the Jacobi
tensor (3.8) and (3.9).

Remark 3. For the symmetric scalar product (x, y) in (5.26) equalities (5.29) and
(5.30) coincide with the classical identities for the Riemann tensor

(R(u, v)x, y) + (R(u, v)y, x) =0, (531)
(R(u, v)x, y) = (R(x, y)u, v) . (5.32)

Remark 4. We define in the space 7T, (M") + T (M") an algebraic submanifold Wy
by the equation

Wit On(u, v) =det(Jy(u, v) —1)=0. (5.33)

Such a manifold is defined also in the space L¢ of bi-vectors ¢ = u A v, having
dimension d = n(n — 1)/2. If the equalities (5.26)) are valid for any u and v, then
as in Lemma 1 we get that polynomial Qg (u, v) and the manifold Wy for any
point x € M" are invariant with respect to two reflections © — —u and v — —v.

IV. Let us suppose that the Haantjes tensor H determines a structure of Lie algebra
o/, in the tangent space T (M"), and let G, be the corresponding Lie group. In
this case the polynomial Py (u) and the manifold V,, are invariant with respect to
all automorphisms of the Lie algebra .o/, e.g. under the adjoint representation of
its Lie group Gy. Thus the manifold ¥, contains together with any point u all its
orbit Adg, (u).

If F: o/1 — o/, is a homomorphism of two Lie algebras, then F(V_,)C V,,.

If Lie algebra .o/, is semi-simple then operators H, = ad, are skew-symmetric
with respect to the Cartan-Killing form. Thus in view of Lemma 1 the corresponding
polynomial Py (u) is even and the manifold Vy is invariant under the reflection
u— —u.

Remark 5. Let T be a linear representation of a Lie algebra .7 in a linear space
L. We define an algebraic manifold V7 C ./ by the equation

Vr: Pr(u)=det(T(u)—1)=0. (5.34)



266 O. 1. Bogoyavlenskij

It is easy to show that if two representations 7; and 7, are equivalent then
the corresponding polynomials Py () and Ppyy(u) and the algebraic manifolds
V1 and Vr, coincide. If a representation 7 is reducible, then the algebraic manifold
Vr is reducible too.

6. Necessary Criteria for Existence of a Non-Degenerate Hamiltonian Structure

L Let us consider a class of Hamiltonian systems (1.1) corresponding to the Poisson
brackets

% OF (u) I 5F2(u)
{Fi(u), F(u)} = f | S 1Y (u )M( o (6.1)
where a skew-symmetric operator / = (IV) has the form
19 (u) = ’f(u) o+ bjuf (62)
A connection . ‘
e ) = —gju (Wb (1) (6.3)

naturally arises from (6.2). Skew-symmetricity of the Poisson brackets (6.1) implies
[7-9] the symmetry condition for the metric, g¥ (u) = g’ (u), and the compatibility
condition of the connection (6.3) with the metric g;; :

ag” og”
ouk our
In [7-9] it is shown that the Poisson brackets (6.1)—(6.2) with a non-degenerate

metric g” (u) satisfy the Jacobi identity if and only if the torsion and the curvature
of the connection (6.3) are zero. That means the metric g;;(«) is flat and therefore

the operator /¥ (1) in appropriate coordinates (u', ...,u") takes the form

" .. d
1Y(u) = q'9; P (6.5)

ij J_
v b =

wd" + ijg =0. (6.4)

with some constant coefficients ¢'.
A Hamiltonian system (1.1) with a Hamiltonian f(u!,...,4") has the form

i iocéi

u, =1 p

In view of (6.5) any Hamiltonian system (6.6) can be transformed to the canonical
form

= '“() f u/’+b() f ) (6.6)

. f
=q 3 o ul . (6.7)
II. Let us consider a general system (6.6) with symmetric connection (6.3)
=Ty (68)

Metric g;; (that is not necessarily flat and is not necessarily compatible with the
connection (6.8)) defines the bilinear form
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(v, W) = gupt®wP, v, we T, (M"). (6.9)

System (6.6) is connected with the operator tensor field

i o a2f o af
p(u)=g"(u) 3 o + by (u)% . (6.10)
The symmetricity of the operator A
(Av, w) = (v, Aw) (6.11)

follows from the condition (6.8). Indeed, (6.11) is equivalent to the equation
Y gy Ay (0w =Py =0. (6.12)
% By

The last one after substituting the formulae (6.10) and (6.3) takes the form

*Pf o, of .
o )W SOV = 1
a%y (614“@“/3 Foz/? 0u7> (U w v"w ) 0, (6 3)

and the statement follows. In particular we obtain that the operator 4 (6.10) for a
Hamiltonian system (6.6) is symmetric with respect to the scalar product (6.9) [9].

11

Theorem 1. The operators H, (2.5) for the Hamiltonian system (6.6) are skew-
symmetric with respect to the bilinear form (6.9):

(Hy, w)+ (v, Hw) =0. (6.14)

Proof. The condition (6.14) is invariant. Thus it is enough to check (6.14) for the
canonical form (6.7) of the Hamiltonian system. The system (6.7) is a special case
of the system of conservation laws [2, 3]

af

2 usy .

U = fl= (6.15)

We denote partial derivatives by low indices: f, = df"/ou”, fi; = 0% f/ou*ouP | etc.
System (6.15) is connected with the (1, 1) tensor field A’ (u) = 0f"/ou*. The
corresponding Nijenhuis tensor (2.2) has the following entries:

= fia S = fiu f7 (6.16)

A direct calculation of the Haantjes tensor (2.4) for the system of conservation
laws (6.15) gives the formula

= LS = 1L 1
LI = i S S
i S f— flp £ LR AL (6.17)

The system (6.7) is embedded into (6.15) where f = ¢'df/0u’. Therefore for
the system (6.7) we get from (6.16)
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e =4'0 Sk foj = Fijn f) - (6.18)

The Haantjes tensor for the system (6.7) in view of (6.17) is determined by the
formulae

Hiyy=qHj, (6.19)
~] . n
A, = ESlgn(a)%Iq“qﬁqyfa(i)a Fape() F by Fro) » (6.20)
o afy

where summation is taken over all permutations ¢ of indices i, j, k. Coefficients Fl}k
are skew-symmetric with respect to the transpositions of any two indices i, J, k.

The condition of the skew-symmetricity of the operators H, (6.14) is equivalent
to the equations

Eﬂ; Goy Hlp (0" WP + vPw™) = 0 (6.21)
a’ ’y

for all j =1, ...,n. Substituting here the formula (6.19) and g,, = (¢*)~' 8 we
obtain the equations

Zﬁ;ﬁ(v“wﬁ +vfw*)=0.
a’ ﬁ
These equations hold indentically in view of

(6.22)

Theorem 1 is proven.

1V. For the Jacobi tensor Jg; we denote Juijks = Jp; 4 Gos-

Corollary 3. The Jacobi tensor Jy for the Hamiltonian system (6.6) has the
following properties:

Jy (u, v)w = —Jy (v, w)w,
Jy(u, v)w =Jy (v, wu = Jy(w, u)v,
(Ju (u, v)x, y) + (x, Ju(u, v)y) =0,
(Ju (u, v)x, y) = (Ju(x, y)u, v), (6.23)

equivalent to the relations
JHijks = $1g0(0)Ho(i)o( jyo(k)o(s) (6.24)

for all permutations o of four indices i, j, k, s.

Proof. The equalities (6.23) follow from the general symmetries (3.8) and (3.9)
of the Jacobi tensor and from Lemma 2 based on Theorem 1 for the Hamiltonian
system (6.6). The equivalence of (6.23) and (6.24) is simple to verify.

The Haantjes tensor H(u, v) for n = 3 for any (1, 1)-tensor field Aj. (x) defines

the structure of the Lie algebra in each tangent space Ty (M), see Corollary 1. Thus
in the whole we have the deformation of the structures of the Lie algebras in the
tangent bundle T (M?). For the Hamiltonian system (6.6) this is obvious because
of the vanishing of the Jacobi tensor (3.7) for n = 3 in view of (6.24).
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Theorem 2. For the Hamiltonian system (6.6) for n =3 the following alternative
is true:

1) The Haantjes tensor H(u, v) is zero. Then the system (6.6) possesses the
Riemann invariants and is integrable by the generalized hodograph transformation.

2) The Haantjes tensor H (u, v) is non-zero. Then the arising Lie algebra for
each tangent space T,(M?) is simple, so it is isomorphic either to so (3) or sl (3).
The Cartan-Killing form (u, v)y = Tr(H,H,) defines the non-degenerate metric h;;
on the manifold M? that has to be conformally flat and therefore has to satisfy
the classical Weyl-Schouten equations:

1
Rijx = Rijx — Rt j — Z(hikR,j —hijR;)=0. (6.25)

Proof. 1) The existence of the Riemann invariants provided that the Haantjes ten-
sor H(u, v) = 0 is proven in our paper [11]. The integrability by the generalized
hodograph transformation follows from the Tsarev theorem [19].

2) The Haantjes tensor (6.19), (6.20) for the Hamiltonian system in the canon-
ical form (6.7) has only the following non-zero components:

HY), = —H3, = ¢c(x), Hs=—H)=q'c(x), H} =—Hj=qgc(x), (626)

where c(x) :ﬁﬁz(x) (constants ¢', g%, ¢° are nonzero because the metric g;; is
nondegenerate). Therefore the Lie algebra in T, (M?) is simple if ¢(x)+0 and is
commutative if c¢(x) = 0.

From (6.26) we get for the metric (v, v)y :

3
hyj (x) = Zﬂ B Hb = (—c(0)q' ¢ ¢ )gi(x) .

Thus the metric A;;(x) is conformal to the flat metric g;;(x). That follows also from
the fact that the Lie algebra in T, (M?) is simple and its operators ad, = H, are
skew-symmetric with respect to the two metrics A;;(x) and g;; (x).

Any conformally flat metric A;;(x) satisfies the Weyl-Schouten equations (6.25)
[18] where R;; is the Ricci tensor and R is the scalar curvature of the metric 4;;;
the R;; x and R ; are their covariant derivatives.

Theorem 2 is proven.

Theorem 3. The Haantjes tensor H(u, v) for the Hamiltonian system (6.6) for
n = 4 defines the structure of the Lie algebra o/ 4(x) in each tangent space T,(M*).
The Cartan-Killing form h;; = (e;, e;)u is degenerate. If h;; = O then the Haantjes
tensor Hj = 0. T hus the Lie algebra </4(x) can be neither simple nor nilpotent.

Proof. The Jacobi tensor Jy for a Hamiltonian system (6.6) for n = 4 has in view
of (6.24) only the following nonzero components

JHo(1)o(2)0(3)o(4) = SigNn(a)Jr1234 -

In the coordinates u!, u?, u®, u*, where the system (6.6) has a canonical form (6.7),
we have
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Tz = Z(le 5+ Hy Yy + Hi Hy) (6.27)

After the substitution of the formulae (6.19), (6.20) we find that each summand in

(6.27) is equal to zero because symbol I—NI;-k (6.20) is equal to zero when any two of
the indices i, j, £ coincide. Therefore the Jacobi tensor Jy vanishes and hence the
Haantjes tensor H in view of (3.7) defines the structure of the Lie algebra .o/4(x)
in each tangent space T, (M*).

As known, the Cartan-Killing form for any 4-dimensional Lie algebra is degen-
erate. Thus rank 7 of the form &; = (e;, €;)n has to be 0=r=3.

The Haantjes tensor H ik in the canonical coordinates (6.7) has the form (6.19),
(6.20). For n = 4 we denote

~4 1 ~2 ~3
H23:C], H34:CZ, H4l=C‘3, H12=C4.

All entries Hj‘k are the linear combinations of cj, ¢, ¢3, ¢4. Substituting these ex-
pressions and (6.19) into the formula

U = (e, e])H'_Z ot ]ﬂ’

we obtain the relations
CiCj

by =~
/ qi9;

hi = (q] + qici + 45¢2)

where
9=q1929394, i¥jFk=*s.

Hence it follows that if the metric A;; = 0, then all ¢, = 0, and therefore the Haantjes
tensor Hj; = 0. Theorem 3 is proven.

Remark 6. If the Haantjes tensor H (v, w) defines the structure of the simple Lie
algebra in each tangent space T, (M") then the bilinear form (6.9) is proportional
in view of (6.14) to the Cartan-Killing form (v, w)y = Tr(H,H,,). Therefore the
metric 4;;(x) defined on the manifold M” by the form (v, w)y must be conformally
flat, or the Weyl tensor of the conformal curvature C}ke(x) for the metric /;;(x) for
n > 3 must be zero (for n = 3 this tensor is zero identically [18]).

V. The properties of a Hamiltonian system (6.6) for n = 3, 4 described by Theo-
rems 2 and 3 do not depend on the metric g;; and are the properties of the Haantjes
tensor only. Therefore these properties are the definite necessary conditions for the
general system (1.1) for n = 3, 4 to be Hamiltonian. In the following Theorem 4 we
describe invariant necessary conditions for the existence of a Hamiltonian structure
for a system (1.1) for all ».

Theorem 4. If a system (1.1) possesses some Hamiltonian structure (6.6) then
the following necessary conditions are fulfilled in any point x € M" and for any
vectors u, v, w € T,(M"):

1) The polynomial Py (u) = det(H, — 1) is even.
2) The algebraic manifold Vg C T.(M™") is invariant under the involution
u— —u
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3) The eigenvalues of an operator H, are symmetric with respect to zero and
the dimension of its image H,(T,(M")) is even in a general case.

4) The function w(u, v, w) = Tr(H,H,H,) is skew-symmetric with respect to
the transpositions of u, v, w.

5) The differential 2-forms Buy (u, v) = Tr(4*[H,, H,]) = 0.

6) The following transvections are equal to zero

Jhp(A™E = Tr(Jy; A™) =0,

Tr(HEH") =0, k+m=2s+1.

Proof. The conditions 1), 2) and 3) follow from Lemma 1 in view of Theorem 1.
Condition 4) is equivalent to the equality

Tr(H,(H,H,, + H,H,)) = 0. (6.28)
The proof of the equality (6.28) and the conditions 4), 5) and 6) is based on the

following lemma known in the linear algebra.

Lemma 3. If an operator A is symmetric and an operator B is skew-symmetric
with respect to a non-degenerate bilinear form (v, w) = gypv*wh:

(Av, w) = (v, Aw), (Bv, w) = —(v, Bw), (6.29)
then Tr(AB) = 0.

Indeed, from (6.29) one gets
(ABv, w) = —(v, BAw) .
This equality implies
ABg = —g(BA)', g 'ABg = —(BA)' .
Hence
Tr(4B) = Tr(g~'4Bg) = Tr(—(BA)') = —Tr(4B) ,

and the claim follows.

If a system (1.1) is Hamiltonian and so has the form (6.6) then the corresponding
operator Aj-(x) is symmetric with respect to the bilinear form (6.9), see (6.11).
Operators H, are skew-symmetric in view of Theorem 1, see (6.14). Operators
Ju (u, v) are skew-symmetric in view of the Corollary 3, see (6.23). Therefore the
conditions 4), 5), 6) and the equalities (6.28) follow from Lemma 3.

Theorem 4 is proven.

Remark 7. 1t is easy to derive from Lemma 3 the vanishing of many other transvec-
tions, for example
Tr(Jf (u, 0)H™) =0, k+m=2s+1,
Tr(HS[H], H']) =0, k+1+m=2s,
Tr(4*[H], H]) =0, [+m=2s,
Tr(Hf (HyH) + Hy H))) =0, k+1+m=2s+1. (6.30)
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These equalities are also the necessary conditions for a system (1.1) to be Hamil-
tonian.
VI Let us consider the bilinear tensor M (u, v) (3.23).

Theorem S. Linear operators M, = Ny, — AN, for a Hamiltonian system (6.6) are
symmetric with respect to the bilinear form (6.9):

M,v, w) = (v, Myw) . (6.31)

Proof. The condition (6.31) is invariant. Therefore it is enough to prove it for the
canonical form (6.7) of a Hamiltonian system (6.6). Tensor M is connected with

the Nijenhuis tensor N}k in view of (3.23) by the formulae
}k = NékA;( - ﬁcAi . (6.32)

This expression for a general system of conservation laws (6.15) in view of (6.16)
takes the form

e = L L3S = Sig 558 = Fig 13 Fi+ i fh S (633)
Hence we obtain after the substitution f7 = q'df/du’ for the canonical form (6.7):
e =d' My, (6.34)

My = Zﬂq“ 0P St Fap F7 = Finp oy [k — Frap Soj Soi + fiap fea S ) - (635)

Symmetricity condition (6.31) is equivalent to the equations

= gﬂyM]};’

g “VMJ‘yﬁ

for all o, f and j=1,...,n Substituting here the formulae (6.34) and g, =
(¢*)~' 5} we obtain the equations

gM; = Mjg (6.36)

Mi. _ Mk

o =M, (637)

which hold obviously for the coefficients (6.35).
Theorem 5 is proven.

Remark 8. The operators H, are the commutators H, = [M,, A], see (2.6) and
(3.23). Therefore the skew-symmetricity of the operators H, (Theorem 1) follows
from the symmetricity of the operators 4 and M, (Theorem 5).

Corollary 4. If metric g;; for a Hamiltonian system (6.6) is positively (or nega-
tively) defined then the scalar product

(u, V) = Tr(My M,) (6.38)
is non-negatively defined and the scalar product

(u, v)y = Tr(H, H,)
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is non-positively defined.

Indeed, for the canonical form (6.7) we have in view of (6.34) and (6.37),
~ ~ ﬁ n ~
(e, s = 324" q" Myg Moy = 3 g% ¢ (M)’ 20 ,
of o, B
because g*q” > 0. Analogously in view of (6.19) and (6.22) we get
(u, W)y = Zq“qﬁHuﬂH = —Zq“qﬁ(H N

Theorem 6. If a system (1.1) possesses some Hamiltonian structure (6.6) then
the following necessary conditions are satisfied in any point x € M" and for any
vectors u, v, w in the tangent space T,(M"):

1) The polynomials
Pk (u) = det([Mu’ Ak] - 1),
O(u, v) = det([M,, M,] - 1),
R(u, v) = det([H,, H,] — 1), (6.39)
and the corresponding algebraic manifolds are invariant with respect to two invo-
lutions u — —u and v — —v.

2) The eigenvalues of the operators
My, 41, My, My),  {H., M,} = H,M, + M,H, (6.40)

are symmetric with respect to zero.

3) The differential 2-forms vanish
= Tr(4*[M,, M,])=0. (6.41)

The proof of these necessary conditions is based on the fact that operators (6.40)
are skew-symmetric with respect to the bilinear form (6.9) and on Lemma 1.

A wide variety of necessary conditions for a system (1.1) to be Hamiltonian
can be derived analogously to (6.30) from the fact that the operators 4 and M,
are symmetric and the operators H, are skew-symmetric with respect to the bilinear
form (6.9).

VII. The properties of symmetry of the Nijenhuis tensor with respect to the bilinear
form (6.9) are described by the following theorem.

Theorem 7. The Nijenhuis tensor N for a Hamiltonian system (6.6) satisfies the
three identities

(N(u,0),w) + (N(v,w),u) + (N(w,u),v) = 0, (6.42)
(AN (u,v),w) 4+ (AN (v, w),u) + (AN (w,u),v) = 0 , (6.43)
(A2N(u,v),w) + (4N (v, w), u) + (A>N(w,u),v) = (H(u,v),w), (6.44)

for any vectors u,v,w € T(M").
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Proof. These identities are invariant. So it is enough to prove them in the coordi-
nates where metric g;; is diagonal and system (6.6) has the canonical form (6.7).
The identities (6.42)—(6.44) are equivalent to the following tensor relations:

Niigak + Njgoi + Ngigoj = 0,
NiAbgp + Nydbgg + Npalgs =0,
NiAL A gp + N ALl gpi + NGAL Al gp; = Higu .

These relations are valid identically after the substitution of the formulae (6.18)
—(6.20) and 4, = ¢' f, for the canonical form (6.7).

The identity (6.44) can also be derived in a pure algebraic way as a consequence
of the two identities (6.42) and (6.43), the relation (2.4) connecting the Haantjes
and the Nijenhuis tensors and the symmetricity relation (6.11) for the operator A.
Theorem 7 is proven.

Remark 9. The property of the symmetricity of the operators M, = Ny, — AN,
(6.31) follows from the identities (6.42) and (6.43). Indeed, substituting into (6.42)
Au instead of u and subtracting from the obtained expression the identity (6.43) we
get in view of (6.11)

((Nau — AN v, w) — (Nau — AN w,v) =0,
that coincides with (6.31). This relation for the tensor M(u,v) (3.19) takes the form
M(u,v),w) = (M(u,w),v) .
The Haantjes tensor for a Hamiltonian system (6.6) satisfies in view of the
formulae (6.19), (6.20) the identities
(H(u,v),w) = (H(v,w),u) = (H(w,u),v) .

These relations are also the immediate consequence of the identity (6.44) along
with the skew-symmetricity of the operators H,.

Remark 10. The three identities (6.42)-(6.44) are equivalent to the general identity
(P(A)N (u,v),w) + (P(A)N(v,w),u) + (P(A)N(w,u),v) = (H(u,v),w), (6.45)
where P(4) is the quadratic polynomial
P(A)=4*+ pAd+gq
with arbitrary coefficients p and gq.
If two vectors u and v belong to the kernel of the operator P(4), or

PAu =0, PAp=0, (6.46)
then the identity (6.45) yields
H(u,v) = P(A)N(u,v) . (6.47)

The formula (6.47) under the conditions (6.46) generalizes the Haantjes formula
(2.15) for the Hamiltonian system (6.6).
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Remark 11. The Haantjes tensor H(u,v) for the Hamiltonian system (6.6) satisfies
the following identity

(T(u,v),w) + (T (v,w),u) + (T(w,u),v) =0,
where the bilinear tensor 7'(u,v) is
T(u,v) = H(u, P(4)0) + H(Q(A)u,v) — (P(4) + Q(4))H (u,0) ,

and P(A4) and Q(A4) are arbitrary polynomials of 4 (could be also arbitrary symmet-
ric operators). This identity easily follows from the symmetricity of the operator 4
and skew-symmetricity of the operators H,,.

VIII. Let an operator tensor field A(x) have a multiple eigenvalue A;(x) with a
multiplicity n; =2. Let Ly, C Ty(M") be the field of the corresponding eigenspaces
(A — A4)Ly =0 and e(x),g(x) € Ly, be arbitrary eigenvector fields.

Theorem 8. If the operator A(x) corresponds to a Hamiltonian system (1.1) then
1) The relations hold

N(Lg,Ly) C Ly, M(Lg,Ly) =0, H( Lk, Ly) =0, (6.48)

(4 = 2)’[e(x),g(x)] = 0. (6.49)

2) If the Jordan normal form of the operator A(x) is diagonal then the field
of eigenspaces Ly is integrable and N(Ly, L) = 0.

Proof. For the eigenvector fields e(x), g(x) € Ly, we have
M, = Nyo — AN, = (4 — A)N, . (6.50)

Operators M, for a Hamiltonian system (1.1) are symmetric with respect to the
nondegenerate bilinear form (6.9). Thus from (6.11), (6.31) and (6.50) we obtain

(Meg,v) = (9, Mev) = (g, (A — A)Nev) = (A — A)g,Nev) =0, (6.51)
where v € T (M") is an arbitrary vector. Equality (6.51) obviously implies
M.g = (4 —A)N(e,9) =0. (6.52)

Hence the relations (6.48) follow.
The equality (6.49) follows from (6.52) after substituting the Nijenhuis formula
(2.14) for Ay = As:

N(e(x),g(x)) = (4 = %)[e(x), g(x)] - (6.53)

If the Jordan normal form of the operator A(x) is diagonal then from (6.49) we
obtain

le(x), g(x)] € Lix (6.54)

and therefore the field of eigenspaces Ly, is integrable. From (6.54) and (6.53) we
obtain N(e, g) = 0. Theorem 8 is proven.

IX. A vector w € T,(M") is called central vector for the Nijenhuis tensor if the
operator N,, = 0, or N(w,u) = 0 for all u. Linear subspace of all central vectors is
called the central subspace Z.
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Proposition 5. If the Nijenhuis tensor N(u,v) for a Hamiltonian system (6.6)
has a central subspace Z of a dimension k then all vectors N(u,v) belong to a
proper subspace L of the dimension n — k, the image AN(u,v) belongs to the same
subspace L.

Proof. Let L be a subspace orthogonal to the central subspace Z. Obviously L
has dimension # — k. For any central vector w € Z the identities (6.42) and (6.43)
imply

(N(u,v),w) =0, (AN (u,v),w)=0. (6.55)

Hence we obtain
N(u,v) e L, AN (u,v) € L. (6.56)

7. Necessary Criteria for the Existence of Two
Non-Degenerate Hamiltonian Structures

I Let us suppose that system (1.1) has two Hamiltonian structures (6.6) with two
non-degenerate metrics (g;;)1 and (g;;)2. In this case we have the (1, 1) tensor
field B { = gliag;j on the manifold M". Two Hamiltonian structures are in general
position if all eigenvalues of the operator B = g1g, ! are distinct (eigenvalues of
the operator B can be complex).

Theorem 9. If a system (1.1) has two linear independent non-degenerate Hamil-
tonian structures then
1) All operators A,M, and H, commute with the operator B = gig, L
2) Tensors M(u,v) and H(u,v) are reducible, or all operators M, and H, have
a non-trivial invariant subspace. The polynomials defined on the tangent space
T(M"™)
Py (u) =det(M, — 1), (7.1)

Py (u) =det(H, — 1), (7.2)

are reducible.

3) If operator B has k distinct (complex) eigenvalues then polynomials (7.1)
and (7.2) have at least k (complex) divisors.

4) If two Hamiltonian structures are in general position then the Haantjes
tensor vanishes: H(u,v) = 0 and all operators M, and A reduce to the diagonal
form simultaneously. The polynomial (7.1) decomposes into a product of n linear
factors.

Proof. 1) If a system (1.1) is Hamiltonian with respect to two Hamiltonian struc-
tures then in view of Theorem 1 and Theorem 5 operators 4, M, and H, satisfy the
following identities with respect to the two bilinear forms (u,v); and (u,v);:

(Av,w); = (v,4Aw)1, (Av,w) = (v,Aw),,
(Muv’w)l = (U9Muw)17 (MuU’W)Z = (vauW)z >

(HM,U,W)l = —(U,HuW)l, (HuU,W)z = —(U,HuW)z .
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Hence we get for the corresponding matrices the equalities:

g Agr = A", g;'Ag, = 4",
g7 Mgy = M!, g5 'Mugs = ME, (7.3)
gy 'Hug1 = —H!, g,'H,g» = —H!.

These equalities lead to the commutativity relations with B = g9, !

AB = BA, M,B=BM,, H,B=BH,. (7.4)

2) — 3) In view of (7.4) it is obvious that the reducibility of the tensors M (u,v)
and H(u,v) follows from the classical Schur’s lemma [17]. Let Pg(4) be the char-
acteristic polynomial of the operator B

Pp(1) =det(B— 1), Pp(B)=0. (7.5)
Polynomial Pg(4) has the form

k
Py(2) = (1" JJGa =2, (7.6)
i=1
where A; are the eigenvalues of the operator B and »; are their multiplicities. Let
L; C R" = T,(M") be a maximal subspace annihilated by the polynomial

pi(B) = (B—A)", pi(B)XLi)=0. (7.7

Obviously we have dimZ; = n; and

Li+Ly+...+Ly=R"', ni+m+...+n=n. (7.8)

Operators 4, M, and H, commute with operator p;(B) (7.7) and thus the equalities
follow:

pi(BYA(L)) =0,  pi(BYM(Li)) =0, pi(B)(Hy(Li))=0. (7.9)

Hence

A(L;) C Li, My (L) CL;, Hy(L)CL;. (7.10)
Therefore all operators M,,H, and 4 have a block-diagonal structure in the de-
composition (7.8). If operator B has k=2 distinct eigenvalues then the operators
M,, H, and 4 have k diagonal blocks in the decomposition (7.8). In this case the
polynomials (7.1) and (7.2) are reducible and have &k divisors.

Let £ =1 and thus
Pp(A) =(=1)'"(A—=4)",
then operator B must have nontrivial Jordan blocks otherwise the two Hamiltonian
structures would be linear dependent. In this case operator p;;(B) = B — 1; annihi-
lates subspace L; having dimension dim(L;) = n; < n. Thus all operators M,, H,
and A also have invariant subspace L;. Therefore tensors M(u,v) and H(u,v) are
reducible and the polynomials (7.1) and (7.2) are reducible too. We note that the
polynomial (7.2) always has factor 1 because detH, = 0.
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Obviously we have a filtration of invariant subspaces (which can coincide)
LcL,c...cL,=R", (7.11)

where L is annihilated by the operator

pi(B)=(B -4, puB)L)=0. (7.12)

Filtration (7.12) is invariant also under the operators A, M, and H, and hence it
leads to a more fine factorization of the polynomials (7.1) and (7.2).

4) Suppose the operator B = g1g, ! has n distinct eigenvalues that means two
Hamiltonian structures are in general position. Let ej,...,e, be the basis of its
(complex) eigenvectors. All operators 4, M, and H, commuting with operator B are
diagonal in the basis on its eigenvectors. Thus all operators 4, M,, M, commute one
with another and hence H, = [M,,A] = 0. Therefore the Haantjes tensor vanishes:
H(u,v) = 0. The polynomial (7.1) is decomposed in this case into a product of n
linear factors.

Theorem 9 is proven.

1I.

Corollary 5. If a system (1.1) has two Hamiltonian structures in general position
and operator A has n real distinct eigenvalues then the system has n Riemann
invariants and is integrable by the generalized hodograph transformation.

Proof. The system (1.1) under these conditions has in view of the Theorem 9
zero Haantjes tensor. Therefore in view of Theorem 1 of [11] the system possesses
n Riemann invariants and is transformed to the diagonal form after some change
of coordinates. Thus in this case the integrability by the generalized hodograph
transformation follows from the Tsarev Theorem [19].

Remark 12. Bi-Hamiltonian systems were studied in many papers, where the main
method to prove their integrability was based on the Magri scheme [10]. The proof
of Corollary 5 is independent on the Magri approach.

Theorem 10. If a system (1.1) has two non-degenerate Hamiltonian structures
and all eigenvalues J; of the operator B = g;,g; U have multiplicities m; <2 then
the Haantjes tensor Hj’ = 0. If the multiplicities m; <3 then the Haantjes tensor
defines the structure of the Lie algebra in each tangent space T.(M"). This Lie
algebra is a direct sum of the commutative one R* and the 3-dimensional Lie
subalgebras of3 with the commutators (3.14).

Proof. The generalized eigenspaces L; of the operator B = g;g; ! belonging to the
eigenvalues A; are invariant with respect to the operators 4 and H, in view of
(7.4). The Haantjes tensor H(u,v) is zero on each L; if dimL; =2 in view of
(6.47). If dimL; = 3 then the Haantjes tensor H(u,v) defines the structure of the
Lie algebra in the L; with the commutators (3.14), in view of the formula (2.15)
and H, = [M,,A].

Theorem 10 is proven.
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8. An application to the equations of gas dynamics

We consider the equations of one-dimensional gas dynamics

1 1
Uy = —V0x — ;pppx - ;pssx s

Pt = —pvy — Vpx ,
Sy = —USy , (8.1)

where v(x, t) is the velocity of the gas, p(x,?) is the density of mass and s(x, ¢) is the
density of entropy. Pressure p is determined by an equation of state p = p(p, s).

The corresponding (1,1) tensor field Aj. defined on the manifold M3 with the co-
ordinates v, p,s has the following eigenvalues 4, 4, A3 and eigenvectors ey, e;, e3:

0 0
o =—v, e = ps% Py (82)
0 0
Ay = =0+ /Dp, €2=\/P_p%—;05;,

0 0
A3 =—0—\/Dps 632\/17_p%+/0%~

In the hyperbolic case p,=0 it is easy to calculate the Haantjes tensor H(u,v)
in the basis of eigenvectors (8.2) using the formula (2.15). Thus we obtain:

H(ei,e2) = h(p,s)es, H(ei,e3) = h(p,s)ez, H(ez,e3)=0, (83)
where
. 2 2.3 Ds
h(p,s) = pp | PoPps — PsPpp — —PpPs | =P Py | 3 . (84)
p P Pp/,

Proposition 6. The necessary and sufficient condition for the existence of Riemann
invariants for the equations of gas dynamics (8.1) is

p,=0 or (pfs ) -0. (8.5)
p

Py

This is also the necessary condition for the existence of a Hamiltonian structure
of the type (6.6) with a nondegenerate metric g".

Proof. Condition (8.5) in view of (8.3), (8.4) is the condition of vanishing of
the Haantjes tensor H(u,v). Therefore the statement concerning the existence of
Riemann invariants follows from Theorem 1 of [11].

If system (8.1) is Hamiltonian in the sense (6.6) then in view of Theorem 2
of this paper the Haantjes tensor H(u,v) defines a deformation of structures of
Lie algebras in the tangent bundle T(M?>) which are simple or commutative. Lie
algebras defined by the formulae (8.3) are solvable if A(p,s)=+0. Thus we get the
necessary condition A(p,s) = 0, or (8.5) for the existence of a Hamiltonian structure
(6.6). Proposition 6 is proven.

The operator H, for a tangent vector u = xje; + x2e; + x3e3 has the form
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Hy(e)) = —hxzey — hxye3, H,(ez) = hxie3, H,(e3) = hxie; . (8.6)

The corresponding metric on the tangent space T,(M>) is degenerate
(,u)y = Tr(H,H,) = 2h*x? . (8.7)
The algebraic manifold Vy; C T(M?) is defined by the formula
Py(u) =det(H, — 1) =h*x} -1=0, (8.8)

and thus consist of two parallel planes x; = +4~!.

9. On Perturbations of the Benney Equations

L. The Benney equations [12] have the form

n
Uiy = —Uillix — (Z’h‘x) , 9.1)
j=i

Nig = —Nilkix — Uilix -

On the corresponding manifold M?" we consider the local coordinates u;, ..., u,,
1, ..., M. In the tangent space T:(M>") we have a basis of 2 vectors
0 0 .
ei:%, gi:%, l=1,...,l’l. (92)

The operator tensor field A} defined by the Benney system (9.1) has the form
Ae; = —uje; —nig;, Agi = —(e1 +...+ey) —ug; . 9.3)
A direct calculation of the Nijenhuis tensor N(v,w) (2.1) leads to the formulae
N(ei,ej) =0, N(gi,9;) = g; — gi »
N(ei,gj) = —N(gj,ei) = —e; . 94)

Hence for any two tangent vectors

V= Zl(xiei +vigi), o= (%e + Pigi), 9.5)
i= i=1
we have
Nye; = N(v,e;) = w(v)e;, Nyg; = w(v)g; —v, (9-6)
Ny = N(v,a) = w(v)o — w(a)v . 9.7)
Here w is the differential 1-form
o@)=y1+...+ Y o(x)=p1+...+B. (9.8)

From (9.3) we get

Av = é(—xiu,- — (0))e; — 00 + yiur)gs (9.9)

i=
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From (9.7) and (9.9) we obtain

Myo = (Nygp — ANy)o = —aw(v)Ao — d(v)o (9.10)
M, = —w(v)4 — &((v)1, (9.11)

where
() = xm — yi). (9.12)

The Haantjes tensor H (v, w) for the Benney system (9.1) is identically equal to
zero, that follows from (9.11) and (2.6),

H,=[M,, 4] =0. (9.13)

This gives in view of Theorem 1 of the work [11] another proof of the existence
of the Riemann invariants for the Benney equations.

II. Let us show that the Nijenhuis tensor (9.7) for the Benney equations defines
the structure of the Lie algebra in each tangent space T,(M?"). Indeed, let L?"~!
be the hyperplane of the tangent vectors, satisfying the condition w(v) =0, and g
be the tangent vector

g=%(gl+...+gn). (9.14)
Obviously w(g) = 1. In view of (9.7) for any two vectors v, w € L**~! we have
N(, w)=0, N(g,v)=v. (9.15)
The Jacobi identity for any three tangent vectors u,v,w € Ty (M)
N(N(u, v), w)+ N(N(v, w), u) + N(N(w, u), v) =0 (9.16)

follows easily from the formulae (9.15). Thus each tangent space T,(M?") has the
structure of the solvable Lie algebra .o7, determined by the Nijenhuis tensor (9.7).
The hyperplane L?"~! is the maximal commutative ideal:

Lt =0, [ =1 ©17)

Obviously the structure of the Lie Algebra .o/ in T.(M?") does not depend on the
point x € M?".
The invariant scalar product (#, v)y (2.8) coincides with the Cartan—Killing form

(u, v)y = Tr(N,N,) = 2n — Do(u)w(v) . (9.18)
Thus we have

@y =0, 7 g =0, (99w =2n~-1. (9.19)

The algebraic manifold Vy € T,(M?") for the Benney system is determined by the
equation

Py(v) = det(NV, — 1) = (w(v) — )" ' =0. (9.20)

Thus the manifold Vy is the hyperplane w(v) = 1, parallel to the plane L>"~!.
Plane L>"~! is the set Zy of all N-nilpotent vectors, see (5.22)—(5.24).
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III. We consider the following natural perturbations of the Benney equations:

n
ip = —sithiy — 3 fr(Mi Mo 5
k=1
Mt = —Nilkix — Uillix (921)

where fj(n;) are arbitrary smooth functions. System (9.21) for f4(#;) =const is
equivalent to the Benney system (9.1). '
The corresponding to (9.21) (1,1) tensor field 4; has the form

Ae; = —uje; — igi, Agi = —fiE —wigi, (922)
where
e—i ——i E=e+...4+¢ (9.23)
,—aui, g,—am, =€ n . .
For any tangent vector v (9.5) we have
n n
Av = =3 xpurer — Y- (i + yii )gx — w(V)E (9.24)
k=1 k=1
where w(v) is the differential 1-form
n
w(v) = kZI S e - (9.25)
The Nijenhuis tensor for the system (9.21) has the form
N(ei,ej)=0, N(gi, 9;)= fig9; — fi9i (9.26)
e dfin)
N(g), &) = —N(ei, g;) = fiei —n; [;00E,  f;= # .
j
Hence for any two tangent vectors v, « (9.5) we obtain
N(U, a) = N()(U, O() + COO(U’ O()E > (927)
where
No(v, 2) = w(v)a — w(a)v, (9.28)
n .
wo(v, &) = > (aPr — yeou )k S - (929)
k=1

Tensor Ny(v, o) (9.28) is analogous to (9.7) and therefore satisfies the Jacobi iden-
tity (9.16). Tensor N(v, o) (9.27) satisfies the Jacobi identity only if wg(v, ) = 0,
or fi(nr) =const, i.e., only for the Benney system (9.1).
From (9.27) and (9.24) we get
Myo = (Nygpy — ANyt
= wo(Av, a)E — wo(v, 0)AE — w(v)Aa — d(v)a , (9.30)

where

a(v) = ké SrCani — yrug) .

Hence the formula for the operators H, follows
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Hyo = [M,, Ala = wo(v, 0)A*E + w1 (v, @)AE + wy(v, 0)E , (9.31)

where
o1(u, o) = wo(Ada, u) + wo(a, Au), (932)

w(u, a) = wo(A4u, Aa) . (9.33)

Thus we get that operators H, for the system (9.21) are not zero and transform a
tangent space T(M?") into 3-dimensional subspace generated by vectors

E, AE, A’E . (9.34)

Vectors (9.34) are linear independent and for a general vector v three 1-forms
defined by the formulae (9.29), (9.32) and (9.33)

0)0(1), OC), 0)1(0, O‘)a 0)2(17, O‘) (935)

are linear independent too. Thus the dimension of the image H,(T(M?")) for the
general vector v is odd. Therefore in view of the Theorem 3 of this work (the
necessary condition 3) is not fulfilled) and Theorem 1 of the work [11] we obtain
the following result.

Proposition 7. Any perturbation (9.21) of the Benney equations (9.1) with non-
constant functions fi(ny) has no Riemann invariants and has no Hamiltonian
structure of the non-degenerate type (6.6).

IV. Let K C T.(M?") be the kernel of the operator H, and A,,...,45,_3 be a basis
in K. Operator H, in the basis of 2n vectors

E, AE, A’E, hy,..., hay—s3 (9.36)

has nonzero entries only in the up-left 3 x 3 block. Therefore the polynomial

Pu(v) = det(H, — 1) (937)
has the form
wy(v, E) =1 wy(v, AE) wy(v, A’E)
Py(v) = —det | (v, E) w1(v, AEY — 1 (v, 42E) | . (9.38)

wo(v, E) wo(v, AE) wo(v, A%E) — 1

This polynomial has degree 3 and the corresponding algebraic manifold Vy C
T.(M*"), determined by the equation Py(v) = 0, is not invariant under the reflec-
tion v — —v. Thus the necessary conditions 1) and 2) from Theorem 3 for the
existence of a Hamiltonian structure are not fulfilled for the perturbation of the
Benney equations (9.21).

10. An Application to the Certain Matrix Partial Differential Equations

I. We consider for an arbitrary Lie algebra «/ the partial differential equation for
a vector function a(?, x) € o/ having the Lax form

a; = [a, a,] . (10.1)
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The Casimir functions f(a), constant on the orbits of the adjoint representation
of the corresponding Lie group G, are the pointwise first integrals of (10.1):
f((l(t, x))t = 0.

The manifold M”" corresponding to the system (10.1) coincides with the Lie
algebra /. The corresponding operator tensor field is 4 = ad,. Let u, v € T,(/) be
two tangent vectors in a point a € 4. The operator tensor field 4 is skew-symmetric
with respect to the Cartan—Killing form

(u, v) = Tr(ad,ad,), (Au, v)+ (u, Av) =0. (10.2)

We consider the constant extensions #, 7 as the vector fields on the manifold M" =
/. The Nijenhuis tensor is determined by the formula

N(u, v) = A%[d, 0], + [Ad, A5, — A([A#i, §), + [&@ AF],) (10.3)

where [, ], is the geometric commutator of the vector fields o, B.
Let c" be structure constants of Lie algebra .o/ in the basis

e = a—al-,...,en = %, [e,’, ej] = Cijek . (104)
Then we have
~ ~ “ k i a S i a
Ail = a u:ZCauf ECavf s (10.5)
ijsk Ljss

and the formulae follow
[di, ATy = [a, [u, v]], [4, 0], =0,
[dd, 7], = [u, v], [#, AD]y = [u, v].
substituting these formulae into (10.3), we obtain
N(u, v) = —[a, [u, v]], N, = —ad,ad, . (10.6)
Hence we obtain for the operators M,:
M, = Ny, — AN, = Niz,,q + ad2ad, = ad,ad,ad, . (10.7)
Therefore for the Haantjes operators H, we get the expression
H, = [M,, A] = adzad, qad, . (10.8)

From the formulae (10.2) (10.7) and (10.8) we obtain that all operators M,, H,
and A are skew-symmetric with respect to the Cartan—Killing form (10.2).

Proposition 8. Equation (10.1) for any simple Lie algebra </ considered as a
system of partial differential equations has no Riemann invariants and no Hamil-
tonian structure of the nondegenerate type (6.6).

Proof. If a system (10.1) for some Lie algebra o/ is Hamiltonian in the sense of
(6.6), then all operators M, and 4 are symmetric with respect to the bilinear form
(6.9) and all operators H, are skew-symmetric. In this case analogously to Sect. 7
the non-degenerate operators B, have to exist that anticommute with all operators
M, (10.7) and 4 = ad, and commute with all operators H, (10.8). For a simple Lie
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algebra .o/ such operators B, do not exist in view of the explicit formulae (10.6)—
(10.8). Therefore Eq. (10.1) for any simple Lie algebra ./ is not Hamiltonian.

The nonexistence of the Riemann invariants follows from the nonvanishing of
the Haantjes tensor H(u, v) (10.8) and from Theorem 1 of [11]. Proposition 8 is
proven.

II. Let us consider an equation for a matrix a(t, x):
a; = Jaa, + paxa , (10.9)

where A and u are some constants. Matrix entries a” are coordinates in the space
MY of all matrices, N = n?. Tangent vectors e;; = d/0a” form a basis in a tangent
space T,(M") which is naturally identified with the space of matrices M". Equation
(10.9) in the coordinates a” has the form

a? = ja*a¥ + pa®a* . (10.10)
The corresponding operator A has the entries
Al = 2a*$] + udta?,  Av = lav + pa . (10.11)

A direct calculation by the formula (2.2) leads to an expression for the Nijenhuis
tensor ' .
N(e,'j, eks) = /1/.1(6?(0/“6]“, — a"‘keaj) + 5§(a‘”eas — as“e;a)) .

Hence for any two tangent vectors u,v € T,(M") we obtain
N(u, v) = Aula, [u, v]] . (10.12)
That provides for A =1 and u = —1 the second proof of the formula (10.6).

Proposition 9. Matrix equations

a, = P(a)ay , (10.13)
a; = a,P(a), (10.14)

where P(a) is an arbitrary analytic matrix function split into n noninteracting
subsystems of partial differential equations in a neighbourhood of any matrix a
with real and distinct eigenvalues.

Proof. We prove at first that the Nijenhuis tensor vanishes for Egs. (10.13) and
(10.14). Indeed, we get from (10.12) that equations

a; = aay, (10.15)
a; = aga (10.16)

have zero Nijenhuis tensor, because Au = 0. If a matrix a has diagonal real Jordan
normal form, then operators 4 (10.11), corresponding to Egs. (10.15), (10.16) also
have diagonal Jordan normal forms, because Av = av or Av = va. Operator ten-
sor fields, corresponding to Egs. (10.13) and (10.14) are P(4). Let ey,... , ey be
eigenvectors of an operator 4 with diagonal Jordan normal form and 4;,... , Ay be
the corresponding eigenvalues. Operator P(4) has the same eigenvectors ey,... , ey
with eigenvalues P(41),...,P(/y). From the Nijenhuis formula
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N(ei, ) = (A — i) (A — Aj)le;, ej] + (4 — Aj)ei(4))e; + ej(di)er) (10.17)

it follows that if the Nijenhuis tensor for the operator 4 is equal to zero then it is
equal to zero for all operators P(4) as well.

Eigenvalues of the operators P(A) corresponding to Egs. (10.13), (10.14) are
equal to P(4;) where 4; form n eigenvalues of the matrix a and have multiplicities
n. Therefore from the results of the work [16] in view of the vanishing of the
Nijenhuis tensor we obtain that Eqs. (10.13), (10.14) split into »n non-interacting
subsystems of #n equations (in each subsystem). These subsystems are tangent to
n-dimensional eigenspaces of the operator P(4) and have the form

Air = P(A) A, Uiy = PAiUike, k=1,...,n—1. (10.18)

The arising #? functions Ai,...,An,upx,1 < i < n,1 <k < n—1 form another sys-
tem of coordinates in the space of matrices MY . Proposition 9 is proven.

III. We consider the matrix equation
a; = aaa . (10.19)
For the entries a” of the matrix a we get the equations
a’ = d*a*aPl (10.20)
The corresponding operator 4 has entries
Al = a*a¥, Av=ava. (10.21)
The operator 4 is symmetric with respect to the bilinear form
(u, v) = Tr(uv), (Au, v) = (u, Av). (10.22)

A direct calculation by the formula (2.2) leads to the following expression for the
Nijenhuis tensor:

N(eyj, exs) = (8la’PaPa® 4 5{;cz”"‘cl°“'as‘s - (5fasﬁaﬂ‘sayi - 5fay°‘a°‘kaj‘s)ev5 . (10.23)

Hence for any two tangent vectors u,v € T,(M") we get

N(u, v) = ala, [u, v]]a . (10.24)
Thus we have
N, = Aad,ad, . (10.25)
For the operators M, we get the formula
M, = Ny, — AN, = Aad,(ad,,, — Aad,) . (10.26)
Therefore for the Haantjes tensor H, we obtain
H, = [M,, A] = Aad,[ad,,, — Aad,, A] = 4*ad,ad}, ,ad, . (10.27)

Thus we get that the Haantjes tensor (10.27) is not equal to zero and so Eq. (10.19)
as well as Egs. (10.1) has no Riemann invariants.
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Note added in proof

11. Necessary Conditions for Existence of a Non-Local Non-Degenerate Hamiltonian Structure

I. Let us consider a (1, 1) tensor

Ai(u) = g*VoV, f(u) + Kf ()8, (11.1)

where g,, is a non-degenerate metric of constant curvature K, f(u) is a smooth function and V,
are operators of covariant differentiation with respect to the metric g;;. The (1,1) tensors A,(u)
(11.1) describe systems of partial differential equations (1.1) having non-local (K =0) [20] or
local (K = 0) [7-9] non-degenerate Hamiltonian structures.
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Theorem 11. If a system (1.1) has a non-local or local non-degenerate Hamiltonian structure
then the Nijenhuis tensor Ny(u,v) satisfies the algebraic identities (6.42)—(6.44) for the (1,1)

tensor Aj. (11.1). The corresponding operators H, (2.5) are skew-symmetric with respect to the

bilinear form defined by the metric g,; :

(Hyo,w)g = —(0, Hw)g, (0,w)g = gupt™wP . (112)

The proof follows by a direct calculation using the classical formulae of differential geometry
for the metric of constant curvature.

Corollary 6. Theorems 3-10 hold true for the systems (1.1) possessing non-local and non-
degenerate Hamiltonian structures.

Indeed, Theorems 3-10 are direct consequences of the identity (6.14) and the algebraic iden-
tities (6.42)—(6.44). These identities hold true for the non-local Hamiltonian structures as well.

IL. Let us assume that system (1.1) is hyperbolic. Then tensor Aj(x) (11.1) has real and distinct
eigenvalues 4;(x),...,A,(x) corresponding to the eigenvectors ej(x),...,e,(x). Their commutator
relations have the form

n
i), ¢(0)] = 3 Ci(xe() - (11.3)
k=1
Theorem 12. If a system (1.1) possesses a non-local or local non-degenerate Hamiltonian struc-
ture then the following necessary conditions are satisfied:

1) For any p+ 1 distinct indices a,i,...,¢ the following two products are equal

clck...Cl,Cl, = (~1)PCLCl ...cncy . (114)

of aj o okt

2) For any p distinct indices i,j,...,{ and p arbitrary indices &, f,...,0 different from
i,js...,Z the following two products are equal

. o c’.
3 — i 4 —
D}D}, ... D}, Diy = (=1)DiyDj ... DyDLy, DYy = (/1——1)—2 . (11.5)
Proof. The metric g,; is diagonal in the basis of eigenvalues
(ei(x), j(x))g = qi(x)d}; , (11.6)

because the (1,1) tensor Ay(x) (11.1) is symmetric with respect to the metric g,;(x). The formulae
(2.15), (11.2) and (11.3) imply
c c

o

j=— . i 11.7
G aP? = G it o

Multiplying the formulae (11.7) for p indices «, f,...,d and p pairs of indices (7, ), (j, k), ..., (i)
we obtain the equalities (11.4) and (11.5).

I Symmetricity of the (1,1) tensor 4j(x) yields
K
(B(A)u,v)g = (u, B(A)0)g, B(A,x) =D bn(x)A"(x) (11.8)
m=0
for an arbitrary polynomial B(4,x). We define a polynomial on the tangent bundle T'(M")
Pp(u, ) = det(B(4)H, — 1) (11.9)

and a fibration of algebraic varieties Vg C T(M") defined by the equation Pg(u,1) = 0.
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Theorem 13. If a system (1.1) possesses a non-local or local non-degenerate Hamiltonian struc-
ture then the following necessary conditions are satisfied in any point x € M" and for any tangent
vector u € T,(M™) and for an arbitrary polynomial B(4,x) (11.8):

1) The polynomial Pg(u,A) (11.9) is even with respect to u and is even or odd with respect
to A whenever n is even or odd.

2) The fibration of the algebraic varieties Vg C T(M") is invariant with respect to the
involution u — —u.

3) The set of eigenvalues of the operator B(A)H, is invariant with respect to the involution
A— —=A

Proof of Theorem 13 follows from the identities (11.2) and (11.8) and the following two
Lemmas.

Lemma 4. The characteristic polynomials coincide for the operators BH and HB.

Lemma 5. If an operator B is symmetric with respect to a non-degenerate bilinear form
(see(11.8)) and an operator H is skew-symmetric (11.2) then the set of eigenvalues of the
operators BH and HB is invariant with respect to the involution ). — —J along with their mul-
tiplicities.

Proof. The relations (11.8) and (11.2) imply the matrix equations
Bg=gB', Hg= —gH', g~'BHg = —(HB)' . (11.10)
Using the last formula we obtain for the characteristic polynomial

Pgy(2) = det(BH — 1) = det(g~'BHg — 1) = det(—(HB)' — 1) (1L11)
= (=1)"det(HB + %) = (—1)"Pup(—1) .

Applying Lemma 4 we derive the equality
Ppp(A) = (=1)"Ppu(=4), (11.12)
that proves Lemma 5.

Theorem 14. If two operators P and H are skew-symmetric with respect to a non-degenerate
bilinear form (see (11.2)) then all non-zero eigenvalues of the operator PH have even multi-
plicites.

Proof. We first assume that P = BHB where B is a symmetric operator (see (11.8)). Then PH =
(BH)?. The set of eigenvalues of the operator BH is symmetric with respect to the involution
A — —A along with their multiplicities (Lemma 5). Therefore all non-zero eigenvalues of the
operator (BH)? have even multiplicities. Thus Theorem 14 is proven for the pairs BHB,H. For
an arbitrary skew-symmetric pair P, H Theorem 14 follows by the continuity arguments because
the set of pairs BHB, H is open and dense in the set of all skew-symmetric pairs P, H.

Corollary 7. If a system (1.1) possesses a non-local or local non-degenerate Hamiltonian struc-
ture then non-zero eigenvalues of the operators HXH!" have even multiplicities when k and m
are odd and are symmetric with respect to the involution 1 — —A when k + m is odd.

The methods of this paper lead to new geometric and algebraic constructions which will be
published elsewhere.








